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Supplementary Fig. 1 | Three design elements to learn a generalized encoder. a, Assessing 

encoders with or without batch labels. b, Assessing decoders with or without DSBN. c, Assessing 

mini-batch sampling by batch without Batch Normalization or sampling from all batches with 

Batch Normalization. d, Detailed architecture of SCALEX and information flow. 



 



Supplementary Fig. 2 | Comparisons of integration performance of indicated methods across 

the indicated benchmark datasets. UMAP embeddings of the indicated methods across the 

indicated benchmark datasets colored by batches and cell-type. Misalignments are highlighted 

with red circles. 

 



 
 
 
 



Supplementary Fig. 3 | Comparisons of clustering results of indicated methods across the 

indicated benchmark datasets. UMAP embeddings of clustering results of the indicated 

benchmark datasets after integration by indicated methods; colored by Leiden (left) and Louvain 

(right). 
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Supplementary Fig. 4 | Comparisons of integration performance by quantification metrics. 

a, Scatter plots showing the ARI and NMI scores based-on the Leiden and Louvain clustering 

results, the Silhouette and batch entropy mixing scores, and the cLISI/ iLISI scores. b, Dotplot 

showing the scores and rankings of indicated methods on a set of scIB metrics across the 

benchmark datasets. Note that we did not include the trajectory conservation score in comparison 

as it is designed for developmental analysis, nor the HVG conservation score because the 

calculations were failed for some methods. 



 



Supplementary Fig. 5 | Comparisons of integration performance of indicated methods based 

on Human Fetal Atlas dataset. a, UMAP embeddings of the Human Fetal Atlas before 

integration. b, Dotplot of canonical marker genes for each cell-type. Dot color represents average 

expression level, and dot size represents the proportion of cells in the group expressing the marker. 

c, UMAP embeddings of the indicated methods (only SCALEX, BBKNN, Scanorama, and scVI 

are scalable to the Human Fetal Atlas dataset). Cells are colored by batch (left), cell-type (middle), 

and Leiden clustering (right). d, Scatter plot showing the ARI and NMI scores based-on the Leiden 

clustering results, the Silhouette and batch entropy mixing scores, and the iLISI and 1/cLISI scores. 

Note that online iNMF was not successfully tested on the Human Fetal Atlas due to a HDF5 file 

conversion issue for large data. 

 

 

 



 



Supplementary Fig. 6 | Comparisons of integration performance of indicated methods based 

on scATAC-seq dataset and other modality datasets. a, UMAP embeddings of the mouse brain 

scATAC-seq dataset before and after integration by indicated methods; colored by batch (left) and 

cell-type (right). b, Cell-type-specific peaks for the mouse brain scATAC-seq dataset. c, Scatter 

plot showing the ARI and NMI scores based-on the Leiden and Louvain clustering results, the 

Silhouette and batch entropy mixing scores, and the iLISI and 1/cLISI scores. d, e, UMAP 

embedding before and after SCALEX integration over CITE-seq (which measures abundance of 

both RNA and protein in single cells) spleen lymph dataset and cross-modality mouse brain dataset 

between spatial transcriptome (MERFISH) dataset and RNA-seq (10X) dataset. 

 

 



 

Supplementary Fig. 7 | Comparisons of integration performance of indicated methods based 

on cross-modality dataset. a, UMAP embeddings of the PBMC cross-modality dataset by 

indicated methods. Cells are colored by batch or cell-type. b, Scatter plot showing a quantitative 

comparison of the silhouette score (y-axis) and the batch entropy mixing score (x-axis) (left), ARI 

(y-axis), and NMI (x-axis) based-on Leiden clustering (middle) and Louvain clustering (right), the 

Silhouette and batch entropy mixing scores, and the iLISI and 1/cLISI scores for the PBMC cross-

modality dataset. scJoint and bindSC are highlighted with red circles. 



 

Supplementary Fig. 8 | Canonical marker genes of different cell-types and UMAP 

embeddings of the liver dataset. a, UMAP embeddings of the liver dataset, colored by batch (left) 

and cell-type (right) after SCALEX integration. b, Dotplot of canonical marker genes for each cell-

type. Dot color represents average expression level, and dot size represents the proportion of cells 

in the group expressing the marker. c, Normalized marker gene expression on the UMAP 

embeddings of the five hepatocyte subtypes. Color bar represents the expression level. 

 



 



Supplementary Fig. 9 | Comparisons of integration performance based on partially 

overlapping simulated pancreas dataset. a, Partially overlapping datasets were generated by 

down-sampling the pancreas dataset, consisted of common cell-types with a decreased 

overlapping number (ranging from 0 to 6). Integration results for SCALEX, Seurat, Harmony, and 

online iNMF are shown in the UMAP embeddings colored by batches (left) and cell-types (right) 

respectively (overlapping number decreases from 6 to 0). Misalignments are highlighted with red 

circles. b, Scatter plot showing a quantitative comparison of the indicated methods in terms of the 

ARI score (y-axis) and the NMI score (x-axis), based on the Leiden (top) and Louvain (bottom) 

clustering results in the latent space based on simulated pancreas datasets. 



 



Supplementary Fig. 10 | Comparisons of integration performance based on partially 

overlapping simulated PBMC dataset. a, Partially overlapping datasets were generated by down-

sampling the PBMC dataset, consisted of common cell-types with a decreased overlapping number 

(ranging from 0 to 6). Integration results for SCALEX, Seurat, Harmony, and online iNMF are 

shown in the UMAP embeddings colored by batches (left) and cell-types (right) respectively 

(overlapping number decreases from 6 to 0). Misalignments are highlighted with red circles. b, 

Scatter plot showing a quantitative comparison of the indicated methods in terms of the ARI score 

(y-axis) and the NMI score (x-axis), based on the Leiden (top) and Louvain (bottom) clustering 

results in the latent space based on simulated PBMC datasets. 

 

 



 
 

Supplementary Fig. 11 | Projection of three additional pancreas data batches onto the 

pancreas dataset. a, UMAP embeddings of the pancreas dataset and the three additional pancreas 

data batches and the bronchial epithelium data batches (data from three donors) before integration. 

Cells are colored by batch. b, Dot plot of canonical markers of cell-types of reference pancreas 

dataset; dot color represents average expression level, and dot size represents the proportion of 

cells in the group expressing the marker. c, UMAP embeddings of the common cell space obtained 

by using online iNMF (top) and scVI (bottom) to project the three additional indicated pancreas 

data batches onto the pancreas dataset. Cells are colored by cell-type with light gray shadows 

representing the original pancreas dataset. Misalignments are highlighted with red circles. Note 

that here for convenient comparison of the projected data with the existing data, we showed the 

UMAP embeddings of the pancreas dataset combined with the projected data, which are visualized 



differently from the UMAP embeddings of the pancreas dataset alone in Supplementary Fig. 2 as 

UMAP visualizations change with embedding data. 

 

 

 

 

 

 

 



 

Supplementary Fig. 12 | Projection of two melanoma datasets onto the PBMC dataset. a, 

UMAP embeddings of the PBMC dataset and the two additional melanoma data batches before 

integration. Cells are colored by batch. b, Dot plot of canonical markers of cell-types of each batch; 

dot color represents average expression level, while dot size represents the proportion of cells in 

the group expressing the marker. c, UMAP embeddings of the common cell space obtained by 

using online iNMF (top) and scVI (bottom) to project the two additional indicated melanoma data 

batches onto the PBMC dataset. Cells are colored by cell-type with light gray shadows representing 

the original PBMC dataset. Misalignments are highlighted with red circles. Note that here for 

convenient comparison of the projected data with the existing data, we showed the UMAP 

embeddings of the PBMC dataset combined with the projected data, which are visualized 



differently from the UMAP embeddings of the PBMC dataset alone in Supplementary Fig. 2 as 

UMAP visualizations change with embedding data.  



 



Supplementary Fig. 13 | Comparisons of integration across Atlas-level datasets. a, UMAP 

embeddings of the indicated methods across the indicated datasets. Results are blank for those 

methods not scalable to this data size. b, Scatter plots showing the comparisons of indicated 

methods in terms of the ARI and NMI scores based-on the Louvain clustering results, the 

Silhouette and batch entropy mixing scores, and the cLISI/ iLISI scores based on the indicated 

Atlas-level datasets. 

 

 

 

 

 

 

 

 



 
Supplementary Fig. 14 | The SCALEX Mouse Atlas. a, UMAP embeddings of the Mouse Atlas 

dataset before integration, colored by batch. b, UMAP embeddings of three mouse atlas data 

batches (Smart-seq2, 10X, and Microwell-seq) after integration, colored by cell-type; the light 

gray shadows represent the original Mouse Atlas dataset. c, Dotplot of the top 5 cell-type-specific 

genes for each cell-type in the Mouse Atlas dataset. Dot color represents average expression level, 

while dot size represents the proportion of cells in the group expressing the marker. Note that here 

for convenient comparison of the projected data with the existing data, we showed the UMAP 

embeddings of the Mouse Atlas combined with the projected data, which are visualized differently 

from the UMAP embeddings of the Mouse Atlas alone in Supplementary Fig. 13 as UMAP 

visualizations change with embedding data. 



 
Supplementary Fig. 15 | The SCALEX Human Atlas. a, The Human Atlas dataset acquired 

using different technologies (Smart-seq2, 10X, and Microwell-seq) covering various tissues used 

for construction of the human atlas. b-c, UMAP embeddings of the Human Atlas dataset colored 

by batch and cell-type, before (b) and after integration (c). d, Similarity matrix of meta-cell 



representations for cell-types in the two data batches in the common cell-embedding space after 

SCALEX integration between two batches. Color bar represents the Pearson correlation coefficient 

between the average meta-cell representation of two cell-types from a respective data batch. e, 

UMAP embeddings of the common cell space obtained by using SCALEX to project the two 

additional indicated human skin data batches onto the Human Atlas dataset. Cells are colored by 

cell-type with light gray shadows representing the original Human Atlas dataset. f, Confusion 

matrix of the cell-type annotations by SCALEX and those in the original study. Color bar 

represents the percentage of cells in confusion matrix Cij known to be in cell-type i and predicted 

to be in cell-type j. Note that here for convenient comparison of the projected data with the existing 

data, we showed the UMAP embeddings of the Human Atlas combined with the projected data, 

which are visualized differently from the UMAP embeddings of Human Atlas alone in 

Supplementary Fig. 13 as UMAP visualizations change with embedding data. 



 



Supplementary Fig. 16 | COVID-19 immune landscape. a, Dotplot of canonical marker genes 

for each cell-type. Dot color represents average expression level, while dot size represents the 

proportion of cells in the group expressing the marker. b, UMAP embeddings of the COVID-19 

PBMC atlas in individual batches after SCALEX integration, colored by cell-type; the light gray 

shadows represent the other batches of COVID-19 PBMC atlas. c, UMAP embeddings of the 

COVID-19 PBMC Atlas dataset before and after integration by indicated methods. Cells are 

colored by batch (left), cell-type (middle) and Leiden clustering results (right). d, Scatter plots 

showing the comparisons of indicated methods in terms of the ARI and NMI scores based-on the 

Leiden and Louvain clustering results, the Silhouette and batch entropy mixing scores, and the 

cLISI/ iLISI scores. Bar plot showing the comparisons of indicated methods in terms of the over-

correction scores based on the COVID-19 PBMC Atlas dataset. 



 
Supplementary Fig. 17 | COVID-19 heterogeneous dysfunctional immune response. a, 

Frequency of cell distributions across healthy people (n=31) and influenza patient controls (n=5), 

and among mild/moderate (n=46), severe (n=50), and convalescent (n=12) COVID-19 patients. 



Dirichlet-multinomial regression was used for pairwise comparisons, two-sided t-test, NK, healthy 

control vs mild/moderate: p=2.78´10-8, mild/moderate vs severe: p=0.015; CD14-IL1B-Mono, 

healthy control vs mild/moderate: p=2.34´10-17, mild/moderate vs severe: p=0.0039; CD16-Mono, 

healthy control vs mild/moderate: p=1.58´10-11, healthy control vs severe: p=1.08´10-16. 

***p<0.001, **p<0.01, *p<0.05. Midline, median; boxes, interquartile range; whiskers, 1.5´ 

interquartile range. b, Stacked violin plot of differentially-expressed genes between PNPLA2-

Immature_Neutrophil and NCF1-Immature_Neutrophil cells. c, GO terms enriched in the 

differentially-expressed genes for PNPLA2-Immature_Neutrophil and NCF1-

Immature_Neutrophil cells. Hypergeometric test, p values were adjusted using the Benjamini-

Hochberg method. d, Stacked violin plot of differentially-expressed genes between PRDM1-

Plasma and MZB1-Plasma. e, GO terms enriched in the differentially-expressed genes for 

PRDM1-Plasma and MZB1-Plasma cells. Hypergeometric test, p values were adjusted using the 

Benjamini-Hochberg method. 

 



 

Supplementary Fig. 18 | Projection of the SC4 Atlas onto the SCALEX COVID-19 PBMC 

Atlas. a-b, UMAP embeddings of the SC4 Atlas before integration (a) and after projection onto 

the SCALEX COVID-19 PBMC Atlas (b). c, Separate UMAP embeddings of each SC4 data batch, 

after being projected onto the SCALEX COVID-19 PBMC space, colored by cell-type. light gray 

shadows represent the COVID-19 PBMC Atlas. d, UMAP embeddings of the TUBA8-Mega and 

IGKC-Mega cells. e, UMAP embeddings of the differentially-expressed genes of TUBA8-Mega 

and IGKC-Mega cells. 



 



Supplementary Fig. 19 | Ablation studies of different SCALEX architectures for single-cell 

data integration. a, UMAP embeddings after integration by SCALEX and other SCALEX test-

variants. b, Scatter plot showing a quantitative comparison of the performance of the full and 

different test-variants of SCALEX using the ARI score (y-axis) and the NMI score (x-axis), the 

Silhouette score (y-axis) and the batch entropy mixing score (x-axis), and the 1/cLISI score (y-

axis) and the iLISI score (x-axis), across the indicated benchmark datasets. 

 

 

 

 

 

 



 
Supplementary Fig. 20 | Ablations studies of different SCALEX architectures for single-cell 

data projection. Left: UMAP embeddings of three projected pancreas data batches projected onto 

the pancreas space using different SCALEX architectures, colored by cell-type; light gray shadows 

represent the original pancreas dataset. Right: UMAP embeddings of the two projected melanoma 

data batches projected onto the PBMC space using different SCALEX architectures, colored by 

cell-type; light gray shadows represent the original PBMC dataset. 



 
Supplementary Fig. 21 | Comparison of SCALEX with beta=0.5 and beta=1 across the 

indicated benchmark datasets. a, UMAP embeddings of SCALEX (beta=0.5) and SCALEX 



(beta=1) across the indicated benchmark datasets; colored by batch (left) and cell-type (right). b, 

Scatter plot showing a quantitative comparison of the performance of SCALEX (beta=0.5) and 

SCALEX (beta=1) using the ARI score (y-axis) and the NMI score (x-axis), the Silhouette score 

(y-axis) and the batch entropy mixing score (x-axis), and the 1/cLISI score (y-axis) and the iLISI 

score (x-axis), across the indicated benchmark datasets. 

 

 


