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REVIEWER COMMENTS 

Reviewer #1 (Expertise: scRNASeq, combio, DL): 

In this manuscript, the authors have developed a deep-learning-based online integration method named 

SCALEX. The authors carried out a rigorous benchmark study with well-established methods in different 

datasets using different evaluation metrics. Their benchmark study demonstrated that SCALEX has 

overall better integration performance than other SOTA methods. They also showed that SCALEX has 

good generalizability and is capable of atlas integration. The unique advantage that SCALEX has over 

other integration methods is online learning, which can continuously build an integrated reference 

without retraining when new data arrive. Overall, this is a quality manuscript with substantial results to 

support its validity. However, some concerns and areas for improvement are discussed below. 

Major: 

1. The authors present a convincing argument that SCALEX has overall better generalizability than scVI 

and online iNMF. However, the major focus, “online learning” of SCALEX, is not as well supported and 

the manuscript needs more appropriate experiments to demonstrate the capabilities of online learning. 

New pancreas batches and new SKCM batches have a lot in common with the training datasets. 

Therefore, while projecting new batches into the existing space shows that SCALEX has good 

generalizability, this is not a challenging enough task to demonstrate that SCALEX is truly “online 

learning”. Based on my understanding of online learning, the arrival of new data should further fine tune 

the existing model (learning continues where the entire dataset is not available at any point during 

training). It is not clear in the manuscript if the authors did this for online iNMF. In the next section, the 

authors showed that SCALEX is capable of atlas data integration. These atlas datasets can be good 

examples to demonstrate that SCALEX is indeed an effective online learning method. The authors should 

perform the atlas data integration in an online manner. For example, the authors could start from one 

or two tissues across 3 atlas studies, and then fine tune the model with a new tissue. Gradually, the 

model should reach a similar outcome to the representation obtained by the full atlas data integration. 

It would be very useful to compare how this online integration result would be different from an atlas 

integration by SCALEX with all datasets present at one time. 

2. In the label transferring task, the weighted F1 score reflects the overall accuracy of the model. 

However, it might not be a good choice to evaluate label transferring for single cell data. Since most 

single cell data are imbalanced, the macro F1 score can be a better way to evaluate how the model 

performs for non-dominant cell types. Indeed, the authors show >0.95 F1 scores in Fig. 3c, but the 

confusion matrices indicate the model is just mediocre for non-major cell types like “mast”, “quiescent 

stellate”, and “Schwann”. It is not clear whether SCALEX can accurately integrate single cell data that are 

very imbalanced in their cell type representations. This should either be tested further or discussed as a 

limitation of SCALEX. 



3. Again, the good overlap between SC4 consortium and SCALEX COVID-19 PBMC atlas may only suggest 

good generalizability but not good online learning. Meanwhile, Pearson correlation is not a good metric 

to support the claim that “the cell-types of two atlases were well-aligned” (Fig. 5i). A confusion matrix 

after label transferring would better demonstrate the degree of alignment. As above, it seems SCALEX 

struggles to distinguish non-major DC as shown in Fig. 5i. This again may suggest a limitation that 

SCALEX is less able to distinguish non-major cell types. 

4. Though cross-domain integration is not a focus of this study, the author brought up integrating RNA-

seq and ATAC-seq data in Fig. 1f and g. The author should provide a more through and quantitative 

investigation on how SCALEX is competing against the many other existing cross-domain integration 

methods. Or, if this is not intended to be a major focus, this aspect should perhaps be removed from the 

study. 

Minor: 

1. The human heart data consists of single cells, nuclei and CD45+ enriched cells but the authors only 

consider addressing batch effects for nuclei data. It would be helpful to demonstrate how SCALEX 

handles batch effects that arise from how cells are collected. 

2. Different integration methods may have different properties in terms of preserving data structure 

locally and globally. The authors did not provide details about how they clustered cells using integrated 

spaces learned by the different methods. Without these details, there is a concern that clustering 

parameters may have been chosen that artificially favor SCALEX leading to SCALEX having the highest 

ARI and NMI in every case. For example, Supplementary Fig 3 suggests that the author over-clustered 

cell types for other methods but selected a good clustering resolution for SCALEX. More details of how 

cells were clustered fairly could help clear up this potential appearance or existence of bias. 

3. Some typos in the manuscript. For example, line 252: “model retraining” instead of “model retaining”. 

Reviewer #2 (Expertise: pancreatic biology, scRNASeq, experimental): 

The authors provide a method to integrate large scale datasets without requiring retraining and large 

processing times and computational power. This framework will be useful for curating consensus 

between different studies and useful for consorts where data is not generated in one go but rather 

generated parallels across labs and tissue types. 



Specific questions to address: 

1. Throughout the paper, the authors describe superiority of SCALEX in assessing cell types. The metrics 

used to determine overcorrection help to understand that to a certain extent But the hindrance to 

biological interpretation is less clear to me. I miss the understanding of whether this is an issue of 

aesthetics in the UMAP projection or also the cluster assignment itself. For eg, a cell type assessed by 

Seurat can look split in the 2D embedding, but might have been assigned the same cluster number, thus 

still preserving the biological message. Changing clustering parameters to enable that is also a very 

important task for researchers. It would be useful to elaborate on this when describing the performance 

metrics. 

2. In multimodality dataset integration, the authors show integration of scRNAseq and gene expression 

inferred by scATACseq. Although SCALEX shows a really good embedding of these two different assays, 

the comparison with existing specific pipelines (apart from supfig7) for such multiomics assays is lacking. 

How does SCALEX improve that? Plus, advances in mutiomics assays now can enable scATAC and snRNA 

detection from same cell. Can SCALEX also improve analysis of such datasets? 

3. The hepatocytes subsets are defined here by single gene differences. How biologically relevant are 

these subsets? How important is using SCALEX for this tissue type? 

4. Based on fig2b, the overcorrection score looks to show that different techniques are performing 

differently based on the tissue type. So for example in case of heart data, there was hardly any 

difference in performance metrics between integration methods. Would you comment on that? 

5. Figure 2D is a bit unclear. Extent of overlap as a concept needs to described a bit more. Also, please 

attribute the exact subheadings in the methods section when referring to it in the main text. That way 

we are sure to be looking at the exact relevant subsection. 

Why I find that this needs more explanation is because the abundance of mixing distinct cell types using 

other methods is quite a lot I feel. I do not recollect reading such discrepancies in existing literature on 

single cell atlas in pancreas. 

6. On similar lines, intermediate polyhormonal cells in endocrine pancreas might be of interest. Is there 

a possibility that SCALEX, as it relies on existing knowledge of cell labels or markers, can miss out on 

them? 



7. For figure 3E, this location of tumor cells, would it change with multiple heterogenous tumor 

samples? Is this distance between clusters that informative? Usually these distances can be very tricky 

to interpret. Could you comment on that? 

8. For the novel cell type determined in pancreas atlas, is there any particular technique or sample from 

which these cells come from? Or are they present in multiple libraries? SLC16A7 or MCT2 expression has 

been investigated before in the context of islet function, but remained undetected (Zhao et al. (2001). 

Expression and Distribution of Lactate/Monocarboxylate Transporter Isoforms in Pancreatic Islets and 

the Exocrine Pancreas. Diabetes) What can be the reason that SCALEX identifies these cells? Can they be 

infiltrating cells? Again, does the guided labelling in the reference atlas impact the projection of such 

non-overlapping datasets? 

9. COVID atlas looks very interesting! Have the authors used the PBMC atlas mentioned in earlier 

sections of the paper? 

10. In figure 5g, where the frequencies are described, is it % of total cells in that sample? Without 

normalising for total number of cells, such fluctuating numbers can be tricky esp in diseased states. 

11. So basically for atlases like covid and cancer, where knowledge of cell types and states is very recent, 

how will SCALEX perform in comparison to just looking into smaller subsets with more directed research 

questions? Could you comment on its strengths and drawbacks if any? 

In conclusion, as my own expertise is closer to extracting biologically relevant points from these single 

cell investigations, I feel that the authors should emphasise the role of SCALEX in facilitating that. In 

terms of processing, I am convinced that it is very advantageous and shows promise. Discussing the 

advantages in biological consensus and translatability would be nice. 

Reviewer #3 (Expertise: scRNASeq data analysis, inc. integration, whole-organism scale): 



The authors have reported a single-cell data integration framework called SCALEX, which fundamentally 

uses a VAE, with a domain-specific batch normalization approach to align different single-cell RNA-seq 

datasets. They claim that their method does not require re-training on new datasets, and that as such 

their method can be deployed online with faster and more accurate performance than other existing 

methods. Although I appreciate the utility of being able to analyze large-scale single cell data online, I 

have doubts as to the extent of novelty of the method given the many other existing methods already in 

the space. In addition, I am not convinced that their method is more accurate than others out there 

sufficiently so to overlook the lack of novelty in the method itself. My specific major comments are 

below: 

Major comments: 

1. The SCALEX method is built upon the VAE framework. First, the authors themselves have previously 

reported this autoencoder for single-cell ATAC-seq data analysis: "We previously applied VAE and 

designed SCALE (Single-Cell ATAC-seq Analysis via Latent feature Extraction) to model and analyze 

single-cell ATAC-seq data". The majority of the novelty in using this type of framework for extracting 

latent features from single-cell data has already been reported in their previous publication. The only 

difference between the previous publication and the one being considered at present is the proposed 

domain-specific batch normalization (DSBN) in a batch-free encoder and batch-specific decoder, 

respectively. This is, in my opinion, not very novel as the specific normalization method is not new and 

only represents a minor change to SCALE. Furthermore, I have concerns as to the applicability of this 

method: as BN only shifts and scales data within a mini-batch of 64 cells (arguably in the context of atlas 

sized datasets it is not a representative sample size even), it presumably has limited ability to remove 

batch effects; it is unclear why the cell-embedding space of SCALEX should be batch-invariant, based on 

the method presented, as the theoretical model does not support such an assumption. Can the authors 

explain/give more intuition on that? 

2. Most single-cell integration tools now demonstrate not only ability to integrate single-cell RNA-seq 

data, but also single-nuclei RNA-seq data. Due to the challenges associated with processing different 

sample and tissue types, single-cell atlas efforts now routinely use snRNA-seq to profile certain 

tissues/organs to avoid bias, while using scRNA-seq to profile other tissue types in the same atlas. 

Adipose and Neuronal tissues are prominent examples that call for snRNA-seq. Given that the authors 

claim to be superior for atlas-level datasets, and given that numerous other tools have been published in 

the same space, it would be very important for them to show applicability of their method to integration 

of not just scRNA/scRNA or snRNA/snRNA, but also scRNA/snRNA. The authors have integrated 

‘Harvard-Nuclei’ and ‘Sanger-Nuclei’ data from the adult human heart atlas 

(https://www.heartcellatlas.org/). Besides these datasets, the atlas project also provided other two data 

sources: ‘Sanger-Cells’, ‘Sanger-CD45’. If the authors can show integration of all of these from the same 

atlas, or at least align ‘Sanger-Cells’ with ‘Sanger-Nuclei’, it will demonstrate a more meaningful 

application of their method (i.e. building alignment between single-cell, single-nucleus data from a 

single atlas dataset). 



3. The authors have carefully examined the design of SCALEX via an ablation study (Figs. S19, S20). Both 

BN and DSBN layers show clear impact on integration results. One major concern here is that the results 

from simple autoencoder are already not bad because the data preprocessing steps have the ability to 

adjust for batch effects. It appears possible that the data preprocessing already plays a significant role to 

remove the batch effects, and it is unclear how much of the correction is actually owing to the DSBN. It 

will be more attractive and convincing to users if the ablation study could be conducted based on more 

challenging scenarios. 

Minor comments: 

1. Somewhat relevant to point 3 above, most of the datasets selected by the authors (especially in the 

main figures) appear to be relatively less complex datasets, consisting mostly of tissues that harbor 

fewer and more distinct cell types, e.g. PBMCs, liver. However, the datasets that are more complex and 

involve multiple tissue types clearly do not show superior performance. For example, in Fig 4 the entire 

mouse atlas was integrated, including different technology types. While at first glance the results look 

ok, with closer examining we find cell types that do not belong together to be mixed, e.g. the neurons 

and cardiac muscle cells; some of the T cells are mixed with B cells; some cells unknown what type but 

all mixed together around the skeletal muscles and cardiac cells. In addition, some cells that belong 

together or nearby are no longer associated, including oligodendrocytes and their precursors, which are 

of the same lineage. The situation is more severe in S5 and S6, for example, where alveolar cells and 

intestinal epithelial cells are mixed together (although both are epithelial types, they are quite distinct); 

and for the brain data, based on the ground truth labels, Harmony actually performs better in keeping 

subpopulation identities as well as preserving data structure/relationships of cells with similar lineage. 

These all suggest to me that SCALEX does not perform as well as claimed when the dataset is more 

complex. While the various scores may be higher for SCALEX, it appears that the biological 

interpretation of the integrated results is not satisfactory, based on the ground truth labels. 

Reviewer #4 (Expertise: scRNASeq integration, comp bio): 

In this manuscript, Xiong, Tian et al, develop a new method, SCALEX, for online integration of single-cell 

datasets based on a variational autoencoder. They achieve this by designing the encoder to preserve 

only batch invariant signals and adding back batch information in the decoding step via a specific batch 

normalization layer. Benchmarking against existing state-of-the art methodology shows good 

performance on a number of integration metrics and highlights the highly scalable nature of online 

integration methods. They apply their method to a number of different single-cell modalities and 

existing atlas scale datasets. I believe this work will have utility in the field as scalable integration 

methods are becoming increasingly necessary as the size of datasets rapidly expands. I have the 

following specific comments. 



Main comments: 

1. There is a brief discussion comparing SCALEX to scArches in terms of model augmentation and 

retraining. I believe this section would benefit from an expanded discussion of how online integration is 

different from the type of model augmentation that scArches employs. 

2. The authors apply SCALEX to multimodal integration (scRNA + scATAC). It would be useful to see a 

comparison to recent methods tailored towards multi-modal integration like totalVI or Seurat v4. 

3. Most examples in the manuscript use datasets of fully differentiated cell types. I would be interested 

to see how SCALEX performs on data from a developing system. Are there artificial clusters induced or is 

the developmental continuum preserved? 

4. The authors demonstrate that the scope of an existing cell space can be expanded by online 

projection and demonstrate this by projecting melanoma data onto a previously constructed PBMC 

space. Does the order of projection here matter and is there a difference between the results if you 

integrate upfront versus project in afterwards? 

5. The latent representation learned by SCALEX is a 10 dimensional bottleneck layer. How was this 

chosen and is the performance of SCALEX dependent on the choice of this hyperparameter? 

Minor comments: 

1. The text could be improved with a close read for typos and grammatical errors. 

2. On L106, the authors claim that their mini-batch strategy “more tightly follows the overall distribution 

of input data”. It would be useful to support this claim. 

3. There is quite a large reliance on UMAP plots as a way of assessing performance in many of the 

figures (e.g 2d). I would encourage the authors to try and consolidate or summarize this information in 

other ways. 

Reviewer #5 (Expertise: pulmonary infection, COVID19, single cell): 

In this manuscript, Xiong and colleagues provided a deep learning method SCALEX for the integration of 

heterogeneous single-cell datasets. As dramatic increases in data scale and sample heterogeneity, there 

is a growing need for integration tools, Therefore, the study is of interest to a large number of readers. 



One of the advantages of SCALEX is that it’s an online data integration method, which does not require 

retraining and makes it particularly useful for Atlas-level datasets. SCALEX can also preserve biological 

variations and avoid over-correction compared to other integration methods. Additionally, SCALEX is 

designed to preserves batch-invariant biological data components when projecting single-cells. The 

analysis and comparition of SCALEX with other integration tools showed improved integration accuracy, 

scalability and computationally efficiency. 

The manuscript is interesting and very well written. Only a few minor notes: 

1. Multiple panels are missing significant analysis. 

2. Abbreviation should be spelled out when first used. 

3. References were missing for lines 347 and 354. 



REVIEWER COMMENTS 

Reviewer #1: 
 

In this manuscript, the authors have developed a deep-learning-based online integration 

method named SCALEX. The authors carried out a rigorous benchmark study with well-

established methods in different datasets using different evaluation metrics. Their 

benchmark study demonstrated that SCALEX has overall better integration performance 

than other SOTA methods. They also showed that SCALEX has good generalizability and 

is capable of atlas integration. The unique advantage that SCALEX has over other 

integration methods is online learning, which can continuously build an integrated 

reference without retraining when new data arrive. Overall, this is a quality manuscript with 

substantial results to support its validity. However, some concerns and areas for 

improvement are discussed below. 

 

Major: 

1. The authors present a convincing argument that SCALEX has overall better 

generalizability than scVI and online iNMF. However, the major focus, “online learning” of 

SCALEX, is not as well supported and the manuscript needs more appropriate experiments 

to demonstrate the capabilities of online learning. New pancreas batches and new SKCM 

batches have a lot in common with the training datasets. Therefore, while projecting new 

batches into the existing space shows that SCALEX has good generalizability, this is not 

a challenging enough task to demonstrate that SCALEX is truly “online learning”. Based 

on my understanding of online learning, the arrival of new data should further fine tune the 

existing model (learning continues where the entire dataset is not available at any point 

during training). It is not clear in the manuscript if the authors did this for online iNMF. In 

the next section, the authors showed that SCALEX is capable of atlas data integration. 

These atlas datasets can be good examples to demonstrate that SCALEX is indeed an 

effective online learning method. The authors should perform the atlas data integration in 

an online manner. For example, the authors could start from one or two tissues across 3 

atlas studies, and then fine tune the model with a new tissue. Gradually, the model should 

reach a similar outcome to the representation obtained by the full atlas data integration. It 

would be very useful to compare how this online integration result would be different from 

an atlas integration by SCALEX with all datasets present at one time. 

 
RESPONSE: We now understand the lack of clarity in our originally submitted manuscript. 

While we do appreciate the reviewer’s comments and suggestions on “online learning”, it 

must be emphasized that SCALEX is NOT an “online learning” method. In fact, SCALEX 

is an “online” integration method, with “the ability to incorporate new data without 



recalculating from scratch” (Gao et al., 2021); this means that SCALEX does not “fine tune 

the existing model” with new incoming data.  

While we do expect that “online learning” may improve integration results after fine 

tuning on new data, the fundamentally enabling design element of SCALEX is that its 

encoder is a generalized function that projects diverse single-cell datasets into the same 

batch-invariant global cell-embedding space without retraining. This design endows 

SCALEX with a unique advantage: the ability to align data coming from new single-cell 
analyses (from the lab and clinic) into the substantial corpus of existing knowledge, 

especially that gleaned from the foundational single-cell research efforts, without requiring 

the current, typical ‘recalculating from scratch” approach. 

Neither SCALEX nor online iNMF requires retraining (neither is an “online learning” 

method). We want to emphasize that, as we have shown with multiple tests, SCALEX is 

more accurate for data integration than online iNMF and than scVI (which is an “online 

learning” tool that retrains the original model by augmenting new neural network nodes for 

new data).  

 

2. In the label transferring task, the weighted F1 score reflects the overall accuracy of the 

model. However, it might not be a good choice to evaluate label transferring for single cell 

data. Since most single cell data are imbalanced, the macro F1 score can be a better way 

to evaluate how the model performs for non-dominant cell types. Indeed, the authors 

show >0.95 F1 scores in Fig. 3c, but the confusion matrices indicate the model is just 

mediocre for non-major cell types like “mast”, “quiescent stellate”, and “Schwann”. It is not 

clear whether SCALEX can accurately integrate single cell data that are very imbalanced 

in their cell type representations. This should either be tested further or discussed as a 

limitation of SCALEX. 

 

RESPONSE: We thank the reviewer for the guidance here. We have now used the macro 

F1 score to evaluate the integration performance of different methods on non-dominant 

cell types (Revision Figure 1). Using this index, SCALEX again outperformed online iNMF 

and scVI, successfully annotating non-major cell types such as mast cells (n=80) and 

schwann cells (n=62) (left panel); online iNMF and scVI performed quite poorly (middle 

and right panels).  

 



 
Revision Figure 1 (the same as Figure 3c in the revised manuscript). Confusion 
matrix between ground truth cell-types and those annotated by different methods. 
Left: SCALEX; middle: online iNMF; right: scVI. 

 

3. Again, the good overlap between SC4 consortium and SCALEX COVID-19 PBMC atlas 

may only suggest good generalizability but not good online learning. Meanwhile, Pearson 

correlation is not a good metric to support the claim that “the cell-types of two atlases were 

well-aligned” (Fig. 5i). A confusion matrix after label transferring would better demonstrate 

the degree of alignment. As above, it seems SCALEX struggles to distinguish non-major 

DC as shown in Fig. 5i. This again may suggest a limitation that SCALEX is less able to 

distinguish non-major cell types. 

 
RESPONSE: We appreciate this guidance. First, as we have discussed in the Response 
to Point #1, indeed, the goal of SCALEX is good generalizability but not online learning.  

Following the reviewer’s guidance, we have now replaced the Pearson correlation 

data with new confusion matrix data (Fig. 5i and Revision Figure 2). Happily, the latter 

lends strong support to our claims in the manuscript. After projection, the new cell type 

annotations by label transfer and the original cell types of SC4 Atlas were well-aligned, for 

instance the original non-major DC_c4-LILRA4 cells were accurately annotated as pDC 

cells. Of particular note, some DC_c2-CD1C cells and DC_c3-LAMP3 cells were annotated 

as monocytes. The main reason is that according to the original correlation matrix, mDCs 

and monocytes have very similar gene expression profiles (which makes sense since they 

both develop from granulocyte-macrophage progenitors (Buenrostro et al., 2018)). In 

addition, the locations of mDCs and monocytes in the UMAP embedding are positioned 

close to each other (Fig. 5h). 

 



Revision Figure 2 (the same as Figure 5i in the revised manuscript). Confusion 
matrix between ground truth cell-types of the SC4 Atlas and those annotated by 
SCALEX after projecting SC4 Atlas onto the previously constructed SCALEX COVID-
19 PBMC Atlas space. 
 

4. Though cross-domain integration is not a focus of this study, the author brought up 

integrating RNA-seq and ATAC-seq data in Fig. 1f and g. The author should provide a 

more through and quantitative investigation on how SCALEX is competing against the 

many other existing cross-domain integration methods. Or, if this is not intended to be a 

major focus, this aspect should perhaps be removed from the study. 

 

RESPONSE: We thank the reviewer for this suggestion. We want to highlight that some of 

the state-of-the-art scRNA-seq data integration methods examined in our comparative 

studies are also capable of cross-domain integration by linking features between scRNA-

seq and scATAC-seq assays, for example, Seurat v3 (Hao et al., 2021; Ziffra et al., 2021), 

online iNMF (Gao et al., 2021) and Conos (Barkas et al., 2019). We have performed a 

complete comparison of SCALEX with these integration methods and SCALEX performed 

exceptionally well (Supplementary Fig. 7).  

 Following the guidance, we have now included two additional cross-domain 

integration methods, scJoint (Lin et al., 2022) and bindSC (Dou et al., 2020), to our 

comparisons in the revised manuscript. We noticed that scJoint did not perform well with 

unpaired scRNA-seq and scATAC-seq datasets: for example, CD4 Naïve, CD8 effector, 

and Double negative T cells were separated across different batches. On the other hand, 

bindSC mixed CD4 Naïve and CD8 Naïve cells together. SCALEX substantially 

outperformed scJoint and bindSC for integration in terms of all examined evaluation scores 

(Revision Figure 3).  

 



 
Revision Figure 3. Comparisons of integration performance of different methods 
based on the unpaired PBMC dataset. a, UMAP embeddings of the unpaired PBMC 

dataset by the indicated methods. Cells are colored by batch or cell-type. b, Scatter plot 

showing a quantitative comparison of different metrics for the unpaired PBMC dataset. 

scJoint and bindSC are highlighted with red circles. 

 

Minor: 

1. The human heart data consists of single cells, nuclei and CD45+ enriched cells but the 

authors only consider addressing batch effects for nuclei data. It would be helpful to 

demonstrate how SCALEX handles batch effects that arise from how cells are collected. 

 

RESPONSE: We thank the reviewer for this guidance. We have now examined the 

integration performance of SCALEX on the whole human heart dataset with four batches. 

We noticed that SCALEX showed excellent performance in removing batch effects 

between two single-cell batches and two single-nuclei batches; however, the “batch effects” 

between single-cell and single-nuclei batches were apparently not removed in the UMAP 

embedding space (Revision Figure 4a).  

We suspect that these “batch effects” were not true batch effects (i.e., technical noise) 

but rather represented biological variations; this speculation is based on our detection of a 

large number of differentially expressed genes when we compared the gene expression 

profiles between the single-cell and singe-nuclei batches. There were 4,015 and 12,855 

genes with elevated expression in the single-cell and single-nuclei batches, respectively 

(log-fold change>2 and adjusted-pvalue<0.01, total gene number=33,516) (Revision 
Figure 4b, c). We performed gene ontology (GO) enrichment analysis and found that the 

genes with elevated expression in the single-cell batches showed enrichment for 

annotations with ribosome-related GO terms (Revision Figure 4d). This is reasonable, 

since single-cell RNA sequencing will (by its nature) detect more cytoplasmic transcripts 

than single-nuclei RNA sequencing. These results therefore provide additional support for 



our conclusion that SCALEX is capable of removing batch effects while retaining true 

biological differences. 

 
Revision Figure 4. Integration performance of SCALEX on the whole human heart 
dataset. a, UMAP embeddings of the whole heart dataset after integration by SCALEX. 

Cells are colored by cell-type or batch. b, Normalized marker gene expression in the UMAP 

embeddings of the single-cell batches (top) and the single-nuclei batches (bottom). Color 

bars represent gene expression levels. c, Heatmap showing the normalized expression of 

the top-150 ranking specific genes in each batch. d, GO terms enriched in the differentially 

expressed genes for single-cell (left) or single-nuclei batches (right). 

 

2. Different integration methods may have different properties in terms of preserving data 

structure locally and globally. The authors did not provide details about how they clustered 

cells using integrated spaces learned by the different methods. Without these details, there 

is a concern that clustering parameters may have been chosen that artificially favor 

SCALEX leading to SCALEX having the highest ARI and NMI in every case. For example, 

Supplementary Fig 3 suggests that the author over-clustered cell types for other methods 

but selected a good clustering resolution for SCALEX. More details of how cells were 

clustered fairly could help clear up this potential appearance or existence of bias. 

 
RESPONSE: We greatly appreciate the reviewer and apologize for not including these 

details in our originally submitted manuscript. To clarify, we have used the same set of 

clustering parameters for SCALEX and the other state-of-the-art single-cell integration 



tools on the benchmark datasets. We have now included clustering details in the revised 

manuscript (“Clustering” subsection in Methods, Supplementary Table 3, also see 

Revision Table 1 below). 

For Harmony, MNN, Conos, BBKNN, Scanorama, scVI, LIGER, and online iNMF, we 

used their latent features with method specific default dimensions for further clustering. For 

Seurat v3, we initially performed integration and obtained the 2,000-dimensional latent 

feature vectors following the standard workflow, and then we used PCA for dimensionality 

reduction because 2,000-dimensional latent feature vectors are too high to directly cluster. 

Finally, we used 50-dimensional PCA latent feature vectors for clustering. For Conos and 

BBKNN, since they do not provide latent feature vectors after integration (and we failed to 

extract the latent feature vectors from their constructed either neighborhood or joint graphs), 

we used UMAP features for downstream clustering. 

 To ensure a fair comparison, we used scanpy.tl.leiden and scanpy.tl.louvain functions 

for clustering with resolution=0.5 (Revision Table 1). For BBKNN and Conos, since 

resolution=0.5 generates too many clusters, we also included clustering results of with 

resolution=0.05 for comparison.  

 In addition, seeking to avoid possible bias from the different dimensions of latent 

features of different methods, we also used UMAP features (2-dimensional) for clustering 

and recalculated the NMI-ARI scores for SCALEX and other state-of-the-art single-cell 

integration tools. SCALEX also performed among the best on benchmark datasets for cell 

type separation and batch mixing (Revision Figure 5).  

Revision Table 1. Parameters and cluster numbers of different methods. 
  Datasets 

 Resolution pancreas heart liver NSCLC PBMC 

Raw 0.5 24 24 26 42 18 

SCALEX 0.5 9 14 12 17 11 

Seurat v3 0.5 12 24 21 27 16 

Harmony 0.5 12 19 18 26 16 

MNN 0.5 10 16 17 18 11 

Conos 0.5 33 74 51 82 31 

BBKNN 0.5 35 72 45 72 36 

Scanorama 0.5 13 18 17 40 11 

scVI 0.5 10 25 19 36 14 

LIGER 0.5 17 24 20 20 12 

online iNMF 0.5 13 20 20 19 15 

Conos 0.05 11 18 19 26 14 

BBKNN 0.05 13 23 21 23 14 

 



 
Revision Figure 5. Scatter plot comparing SCALEX and the other state-of-the-art 
single-cell data integration tools in terms of the ARI and NMI scores based on Leiden 
(top) and Louvain (bottom) clustering results. 
 

3. Some typos in the manuscript. For example, line 252: “model retraining” instead of 

“model retaining”. 

 
RESPONSE: We thank the reviewer for pointing out the typos in our manuscript. We have 

carefully revised the manuscript and corrected these mistakes. 

 

We would again like to take this chance to sincerely thank the reviewer for the helpful 

guidance on how to improve our study. Thank you! 

 

 

 

Reviewer #2: 
 

The authors provide a method to integrate large scale datasets without requiring retraining 

and large processing times and computational power. This framework will be useful for 

curating consensus between different studies and useful for consorts where data is not 

generated in one go but rather generated parallels across labs and tissue types. 

 

Specific questions to address: 

1. Throughout the paper, the authors describe superiority of SCALEX in assessing cell 

types. The metrics used to determine overcorrection help to understand that to a certain 

extent But the hindrance to biological interpretation is less clear to me. I miss the 

understanding of whether this is an issue of aesthetics in the UMAP projection or also the 

cluster assignment itself. For eg, a cell type assessed by Seurat can look split in the 2D 

embedding, but might have been assigned the same cluster number, thus still preserving 



the biological message. Changing clustering parameters to enable that is also a very 

important task for researchers. It would be useful to elaborate on this when describing the 

performance metrics.  

  
RESPONSE: We would first like to express our thanks for the supportive comments and 

the excellent guidance about how to improve our study. Regarding this comment 

specifically, we agree that the clustering results may sometimes appear differently to the 

2D embeddings.  

First, for fairness in clustering comparison, we have kept using the same set of 

clustering parameters for SCALEX and the other state-of-the-art single-cell integration 

tools on all benchmark datasets. We have now included clustering details in the revised 

manuscript (“Clustering” subsection in Methods, Supplementary Table 3, also see 

Revision Table 2 below). Specifically, for Harmony, MNN, Conos, BBKNN, Scanorama, 

scVI, LIGER, and online iNMF, we used their latent features with method specific default 

dimensions for clustering. For Seurat v3, we initially performed integration and obtained 

the 2,000-dimensional latent feature vectors following the standard workflow, and then we 

used PCA for dimensionality reduction because 2,000-dimensional latent feature vectors 

are too high to directly cluster. Finally, we used 50-dimensional PCA latent feature vectors 

for clustering. For Conos and BBKNN, since they do not provide latent feature vectors after 

integration (and we failed to extract the latent feature vectors from their constructed either 

neighborhood or joint graphs), we used UMAP features for downstream clustering. We 

used the scanpy.tl.leiden and scanpy.tl.louvain functions for clustering with resolution=0.5. 

For BBKNN and Conos, since resolution=0.5 generates too many clusters, we also 

included clustering results of with resolution=0.05, which were used in our benchmark 

comparison.  

 Second, seeking to avoid possible bias from the different dimensions of latent features 

of different methods, we also used UMAP features (2-dimensional) for clustering and 

recalculated the NMI-ARI scores for SCALEX and other state-of-the-art single-cell 

integration tools. SCALEX also performed among the best on benchmark datasets for cell 

type separation and batch mixing (Revision Figure 6).  

Revision Table 2. Parameters and cluster numbers of different methods. 
  Datasets 

 Resolution pancreas heart liver NSCLC PBMC 

Raw 0.5 24 24 26 42 18 

SCALEX 0.5 9 14 12 17 11 

Seurat v3 0.5 12 24 21 27 16 

Harmony 0.5 12 19 18 26 16 

MNN 0.5 10 16 17 18 11 



Conos 0.5 33 74 51 82 31 

BBKNN 0.5 35 72 45 72 36 

Scanorama 0.5 13 18 17 40 11 

scVI 0.5 10 25 19 36 14 

LIGER 0.5 17 24 20 20 12 

online iNMF 0.5 13 20 20 19 15 

Conos 0.05 11 18 19 26 14 

BBKNN 0.05 13 23 21 23 14 

 

 
Revision Figure 6. Scatter plot comparing SCALEX and the other state-of-the-art 
single-cell data integration tools in terms of the ARI and NMI scores based on Leiden 
(top) and Louvain (bottom) clustering results. 
 

2. In multimodality dataset integration, the authors show integration of scRNAseq and gene 

expression inferred by scATACseq. Although SCALEX shows a really good embedding of 

these two different assays, the comparison with existing specific pipelines (apart from 

supfig7) for such multiomics assays is lacking. How does SCALEX improve that? Plus, 

advances in mutiomics assays now can enable scATAC and snRNA detection from same 

cell. Can SCALEX also improve analysis of such datasets? 
 

RESPONSE: We greatly appreciate the reviewer’s guidance here. We have now included 

two additional cross-domain integration methods, scJoint (Lin et al., 2022) and bindSC 

(Dou et al., 2020), to our comparisons in the revised manuscript. We noticed that scJoint 

did not perform well with unpaired scRNA-seq and scATAC-seq datasets: for example, 

CD4 Naïve, CD8 effector, and Double negative T cells were separated across different 

batches. On the other hand, bindSC mixed CD4 Naïve and CD8 Naïve cells together. 

SCALEX substantially outperformed scJoint and bindSC for integration in terms of all 

examined evaluation scores (Revision Figure 7).  

In addition, we have followed the reviewer’s suggestions and tested SCALEX on a 

PBMC multi-omics dataset in which gene expression and chromatin accessibility profiles 



are measured in the same cells using the 10X platform (https://support.10xgenomics.com/ 

single-cell-multiome-atac-gex/datasets/1.0.0/pbmc_granulocyte_sorted_10k?). We found 

that SCALEX performed among the best in terms of all evaluation metrics (Revision 
Figure 8a, b). This supports that SCALEX is capable of integrating scATAC and snRNA 

data from the same cell. 

We also examined the integration performance of totalVI (Gayoso et al., 2021b) and 

Seurat v4 (Hao et al., 2021) on this PBMC multi-omics dataset (Revision Figure 8c). 

These two tools are specifically designed for paired sequencing data integration and 

cannot be used to integrate data from unpaired cells, and thus cannot be directly compared 

with the other tools assessed in our study based on matched labels. We therefore did not 

include them into comparative studies. 

 

 
Revision Figure 7. Comparisons of integration performance of different methods 
based on the unpaired PBMC dataset. a, UMAP embeddings of the unpaired PBMC 

dataset by the indicated methods. Cells are colored by batch or cell-type. b, Scatter plot 

showing a quantitative comparison of different metrics for the unpaired PBMC dataset. 

scJoint and bindSC are highlighted with red circles. 

 



 
Revision Figure 8. Comparisons of integration performance of different methods 
based on the paired PBMC dataset from the 10X platform. a, UMAP embeddings of 

the paired PBMC dataset by the indicated methods. Cells are colored by batch or cell-type. 

b, Scatter plot showing a quantitative comparison of different metrics for the paired PBMC 

dataset. c, UMAP embeddings of the integration results by Seurat v4 (left) and totalVI (right) 

based on the paired PBMC dataset. Cells are colored by cell-type. 

 

3. The hepatocytes subsets are defined here by single gene differences. How biologically 

relevant are these subsets? How important is using SCALEX for this tissue type? 

 

RESPONSE: We apologize for not offering details in the originally submitted manuscript. 

To clarify, we defined the hepatocyte subtypes using a set of differentially expressed genes. 



There are normally hundreds of specifically expressed genes in different hepatocyte 

subsets (Revision Figure 9a).  

We also would like to note that each hepatocyte subtype showed strong enrichment 

for annotations with different GO terms (Revision Figure 9b), indicating their specific 

biological significance. We then used single gene with specific biological meanings to label 

each hepatocyte subset. For example, CXCL1, also known as Gro-alpha, has been 

recognized as a biomarker associated with hepatocellular carcinoma (Wu et al., 2009), 

while SCD is related to human fatty liver (Kotronen et al., 2009). 

 
 

Revision Figure 9. Definition and biological relevance of hepatocyte subtypes. a, 

Heatmap showing the normalized expression of the top-50 ranking specific genes in each 

hepatocyte subtype. b, GO terms enriched in the specifically expressed genes for different 

hepatocyte subtypes. 
 



4. Based on fig2b, the overcorrection score looks to show that different techniques are 

performing differently based on the tissue type. So for example in case of heart data, there 

was hardly any difference in performance metrics between integration methods. Would you 

comment on that? 

 

RESPONSE: Overcorrection score is affected by the number of common cell types among 

different batches in a dataset (i.e., overlapping degree). For the heart dataset, all batches 

include almost the same set of cell types; thus no method suffers from overcorrection. In 

addition, all cell types in the heart dataset are fully differentiated (i.e., are well separated 

in terms of gene expression profiles), which also makes it an easy dataset with little chance 

to be overcorrected (i.e., mixing distinct cell types together) (Supplementary Fig. 2).  

 

 

5. Figure 2D is a bit unclear. Extent of overlap as a concept needs to described a bit more. 

Also, please attribute the exact subheadings in the methods section when referring to it in 

the main text. That way we are sure to be looking at the exact relevant subsection. 

Why I find that this needs more explanation is because the abundance of mixing distinct 

cell types using other methods is quite a lot I feel. I do not recollect reading such 

discrepancies in existing literature on single cell atlas in pancreas. 

 

RESPONSE: We are sorry for the unclear description of the extent of overlap in our 

originally submitted manuscript. We agree that it is very often that integration methods mix 

distinct cells types (frequently because of this partial-overlap issue). We appreciate the 

reviewer’s clarifying suggestions. In fact, the extent of overlap between two batches is the 

number of common cell types between two batches. For example, overlap_2 means there 

are two common cell types (e.g., alpha and beta) between the pancreas_celseq and 

pancreas_smartseq2 batches. We have taken care to describe the concept and the 

generation of partially overlapping datasets in the methods subsection “Generation of 
partially overlapping datasets”. 

 In addition, we have carefully checked our manuscript to ensure that the exact 

subheadings in the methods section are referred in the main text. 

 

6. On similar lines, intermediate polyhormonal cells in endocrine pancreas might be of 

interest. Is there a possibility that SCALEX, as it relies on existing knowledge of cell labels 

or markers, can miss out on them? 

 

RESPONSE: We thank the reviewer for focusing our attention on these cells. We reasoned 

that SCALEX did not identify intermediate polyhormonal cells in endocrine pancreas is 



because there were no such cells in the benchmark pancreas dataset we used in our study. 

To demonstrate, we have now collected a new scRNA-seq dataset of vitro β-cell 

differentiation of human (Veres et al., 2019). In that study, the authors identified a new cell 

type called SC-alpha cells which expressed not only the markers of islet alpha cells but 

also insulin. The authors thought they were intermediate poly-hormonal cells.  

We projected these SC-alpha cells into the pancreas cell space using the same 

SCALEX encoder trained on the pancreas dataset. We noticed that SCALEX did not 

project these cells onto any existing cell populations in the pancreas space; rather, 

SCALEX projected these cells onto new locations close to alpha and beta cells (Revision 
Figure 10a). We re-examined the gene expression of INS and GCG, which are marker 

genes of beta cells and alpha cells, respectively. Indeed, the projected SC_alpha cells 

highly expressed both INS (Insulin) and GCG (Glucagon) (Revision Figure 10b), which is 

consistent with the conclusions from the aforementioned study (Veres et al., 2019). In other 

words, if there had been such intermediate polyhormonal cells as a group in the existing 

cell space, we would have been able to discover them. 

 
 
Revision Figure 10. Projecting intermediate poly-hormonal cells into pancreas 
space. a, UMAP embeddings of the common cell space that includes the original pancreas 

dataset (left) and the projected intermediate poly-hormonal cells (right). Cells are colored 

by cell-type. b, Normalized INS (left) and GCG (right) expression on the UMAP 

embeddings. Color bar represents the expression level. 

 

7. For figure 3E, this location of tumor cells, would it change with multiple heterogenous 

tumor samples? Is this distance between clusters that informative? Usually these distances 

can be very tricky to interpret. Could you comment on that? 



 

RESPONSE: Thank you for inviting us to consider (and speculate on) this topic. First, for 

tumor cells from multiple heterogenous samples, our experience is that if they have quite 

different gene expression profiles (because of distinctively disrupted gene regulation 

programs), they would be projected onto different locations. 

Second, we agree that the distances between clusters in UMAP embeddings are very 

tricky to interpret, as they are uninformative in theory. 

 

8. For the novel cell type determined in pancreas atlas, is there any particular technique or 

sample from which these cells come from? Or are they present in multiple libraries? 

SLC16A7 or MCT2 expression has been investigated before in the context of islet function, 

but remained undetected (Zhao et al. (2001). Expression and Distribution of 

Lactate/Monocarboxylate Transporter Isoforms in Pancreatic Islets and the Exocrine 

Pancreas. Diabetes) What can be the reason that SCALEX identifies these cells? Can they 

be infiltrating cells? Again, does the guided labelling in the reference atlas impact the 

projection of such non-overlapping datasets? 

 

RESPONSE: The newly found SLC16A7+ epithelial cells (n=50) are mainly from one 

dataset, the pancreas_celseq dataset (n=41). We thought that these cells are too rare to 

be detected by bulk sequencing or microscopic immunohistochemical imaging. In contrast, 

single-cell sequencing approaches are suited for identifying such rare cell types by 

deconvolving heterogeneous cell populations. SCALEX has the great ability to retain subtle 

biological differences among cells in single-cell sequencing data during integration, and 

we found that these uncharacterized cells were well-separated from other cell groups after 

SCALEX integration.  

Indeed, there is to date no evidence that any pancreatic cell types express SLC16A7 

or MCT2. Moreover, as the vast majority of these cells are from one study, suggesting that 

these cells may be infiltrating cells rather than a rare subtype of “real” rare pancreatic cells.  

 Finally, we note that the projection of SCALEX is independent of the labels of the 

reference data for all cell types, including the non-overlapping cell types, which will be 

projected onto new locations in the reference cell space.  

 

9. COVID atlas looks very interesting! Have the authors used the PBMC atlas mentioned 

in earlier sections of the paper?  

 

RESPONSE: We did not integrate the PBMC dataset (involved in the benchmark datasets) 

in earlier sections with COVID-19 PBMC Atlas in our originally submitted manuscript. We 

have here now examined integrating the COVID-19 Atlas and the PBMC dataset. The 



same cell types between these two datasets were well mixed while different cell types were 

well separated (Revision Figure 11), which again highlights the excellent integration 

performance of SCALEX. 

 
Revision Figure 11. Integration performance of SCALEX on the COVID-19 PBMC 
Atlas and the PBMC dataset. UMAP embeddings of the COVID-19 PBMC Atlas (left) and 

the PBMC dataset (right) after SCLAEX integration. Cells are colored by cell-type. 

 

10. In figure 5g, where the frequencies are described, is it % of total cells in that sample? 

Without normalising for total number of cells, such fluctuating numbers can be tricky esp 

in diseased states. 

 
RESPONSE: Yes, the frequency described in Fig. 5g is the percentage of each cell type 

in each sample; it has been normalized, thus enabling comparisons amongst different 

samples.  

 

11. So basically for atlases like covid and cancer, where knowledge of cell types and states 

is very recent, how will SCALEX perform in comparison to just looking into smaller subsets 

with more directed research questions? Could you comment on its strengths and 

drawbacks if any? 

 

RESPONSE: As we understand, the reviewer is here interested in having us discuss the 

strengths and drawbacks for large-scale atlas studies and smaller-scale focused studies 

using SCALEX as an analytical tool. Regarding atlas studies, they typically aim to provide 

a global overview of the cell types and states. In addition to the obvious drawback of high-

cost, another challenge for atlas studies is the difficulty in integrative data analysis 

(Luecken et al., 2022). Thus, we are particularly happy present our evidence showing how 

SCALEX can be used to informatively dissect biological consensus and variations among 

different conditions, donors, stages of disease, etc., from technical factors that are often 

highly heterogenous in large-scale, collaborative atlas studies. For example, we used 

SCALEX to integrate multiple COVID-19 studies and built a COVID-19 PBMC Atlas with 



diverse disease states, SCALEX identified multiple immune cell subpopulations such as 

monocytes, neutrophil and plasma were differentially associated with patient status. Such 

discovery is difficult or even impossible for small-scale studies because of limited sampling 

of various disease states. 

 

 Focused studies, in contrast, are appropriate when addressing a focused research 

question, and typically take care to controlled biologically conditions (to properly isolate the 

specific variable under study). While focused studies are obviously cheaper, they are (by 

design) limited to certain conditions (e.g., genetic background). In this regard, it is fortunate 

to find that SCLAEX is effective in supporting unbiased integration of many focused studies: 

that is, a scientist studying a given research field can use SCALEX to do informative 

analyses that harness the data from any/all focused studies about that topic (whenever 

they were produced). SCALEX's unbiased integration allows researchers to expand the 

biological scope of their investigations, increasing coverage to include multiple 

materials/conditions (and the associated variance) Nevertheless, we note that it remains 

early days for integration efforts of multiple focus studies, and this is more challenging than 

integrating atlas datasets from a single (even large) study; and there is a danger for biased 

observations if the set of focused studies examined contain bias towards particular 

conditions.  

 

 

In conclusion, as my own expertise is closer to extracting biologically relevant points from 

these single cell investigations, I feel that the authors should emphasis the role of SCALEX 

in facilitating that. In terms of processing, I am convinced that it is very advantageous and 

shows promise. Discussing the advantages in biological consensus and translatability 

would be nice.  

 

RESPONSE: We thank the reviewer for the guidance and we have carefully revised the 

manuscript to emphasize the role of SCALEX in facilitating extracting biologically relevant 

points from single cell investigations. For example, in the task of integrating partially 

overlapping dataset of liver, SCALEX is the only tool that correctly maintained the five 

hepatocyte subtypes apart with specific biological significance (Fig. 2a and Revision 
Figure 9). We have also improved our discussion regarding the advantages of SCALEX 

in terms of biological consensus and translatability. For example, by integrating multiple 

COVID-19 studies to build a COVID-19 PBMC Atlas with diverse disease states, SCALEX 

identified multiple immune cell-types such as monocytes, neutrophil, and plasma that were 

closely related to COVID-19 disease progression across multiple small-scale datasets. 



We greatly appreciate the reviewer’s supportive comments and would again like to 

take this chance to sincerely offer our gratitude for the helpful guidance about how to 

improve our study. Thank you! 

 

 

 

Reviewer #3: 
 

The authors have reported a single-cell data integration framework called SCALEX, which 

fundamentally uses a VAE, with a domain-specific batch normalization approach to align 

different single-cell RNA-seq datasets. They claim that their method does not require re-

training on new datasets, and that as such their method can be deployed online with faster 

and more accurate performance than other existing methods. Although I appreciate the 

utility of being able to analyze large-scale single cell data online, I have doubts as to the 

extent of novelty of the method given the many other existing methods already in the space. 

In addition, I am not convinced that their method is more accurate than others out there 

sufficiently so to overlook the lack of novelty in the method itself. My specific major 

comments are below: 

 

Major comments: 

1. The SCALEX method is built upon the VAE framework. First, the authors themselves 

have previously reported this autoencoder for single-cell ATAC-seq data analysis: "We 

previously applied VAE and designed SCALE (Single-Cell ATAC-seq Analysis via Latent 

feature Extraction) to model and analyze single-cell ATAC-seq data". The majority of the 

novelty in using this type of framework for extracting latent features from single-cell data 

has already been reported in their previous publication. The only difference between the 

previous publication and the one being considered at present is the proposed domain-

specific batch normalization (DSBN) in a batch-free encoder and batch-specific decoder, 

respectively. This is, in my opinion, not very novel as the specific normalization method is 

not new and only represents a minor change to SCALE.  

 

RESPONSE: We think that as a method, the novelty of SCALEX lies in the three design 

elements:  

1) an asymmetric autoencoder that inputs batch information only to the decoder (i.e., 

never to the encoder);  

2) a DSBN layer in the decoder to release the encoder from the burden of capturing 

the batch-specific variations;  

 



3) a mini-batching strategy that samples data from all batches instead from a single 

batch and thus more tightly follows the same overall distribution of the input data; this 

strategy includes a Batch Normalization layer in the encoder that adjusts the deviation 

of each mini-batch and align them to the overall input distribution. 

 

It bears special emphasis that its design elements, when functioning together, render 

SCALEX's encoder as a generalized function that enables projection of diverse single-

cell datasets into the same batch-invariant global cell-embedding space. As we have 

shown with our extensive "feature ablation" studies that the removal of any design element 

leads to a substantial performance drop in the accuracy of the generalized projection 

function. We would like to note that this concept of generalized projection function 
(or a batch-invariant global cell-embedding space) is highly innovative: other than 

SCALEX, only online iNMF (recently published on Nature Biotechnology) is able to project 

new incoming cells into an existing global cell-embedding space, and our data demonstrate 

that SCALEX substantially outperforms online iNMF in terms of projection accuracy.  

The benefits of such a generalized projection function are tremendous. We here 

summarize them as three novel, major advantages for an integration tool: 

1) SCALEX is a truly online integration method. Only SCALEX and online iNMF are 

capable of online data projection or integration. Note that here “online” represents “the 

ability to incorporate new data without recalculating from scratch” (Gao et al., 2021). We 

want to highlight that this online integration ability meets a rapidly growing need in the life 

sciences and in biomedicine: it enables the alignment of data coming from new single-cell 

analyses (from the lab and clinic) into the substantial corpus of existing knowledge from 

foundational single-cell research.  

2) SCALEX is unique in its capacity to accurately integrate partially-overlapping 
datasets, where all other integration tools performed quite poorly. As more and more 

single-cell analyses are completed for very diverse conditions, there is an increasing need 

for the ability to integrate these datasets which are very often partially overlapped (i.e., 

contain non-overlapping cell populations in each batch). Our analyses showed that the 

other state-of-the-art integration tools often suffered from an over-correction problem when 

integrating these partially-overlapping data—specifically by merging different cell-types 

together, when integrating these partially-overlapping data (see Figure 2 for examples).  

3) The autoencoder architecture of SCAELX makes it very computationally efficient 

and thus capable of integrating “Atlas-level” datasets, which are characterized by very 

large data-size (with recent examples exceeding ~1 million cells, e.g., the Human Fetal 

Atlas, the COVID-19 Atlas), multiple data-batches generated across distinct conditions, 

and very heterogenous and complex samples. As from the preprint suggested by this 

reviewer, these “Atlas-level” datasets pose challenges for data integration with difficulties 



of “the complex, nonlinear, nested batch effects”. It is clearly an ever-more crucial feature 

as these “Atlas-level” studies continue to become more and more prevalent.  

Beyond the unique feature set for data integration, we also would like to highlight the 
excellent data integration performance of SCALEX. Indeed, the overall data-integration 

performance of SCALEX is head-and-shoulders above the other state-of-the-art single-cell 

data integration tools, based on extensive benchmarking and multiple evaluation metrics 

(Supplementary Fig. 4). It bears emphasis that SCALEX suffered the least from the over-

correction problem, as assessed by an “over-correction” score.  

 

 

Furthermore, I have concerns as to the applicability of this method: as BN only shifts and 

scales data within a mini-batch of 64 cells (arguably in the context of atlas sized datasets 

it is not a representative sample size even), it presumably has limited ability to remove 

batch effects; it is unclear why the cell-embedding space of SCALEX should be batch-

invariant, based on the method presented, as the theoretical model does not support such 

an assumption. Can the authors explain/give more intuition on that?  

 

RESPONSE: We respectfully note that studies have shown that usually the size of a mini-

batch does not need to be large to achieve excellent model performance (Bengio, 2012; 

Dominic Masters, 2018). In theory, there is no evidence to support that one mini-batch 

should cover all of the samples or of the categories. In fact, the selection of a mini-batch 

size should seek to achieve a balance between the robustness and efficiency of the 

gradient descent. As for the SCALEX, it is not a problem that each mini-batch is only a 

partial observation from the total distribution of cell populations; these partial observations 

will converge in the end to the global distribution in the shared space based on the 

substantial optimizations conducted in the SCALEX workflow.  

In practice, we have tested the performance of SCALEX with the choice of mini-batch 

size ranging from 16, 64, to 256, and found that the performance of SCALEX was quite 

robust to different batch sizes. We found that the mini-batch size of 64 is the best choice 

in terms of integration performance and computation efficiency for large-scale datasets 

including millions of single cells.  

 The batch-invariant characteristics of the SCALEX cell-embedding space is the direct 

consequence of the generalizability of the SCALEX encoder. To achieve this, SCALEX 

includes three specific design elements described above. We note that in addition to the 

DSBN and the mini-batch strategy, supplying batch information only to the decoder focuses 

the encoder exclusively on learning the batch-invariant biological components and is 

crucial for the encoder generalizability. We have conducted extensive "feature ablation" 



studies to show that three design elements together make the SCALEX encoder a 

generalized function for single-cell data integration and projection. 

 

 

2. Most single-cell integration tools now demonstrate not only ability to integrate single-cell 

RNA-seq data, but also single-nuclei RNA-seq data. Due to the challenges associated with 

processing different sample and tissue types, single-cell atlas efforts now routinely use 

snRNA-seq to profile certain tissues/organs to avoid bias, while using scRNA-seq to profile 

other tissue types in the same atlas. Adipose and Neuronal tissues are prominent 

examples that call for snRNA-seq. Given that the authors claim to be superior for atlas-

level datasets, and given that numerous other tools have been published in the same 

space, it would be very important for them to show applicability of their method to 

integration of not just scRNA/scRNA or snRNA/snRNA, but also scRNA/snRNA. The 

authors have integrated ‘Harvard-Nuclei’ and ‘Sanger-Nuclei’ data from the adult human 

heart atlas (https://www.heartcellatlas.org/). Besides these datasets, the atlas project also 

provided other two data sources: ‘Sanger-Cells’, ‘Sanger-CD45’. If the authors can show 

integration of all of these from the same atlas, or at least align ‘Sanger-Cells’ with ‘Sanger-

Nuclei’, it will demonstrate a more meaningful application of their method (i.e. building 

alignment between single-cell, single-nucleus data from a single atlas dataset). 

 

RESPONSE: We thank the reviewer for this guidance. We have now examined the 

integration performance of SCALEX on the whole adult human heart atlas with four batches. 

We noticed that SCALEX showed excellent performance in removing batch effects 

between two single-cell batches and those between two single-nuclei batches; however,  

the “batch effects” between single-cell and single-nuclei batches were apparently not 

removed in the UMAP embedding space (Revision Figure 12a). 

However, we suspect that these “batch effects” were not true batch effects (i.e., 

technical noise) but rather represented biological variations; this speculation is based on 

our detection of a large number of differentially expressed genes when we compared the 

gene expression profiles between the single-cell and singe-nuclei batches. There were 

4,015 and 12,855 genes with elevated expression in the single-cell and single-nuclei 

batches, respectively (log-fold change>2 and adjusted-pvalue<0.01, total gene 

number=33,516) (Revision Figure 12b, c). We performed gene ontology (GO) enrichment 

analysis and found that the genes with elevated expression in the single-cell batches 

showed enrichment for annotations with ribosome-related GO terms (Revision Figure 
12d). This is reasonable, since single-cell RNA sequencing will (by its nature) detect more 

cytoplasmic transcripts than single-nuclei RNA sequencing. These results therefore 



provide additional support for our conclusion that SCALEX is capable of removing batch 

effects while retaining true biological differences. 

 
Revision Figure 12. Integration performance of SCALEX on the whole human heart 
dataset. a, UMAP embeddings of the whole heart dataset after integration by SCALEX. 

Cells are colored by cell-type or batch. b, Normalized marker gene expression in the UMAP 

embeddings of the single-cell batches (top) and the single-nuclei batches (bottom). Color 

bars represent gene expression levels. c, Heatmap showing the normalized expression of 

the top-150 ranking specific genes in each batch. d, GO terms enriched in the differentially 

expressed genes for single-cell (left) or single-nuclei batches (right). 

 

3. The authors have carefully examined the design of SCALEX via an ablation study (Figs. 

S19, S20). Both BN and DSBN layers show clear impact on integration results. One major 

concern here is that the results from simple autoencoder are already not bad because the 

data preprocessing steps have the ability to adjust for batch effects. It appears possible 

that the data preprocessing already plays a significant role to remove the batch effects, 

and it is unclear how much of the correction is actually owing to the DSBN. It will be more 

attractive and convincing to users if the ablation study could be conducted based on more 

challenging scenarios.  

 

RESPONSE: We greatly appreciate the reviewer for the suggestion about improving our 

ablation study. First, we want to clarify that the autoencoder involved in our comparison 

(Supplementary Fig. 19 and Supplementary Fig. 20) was not a simple one but already 



combines with Batch Normalization and DSBN. Second, to further investigate the 

contributions of each SCALEX design element, we have examined the performance of 

three additional (more challenging) test-variants: Autoencoder without BN, Autoencoder 

without DSBN, and Autoencoder without BN or DSBN. 

 The integration and projection performances of these three test-variants were 

significantly worse than full SCALEX, and were among the worst of all SCALEX test-

variants (Revision Figure 13, 14), highlighting the importance of the design elements for 

excellent integration and projection performance of the full SCALEX. 

 



  
 

Revision Figure 13. Ablation studies of different SCALEX test-variants for single-cell 
data integration. a, UMAP embeddings after integration by SCALEX and other SCALEX 

test-variants. b, Scatter plot showing a quantitative comparison of the performance of the 

full and different test-variants of SCALEX using the different metrics across the indicated 

benchmark datasets. 



 
Revision Figure 14. Ablations studies of different SCALEX test-variants for single-
cell data projection. Left: UMAP embeddings of three projected pancreas data batches 

projected onto the pancreas space using the indicated SCALEX test architectures. Right: 

UMAP embeddings of the two projected melanoma data batches projected onto the PBMC 

space using different SCALEX architectures. Cells are colored by cell-type. Light gray 

shadows represent the original embedding space. 

 

Minor comments: 

1. Somewhat relevant to point 3 above, most of the datasets selected by the authors 

(especially in the main figures) appear to be relatively less complex datasets, consisting 

mostly of tissues that harbor fewer and more distinct cell types, e.g. PBMCs, liver. However, 

the datasets that are more complex and involve multiple tissue types clearly do not show 

superior performance. For example, in Fig 4 the entire mouse atlas was integrated, 

including different technology types. While at first glance the results look ok, with closer 

examining we find cell types that do not belong together to be mixed, e.g. the neurons and 

cardiac muscle cells; some of the T cells are mixed with B cells; some cells unknown what 

type but all mixed together around the skeletal muscles and cardiac cells. In addition, some 

cells that belong together or nearby are no longer associated, including oligodendrocytes 



and their precursors, which are of the same lineage. The situation is more severe in S5 

and S6, for example, where alveolar cells and intestinal epithelial cells are mixed together 

(although both are epithelial types, they are quite distinct); and for the brain data, based 

on the ground truth labels, Harmony actually performs better in keeping subpopulation 

identities as well as preserving data structure/relationships of cells with similar lineage. 

These all suggest to me that SCALEX does not perform as well as claimed when the 

dataset is more complex. While the various scores may be higher for SCALEX, it appears 

that the biological interpretation of the integrated results is not satisfactory, based on the 

ground truth labels. 

 

RESPONSE: Thank you for focusing our attention on this issue; we have now carefully re-

checked the integration results of SCALEX on complex datasets. We found that the issues 

reported by the reviewer could be classified into three categories:  

1) Visualization problem caused by low-resolution UMAP plottings . For example, the 

neuron cells and cardiac muscle cells are well-separated in a UMAP plot of higher 

resolution (Revision Figure 15a). Similarly, alveolar cells and intestinal epithelial 

cells are also well-separated in a high-resolution UMAP plot (Revision Figure 
15e). 

2) Annotation and label problems. This includes the case of mixing some T cells with 

B cells. In fact, we found that cells in cluster 7 which were annotated as T cells in 

the original paper highly express B cell clinical markers (Revision Figure 15d). 

We thus suspect that these cells are actually B cells, but may have been 

annotated in error in the original study.  

Regarding the case of the “unknown” cells being mixed together around the 

skeletal muscles and cardiac cells: we must clearly note that in the figures we only 

labeled the major cell types to enable a clear visual presentation. This choice to 

limit the number of labeled cell types does (obviously) reduce the resolution 

available for readers, missing labeling those cells with a small population. If 

switching to a higher resolution UMAP plot, we can see that these “unknown” cells 

include basal of epidermis, mesenchymal, some ovary subtypes, etc., and they 

are not mixed together (Revision Figure 15c). 
3) Potential biological reasons. For the separation of oligodendrocytes and their 

precursors in the UMAP plot, we note that even though these two cell types are 

from the same lineage, they respectively contain 131 and 318 differentially 

expressed genes when compared to each other (log-fold-change>1 and adjusted-

pvalue<0.05. #total genes=2,000) (Revision Figure 15f), indicating quite different 

gene expression profiles for these two cell types.  

We thus conclude that actually SCALEX performs well on complex datasets. We also 



note that for this complex mouse brain dataset, Harmony even didn’t align the same cell 

types together, for example, L2/3 IT, L4, Oligo cells, etc. (Supplementary Fig. 6). It is 

unfair to conclude that Harmony performs better than SCALEX. 

 
Revision Figure 15. UMAP embeddings of neuron cells and cardiac muscle cells (a), their 

nearby cells (b), and Ovary cells with their original annotations (c) in the Mouse Atlas 

dataset\. d, UMAP embeddings of B cells and T cells in the Mouse Atlas dataset. Cells are 

colored by cell labels (left) and Leiden clustering results (middle). Right: dotplot of 

canonical marker genes for each cluster. Dot color represents average expression level, 

and dot size represents the proportion of cells in the group expressing the marker. e, UMAP 

embeddings of alveolar cells and intestinal epithelial cells in the Human Fetal Atlas dataset. 

f, Heatmap showing the normalized expression of the differentially expressed genes in 

different cell types. 

 

We would again like to take this chance to sincerely thank the reviewer for the helpful 

guidance on how to improve our study. 

 
Reviewer #4: 
 



In this manuscript, Xiong, Tian et al, develop a new method, SCALEX, for online integration 

of single-cell datasets based on a variational autoencoder. They achieve this by designing 

the encoder to preserve only batch invariant signals and adding back batch information in 

the decoding step via a specific batch normalization layer. Benchmarking against existing 

state-of-the art methodology shows good performance on a number of integration metrics 

and highlights the highly scalable nature of online integration methods. They apply their 

method to a number of different single-cell modalities and existing atlas scale datasets. I 

believe this work will have utility in the field as scalable integration methods are becoming 

increasingly necessary as the size of datasets rapidly expands. I have the following specific 

comments.  

 

Main comments: 
1. There is a brief discussion comparing SCALEX to scArches in terms of model 

augmentation and retraining. I believe this section would benefit from an expanded 

discussion of how online integration is different from the type of model augmentation that 

scArches employs. 

 

RESPONSE: We greatly appreciate this helpful guidance. We have now provided a more 

informative discussion comparing SCALEX with scArches (see page 3 line 70~82), which 

is copied below: 

 “Another recently developed package, scvi-tools(Gayoso et al., 2021a), combining 

scVI(Lopez et al., 2018) with scArches(Lotfollahi et al., 2020), applies a conditional 

variational autoencoder (VAE)(Kingma and Welling, 2013) framework to model 

the inherent distribution of the input single-cell data for data integration. However, 

the conditional VAE design of scVI requires model augmentation and retraining 

when integrating new data, meaning that scVI is not an online method. We want 

to highlight that this online integration ability meets a rapidly growing need in the 

life sciences and in biomedicine: it enables the alignment of data coming from new 

single-cell analyses (from the lab and clinic) into the substantial corpus of existing 

knowledge, especially that from previous foundational single-cell research. Put 

another way, the online integration capacity obviates the need to augment and/or 

retrain models when analyzing additional datasets, which both preserves hard-

won scientific insights and saves a huge amount of computational resource.” 

 

2. The authors apply SCALEX to multimodal integration (scRNA + scATAC). It would be 

useful to see a comparison to recent methods tailored towards multi-modal integration like 

totalVI or Seurat v4.  

 



RESPONSE: We thank the reviewer for this suggestion. We have now included totalVI or 

Seurat v4 and performed extensive comparative analyses on more multi-modal datasets. 

Note that since totalVI and Seurat v4 integrate multi-omics data measured in the same 
cell, we specifically collected a new PBMC dataset in which the gene expression and 

chromatin accessibility profiles are measured in the same cell using the 10X platform 

(https://support.10xgenomics.com/single-cell-multiome-atacgex/datasets/1.0.0/pbmc_gra 

nulocyte_sorted_10k?).  

We found that SCALEX performs among the best in terms of all evaluation metrics, 

separating different cell types well while mixing different batches well (Revision Figure 16 
a, b). These two tools are specifically designed for paired sequencing data integration and 

cannot be used to integrate data from unpaired cells, and thus cannot be directly compared 

with the other tools assessed in our study based on matched labels. We therefore did not 

include them into comparative studies. 

 



Revision Figure 16. Comparisons of integration performance of different methods 
based on the paired PBMC dataset from the 10X platform. a, UMAP embeddings of 

the paired PBMC dataset by the indicated methods. Cells are colored by batch or cell-type. 

b, Scatter plot showing a quantitative comparison of different metrics for the paired PBMC 

dataset. c, UMAP embeddings of the integration results by Seurat v4 (left) and totalVI (right) 

based on the paired PBMC dataset. Cells are colored by cell-type. 

 

3. Most examples in the manuscript use datasets of fully differentiated cell types. I would 

be interested to see how SCALEX performs on data from a developing system. Are there 

artificial clusters induced or is the developmental continuum preserved? 

 

RESPONSE: We greatly appreciate this prompt to examine the integration performance of 

SCALEX for a developing system. Note that datasets comprising different batches from 

developing systems are quite rare; we only found one such human immune dataset (three 

batches of one study) (Oetjen et al., 2018). We manually selected a set of cells belonging 

to the erythrocyte lineage (HSPCs, Megakaryocyte progenitors, Erythroid progenitors, and 

Erythrocytes) for testing.  

Seeking to define the erythrocyte development trajectory from HSPCs—via 

megakaryocyte progenitors and erythroid progenitors—to erythrocytes and to assess the 

integration performance of SCALEX on a developmental continuum, we used the sc.tl.dpt 

function in the Scanpy package to compute the diffusion pseudotime scores of 1) 

unintegrated data and 2) SCALEX integrated data. Note that we assumed that the 

trajectories defined in the original unintegrated data are accurate. We noted a branching 

structure in the trajectory constructed from SCALEX integrated data (Revision Figure 17), 

and the Pearson coefficient between the pseudotime values before and after integration is 

0.79. These results indicate that SCALEX integration can preserve the trajectory structure 

of for developing systems.  

We would like to note that it appears that the batch effects in this dataset seem small; 

yet this was the only dataset we could find comprising different batches from a developing 

system. 



 
Revision Figure 17. Integration performance of SCALEX on an erythrocyte lineage 
dataset. UMAP embeddings of the erythrocyte lineage dataset before (top) and after 

integration by SCALEX (bottom), cells are colored by batch, cell-type, diffusion pseudotime 

of unintegrated data, and diffusion pseudotime of SCALEX integrated data. 
 

4. The authors demonstrate that the scope of an existing cell space can be expanded by 

online projection and demonstrate this by projecting melanoma data onto a previously 

constructed PBMC space. Does the order of projection here matter and is there a 

difference between the results if you integrate upfront versus project in afterwards? 

 

RESPONSE: We thank the reviewer for this guidance, and have now tested the effects of 

the order of projection. In the new test, we projected the PBMC dataset onto the melanoma 

cell embedding space. We noticed that again SCALEX accurately projected cells in the 

PBMC dataset onto the same locations in the cell space of the melanoma dataset 

(Revision Figure 18), suggesting that the projection order does not affect the online 

projection performance of SCALEX. 

 



 
Revision Figure 18. Projecting new data into an existing cell-embedding space. a, 
UMAP embeddings of the cell space of the PBMC dataset, with the two melanoma data 

batches projected using SCALEX. Cells are colored by cell-type, with light gray shadows 

representing the original PBMC dataset. b, UMAP embeddings of the cell space of the 

melanoma dataset, with the two PBMC data batches projected using SCALEX. Cells are 

colored by cell-type, with light gray shadows representing the original melanoma dataset. 

 

5. The latent representation learned by SCALEX is a 10 dimensional bottleneck layer. How 

was this chosen and is the performance of SCALEX dependent on the choice of this 

hyperparameter?  

 
RESPONSE: Our choice here was guided by extensive hyper-parameter testing (grid 

search) from the development of our previous model SCALE (Xiong et al., 2019). Across 

multiple choices of dimensionalities, we found that a latent space dimensionality of 10 

generally performed best. As SCALE and SCALEX are both based on a similar 

autoencoder framework and are both designed for single-cell sequencing data, we adopted 

the same dimensionality setting of 10.  

 

Minor comments: 

1. The text could be improved with a close read for typos and grammatical errors. 

 

RESPONSE: We are thankful for the detailed guidance here. We have carefully revised 

the manuscript and corrected typos and grammatical errors. For example, “retaining” to 

“retraining” on line 252, “SCALE” to “SCALEX” on line 1233, etc. 

 



2. On L106, the authors claim that their mini-batch strategy “more tightly follows the overall 

distribution of input data”. It would be useful to support this claim.  

 

RESPONSE: In the manuscript, we say that “mini-batch sampling from mini-batch strategy 

that samples data from all batches (instead of single batches)”. We have now modified the 

text to minimize understanding: “the SCALEX encoder employs a mini-batch strategy that 

samples data from all batches (instead of a single batch), which more tightly follows the 

overall distribution of the input data.” 

To demonstrate that our mini-batch strategy does indeed more tightly follow the overall 

distribution of input data than the alternative strategy that samples from a single batch, we 

used the pancreas dataset (8 batches) and randomly selected two genes (ASS1and 

HSPA1A) to compare their expression variances in the two sampling strategies. 

For a mini-batch strategy that samples from all batches, we randomly selected 64 cells 

from all batches as a mini-batch, and then calculated the variance of each gene among 

the sampled cells with respect to the variance of that gene among all cells. We repeated 

this process 8 times. For the strategy that samples from a single-batch, we randomly 

selected 64 cells of each batch and similarly calculated the variance of each gene among 

mini-batch cells with respect to the variance of that gene among all cells.  

We found that the relative variances of gene expression using our mini-batch sampling 

strategy were indeed closer to zero than that using the alternative strategy that samples 

from a single batch (Revision Figure 19), supporting our claim in the manuscript.  

      
Revision Figure 19. Gene expression variances comparison between strategies that 
sample cells from all batches (“all”) or sample cells from a single-batch (“single”). 
Left: ASS1; right: HSPA1A. 

 

3. There is quite a large reliance on UMAP plots as a way of assessing performance in 

many of the figures (e.g 2d). I would encourage the authors to try and consolidate or 

summarize this information in other ways.  

 



RESPONSE: We thank the reviewer for this suggestion. We provided UMAP plots 

whenever possible, hoping that they could be helpful to provide a full image of the 

integration performance. We understand the limitation of UMAP plots as a visualization 

approach, and indeed we used a multitude scoring metrics to summarize the UMAP 

visualizations and to quantitatively compare integration performance of different methods; 

this include the use of the Silhouette score, the batch entropy mixing score, the cLISI and 

iLISI scores, etc., to quantify cell-type separation and batch mixing, ARI and NMI to assess 

cell-type clustering. We also defined a novel over-correction score to measure the over-

correction degree. Using these metrics together with UMAP plots, we strive to provide a 

comprehensive comparison of integration performance of different methods. 

 

 

We would again like to take this chance to sincerely thank the reviewer for the helpful 

guidance on how to improve our study. 

 

  



Reviewer #5: 
 

In this manuscript, Xiong and colleagues provided a deep learning method SCALEX for 

the integration of heterogeneous single-cell datasets. As dramatic increases in data scale 

and sample heterogeneity, there is a growing need for integration tools, Therefore, the 

study is of interest to a large number of readers. 

 

One of the advantages of SCALEX is that it’s an online data integration method, which 

does not require retraining and makes it particularly useful for Atlas-level datasets. 

SCALEX can also preserve biological variations and avoid over-correction compared to 

other integration methods. Additionally, SCALEX is designed to preserves batch-invariant 

biological data components when projecting single-cells. The analysis and comparition of 

SCALEX with other integration tools showed improved integration accuracy, scalability and 

computationally efficiency. 

 

The manuscript is interesting and very well written. Only a few minor notes: 

1. Multiple panels are missing significant analysis. 

 

RESPONSE: We have now carefully checked and provided all necessary significance 

analyses in the revised manuscript. For example, we added a significance analysis of 

cytokine and inflammatory scores of monocytes among different conditions to support our 

claim on line 392.  

 

 

2. Abbreviation should be spelled out when first used. 

 

RESPONSE: We thank the reviewer for the detailed guidance here, and we have now 

carefully checked and spelled out all abbreviations in the revised manuscript. For example, 

single-cell RNA sequencing (scRNA-seq), single-cell assay for transposase-accessible 

chromatin use sequencing (scATAC-seq), Single nucleus assay for transposase-

accessible chromatin using sequencing (snATAC-seq), cellular indexing of transcriptomes 

and epitopes by sequencing (CITE-seq), gigabytes (GB), million (M), kilo (K), central 

processing unit (CPU), graphics processing unit (GPU), gene ontology (GO). 

 

3. References were missing for lines 347 and 354.  

 

RESPONSE: Thanks for bringing these omissions to our notice; we have now added the 

references in our revised manuscript. 



Line 347 (line 364 in the revised manuscript): (Schulte-Schrepping et al., 2020) 

Line 354 (line 374 in the revised manuscript): (Zhang et al., 2020) 

 

 

We would again like to take this chance to sincerely thank the reviewer for the helpful 

guidance on how to improve our study. 
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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

The authors have addressed our concerns well. Overall, they provided substantial results to support 

their claims. We appreciate the clarification about how this method performs (without retraining) in 

contrast to continually updated online learning. 

We have only a few small remaining concerns (which could be addressed without re-review): 

1) While the authors now show results from scJoint and bindSC, they do not describe in the methods 

section how they used these tools, even though other comparison tool implementations are described. 

2) Since this study involved different types of data analyses and benchmarking with many integration 

methods, it could be helpful if example code to reproduce major results in this manuscript were 

included in the github site. 

Reviewer #2 (Remarks to the Author): 

In their previous submission the authors had provided a method to integrate large scale datasets 

without requiring retraining 

and large processing times and computational power. As a reviewer and based on my personal 

expertise, I had posed numerous questions regarding the biological significance and applicability in 

different contexts of this method. After revision, the authors have addressed all my concerns by either 

elaborating on the missing aspects or by carrying out additional analysis. 

I am satisfied with their rebuttal and deem this study to be of interest for communities where such data 

integration is a major part of the experimental setup. 

Reviewer #3 (Remarks to the Author): 



I appreciate that the authors have aimed to address some of the data-specific issues that were brought 

up (such as the issue of inappropriate mixing in certain datasets) by tweaking parameters and 

visualizations; however, ultimately the key questions regarding the novelty of this method and whether 

it is actually superior to existing methods (including a very similar version of their own previously 

published one) has not been explicitly demonstrated. One of the main concerns I mentioned in my last 

review was regarding the novelty of this method compared to the author's own previous methods. I 

questioned whether the current updated model, in principle/in theory, can actually provide such drastic 

improvements compared to the previous model. They have verbally discussed some advantages of the 

new method, but in our discussion thus far, this represents a disagreement in opinion between myself 

and the authors, as both of us simple present verbal evidence. Thus, the onus is on the authors to do the 

benchmarking to prove how this updated model vastly improves performance. But they presented no 

such quantitative evidence, nor did they do any simulations or calculations to show that the new 

addition to the model actually improves the performance. 

There have been several benchmarking papers published recently that do routine, systematic 

comparisons between single-cell integration methodologies, using now-standardized metrics to 

compare different methodologies (e.g. Luecken et al. 2022, https://doi.org/10.1038/s41592-021-01336-

8). At the minimum the authors should follow this kind of rigorous benchmarking for their work, and do 

a quantitative comparison between not only other state-of-the-art methods, but also between this 

updated model and their own previously published model to show that indeed their updated model 

provides true measurable benefits/improvements that are not simply incremental. 

Unfortunately, without such rigorous benchmarking, I cannot support this manuscript for publication in 

this form. 

Reviewer #4 (Remarks to the Author): 

Overall, the authors have worked diligently to address the majority of my concerns. The one aspect of 

my review that wasn’t fully explored was the question of the impact of online integration (projection) in 

the context of the melanoma and PBMC datasets. The authors demonstrate that the method is robust to 

the order of projection of the melanoma datasets and show that melanoma specific cell types remained 

distinct after projection. I would be interested to examine to what degree information is lost in the 

projection process (are there melanoma specific signals that are being obscured) and to what degree is 

that quantifiable/reportable to the user when SCALEX is applied in this manner to study perturbed 

systems. In general though, this is a minor concern and is partially addressed earlier in the paper in the 

“over-correction scoring” sections. I feel comfortable recommending publication. 



Reviewer #5 (Remarks to the Author): 

The authors have well addressed the reviewer's concerns and it's suggested for publication. 

Reviewer #6 (Remarks to the Author): 

The authors performed comprehensive benchmark tests with existing methods, and provided 

substantial results to support their claims. They have addressed my previous concerns with new data 

analysis outcomes. Overall, I think this manuscript presents a new computational integration tool that 

can compete with other well-established methods and can attract a number of users. 

The last concern would be code availability. It would be fair for the community to see data analysis code 

of other integration methods the authors used for all benchmark tests. In the method section, the 

authors didn’t provide how they performed integration with scJoint and bindSC. 



REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

 

The authors have addressed our concerns well. Overall, they provided substantial results 

to support their claims. We appreciate the clarification about how this method performs 

(without retraining) in contrast to continually updated online learning.  

We have only a few small remaining concerns (which could be addressed without re-

review): 

1) While the authors now show results from scJoint and bindSC, they do not describe in 

the methods section how they used these tools, even though other comparison tool 

implementations are described. 

 

RESPONSE: We are sorry for not including the description of how we used scJoint and 

bindSC in the previous version of the manuscript. We have now added it in the methods 

section (see page 33 line 896~906), which reads as: 

 “scJoint: We used the scJoint Python package. We pre-processed the data into 

the standard input format for scJoint, and then modified the config.py file in the 

scJoint package and set the same training config parameters as used in the 

tutorial of “Analysis of PBMC data from 10x Genomics using scJoint” 

(https://github.com/sydneybiox/scJoint/blob/main/tutorial/Analysis%20of%201

0xGenomics%20data%20using%20scJoint.ipynb).  

 bindSC (v1.0.0): We used the bindSC R package. Following the tutorial, we 

first performed dimension reductions for gene expression, for the gene activity 

scores, and for the chromatin accessibility profiles, using the dimReduce 

function with K=30. Subsequently, we ran the BiCCA function with lambda=0.5, 

alpha=0.5, and K=20. All other parameters were default.” 

 

 

2) Since this study involved different types of data analyses and benchmarking with many 

integration methods, it could be helpful if example code to reproduce major results in this 

manuscript were included in the github site. 

 

RESPONSE: We have now uploaded our analysis code to GitHub: 

https://github.com/jsxlei/SCALEX. 

 

We would like to take this opportunity to express our gratitude to the review for the excellent 

guidance about how to improve our study and manuscript.  



 

Reviewer #2 (Remarks to the Author): 

 

In their previous submission the authors had provided a method to integrate large scale 

datasets without requiring retraining  

and large processing times and computational power. As a reviewer and based on my 

personal expertise, I had posed numerous questions regarding the biological significance 

and applicability in different contexts of this method. After revision, the authors have 

addressed all my concerns by either elaborating on the missing aspects or by carrying out 

additional analysis.  

I am satisfied with their rebuttal and deem this study to be of interest for communities where 

such data integration is a major part of the experimental setup. 

 
We really appreciate the review for the excellent guidance about how to improve our study 

regarding the biological significance and applicability. Many thanks. 

 
 

Reviewer #3 (Remarks to the Author): 

 

I appreciate that the authors have aimed to address some of the data-specific issues that 

were brought up (such as the issue of inappropriate mixing in certain datasets) by tweaking 

parameters and visualizations; however, ultimately the key questions regarding the novelty 

of this method and whether it is actually superior to existing methods (including a very 

similar version of their own previously published one) has not been explicitly demonstrated. 

One of the main concerns I mentioned in my last review was regarding the novelty of this 

method compared to the author's own previous methods. I questioned whether the current 

updated model, in principle/in theory, can actually provide such drastic improvements 

compared to the previous model. They have verbally discussed some advantages of the 

new method, but in our discussion thus far, this represents a disagreement in opinion 

between myself and the authors, as both of us simple present verbal evidence. Thus, the 

onus is on the authors to do the benchmarking to prove how this updated model vastly 

improves performance. But they presented no such quantitative evidence, nor did they do 

any simulations or calculations to show that the new addition to the model actually 

improves the performance.  

 

There have been several benchmarking papers published recently that do routine, 

systematic comparisons between single-cell integration methodologies, using now-

standardized metrics to compare different methodologies (e.g. Luecken et al. 



2022, https://doi.org/10.1038/s41592-021-01336-8). At the minimum the authors should 

follow this kind of rigorous benchmarking for their work, and do a quantitative comparison 

between not only other state-of-the-art methods, but also between this updated model and 

their own previously published model to show that indeed their updated model provides 

true measurable benefits/improvements that are not simply incremental.  

 

Unfortunately, without such rigorous benchmarking, I cannot support this manuscript for 

publication in this form. 

 
RESPONSE: We appreciate the reviewer for the guidance again, and we have now tested 

the integration performance of SCALE (Xiong et al., 2019) on the benchmark datasets. 

Very briefly, based on these “quantitative evidence” from the benchmarking experiments, 

we do see that the new SCALEX model vastly outperforms SCALE for single-cell data 

integration (Revision Figures 1 and 2, Revision Table 1).  

 

 
Revision Figure 1. Integration performance of SCALE on the benchmark datasets. 
UMAP embeddings of the benchmark datasets after integration by SCALE. Cells are 

colored by batch or cell-type. 

 



 
Revision Figure 2. Systematic comparisons of integration performance by the now-
standardized metrics. Dotplot shows the scores and rankings of different methods on 

different metrics across benchmark datasets. The scores for all 12 examined metrics 

(circles) were calculated using the Python package scIB (Luecken et al., 2022) with default 

parameters. Note that due to the benchmark datasets aren’t developmental datasets and  

some methods don’t return a corrected data matrix (cell x gene) after integration, we didn’t 

include the trajectory conservation score or the HVG conservation score in the comparison. 

The batch_correction_mean, bio_conservation_mean, and overall scores (rectangles) 

were calculated as described in (Luecken et al., 2022) to assess the performances of 

different methods in terms of the batch removal, the conservation of biological variance, 

and overall accuracy scores, respectively. 

 

 
 
 
 
 



Revision Table 1. Comparison of SCALEX and SCALE using the metrics from Luecken et al. 2022 on benchmark datasets. 
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 SCALE 0.000 0.716 1.402 0.750 0.000 0.534 0.226 0.479 0.201 0.749 0.766 0.454 0.062 0.196 0.143 

SCALEX 0.998 0.879 3.625 0.992 0.270 0.926 0.908 0.615 0.407 0.584 0.916 0.500 0.850 0.733 0.780 

Δ 0.998 0.163 2.223 0.242 0.270 0.392 0.682 0.136 0.206 -0.165 0.150 0.046 0.788 0.537 0.637 

liv
er

 

SCALE 0.000 0.569 1.001 0.841 0.000 0.713 0.563 0.564 0.611 0.531 0.773 0.624 0.093 0.160 0.133 

SCALEX 0.985 0.856 1.343 1.000 0.273 0.929 0.914 0.604 0.927 0.538 0.984 0.727 0.810 0.757 0.778 

Δ 0.985 0.287 0.342 0.159 0.273 0.216 0.351 0.040 0.316 0.007 0.211 0.103 0.717 0.597 0.645 

he
ar

t 

SCALE 0.000 0.702 1.050 0.981 0.017 0.776 0.612 0.604 0.403 0.537 0.942 0.297 0.247 0.309 0.284 

SCALEX 0.984 0.836 1.527 0.988 0.397 0.925 0.960 0.665 0.894 0.569 0.962 0.298 0.808 0.713 0.751 

Δ 0.984 0.134 0.477 0.007 0.380 0.149 0.348 0.061 0.491 0.032 0.020 0.001 0.561 0.404 0.467 

N
SC

LC
 SCALE 0.000 0.769 1.298 0.962 0.299 0.633 0.362 0.494 0.680 0.448 0.645 0.242 0.287 0.073 0.158 

SCALEX 0.997 0.885 1.582 0.997 0.622 0.880 0.744 0.617 0.810 0.530 0.952 0.478 0.876 0.763 0.808 

Δ 0.997 0.116 0.284 0.035 0.323 0.247 0.382 0.123 0.130 0.082 0.307 0.236 0.589 0.690 0.650 

PB
M

C
 SCALE 0.000 0.600 1.000 0.706 0.000 0.616 0.331 0.505 0.524 0.517 0.810 0.616 0.00 0.113 0.068 

SCALEX 1.000 0.920 1.734 0.989 0.620 0.923 0.936 0.632 0.895 0.583 0.951 0.253 0.886 0.715 0.783 

Δ 1.000 0.320 0.734 0.283 0.620 0.307 0.605 0.127 0.371 0.066 0.141 -0.363 0.886 0.602 0.715 



The fact that SCALEX consistently, dramatically outperformed SCALE is not 

surprising when considering the basic designs of these tools. SCALE was designed to be 

a dimension reduction and data imputation tool for individual datasets; that is, it was not 

designed for the purpose of integrating different datasets. We want to emphasize that the 

now clearly demonstrated superior data integration performance of SCALEX (Revision 
Table 1) comes from its design of an asymmetric autoencoder that inputs batch information 

only to the decoder, a DSBN layer in the decoder to release the encoder from the burden 

of capturing the batch-specific variations, and a mini-batching strategy that samples data 

from all batches instead from a single batch and thus more tightly follows the same overall 

distribution of the input data; this strategy includes a Batch Normalization layer in the 

encoder that adjusts the deviation of each mini-batch and align them to the overall input 

distribution. Our ablation study has highlighted the contributions of three design elements 

of SCALEX on removing batch effects. None of these designs are in the original SCALE 

model. 

 

 We have also followed the reviewer’s guidance and benchmarked SCALEX against 

other state-of-the-art methods (as well as SCALE, described above) using the now-

standardized metrics (Luecken et al., 2022) (Revision Figure 2). Indeed, SCALEX 

outperformed all other state-of-the-art single-cell data integration tools on pancreas, liver, 

and NSCLC datasets in trems of the overall score, and ranked the third on PBMC and and 

the fourth on heart. Note that SCALE was the bottom-ranking for all five datasets in terms 

of the overall score. 

 

 

Reviewer #4 (Remarks to the Author): 

 

Overall, the authors have worked diligently to address the majority of my concerns. The 

one aspect of my review that wasn’t fully explored was the question of the impact of online 

integration (projection) in the context of the melanoma and PBMC datasets. The authors 

demonstrate that the method is robust to the order of projection of the melanoma datasets 

and show that melanoma specific cell types remained distinct after projection. I would be 

interested to examine to what degree information is lost in the projection process (are there 

melanoma specific signals that are being obscured) and to what degree is that 

quantifiable/reportable to the user when SCALEX is applied in this manner to study 

perturbed systems. In general though, this is a minor concern and is partially addressed 

earlier in the paper in the “over-correction scoring” sections. I feel comfortable 

recommending publication. 

 



RESPONSE: We appreciate the reviewer’s ongoing support of our efforts in this study. We 

are also deeply interested in the performance of SCALEX as applied to perturbed systems, 

and anticipate that the fundamental utility of SCALEX for users will indeed be based on its 

capacity to retain informative signals for specific cell types. It will be exciting to see how 

SCALEX performs in our ongoing collaborative studies and ideally upon its application by 

the wider research community. 

 

Reviewer #5 (Remarks to the Author): 

 

The authors have well addressed the reviewer's concerns and it's suggested for publication. 

 

We would like to take this opportunity to express our gratitude to the review for the excellent 

guidance about how to improve our study. 

 

 

Reviewer #6 (Remarks to the Author): 

 

The authors performed comprehensive benchmark tests with existing methods, and 

provided substantial results to support their claims. They have addressed my previous 

concerns with new data analysis outcomes. Overall, I think this manuscript presents a new 

computational integration tool that can compete with other well-established methods and 

can attract a number of users. 

 

The last concern would be code availability. It would be fair for the community to see data 

analysis code of other integration methods the authors used for all benchmark tests. In the 

method section, the authors didn’t provide how they performed integration with scJoint and 

bindSC. 

 

RESPONSE: We thank the reviewer for these suggestions, and we have uploaded our 

analysis code to GitHub: https://github.com/jsxlei/SCALEX.  

 

 Additionally, we have now added the description of how we used scJoint and bindSC 

in the methods section (see page 33 line 896~906), which reads as: 

 “scJoint: We used the scJoint Python package. We pre-processed the data into 

the standard input format for scJoint, and then modified the config.py file in the 

scJoint package and set the same training config parameters as used in the 

tutorial of “Analysis of PBMC data from 10x Genomics using scJoint” 

(https://github.com/sydneybiox/scJoint/blob/main/tutorial/Analysis%20of%201



0xGenomics%20data%20using%20scJoint.ipynb).  

 bindSC (v1.0.0): We used the bindSC R package. Following the tutorial, we 

first performed dimension reductions for gene expression, for the gene activity 

scores, and for the chromatin accessibility profiles, using the dimReduce 

function with K=30. Subsequently, we ran the BiCCA function with lambda=0.5, 

alpha=0.5, and K=20. All other parameters were default.” 
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REVIEWERS' COMMENTS 

Reviewer #3 (Remarks to the Author): 

Thanks for taking my review into consideration and generating the necessary benchmarking data. I can 

recommend publication if the authors include the new figures of the benchmarking results in the 

supplemental figures. 



REVIEWER COMMENTS 
Reviewer #3 (Remarks to the Author): 
 
Thanks for taking my review into consideration and generating the necessary 

benchmarking data. I can recommend publication if the authors include the new figures 

of the benchmarking results in the supplemental figures. 

 

RESPONSE: We have now added the new figures of the benchmarking results in 

Supplementary Fig. 4b. We thank the reviewer for continuous help and support. 


	6 - Peer review cover page.pdf
	tpr1.pdf
	tpr2.pdf
	tpr3.pdf
	tpr4.pdf
	tpr5.pdf
	tpr6.pdf

	Title: Online single-cell data integration through projecting heterogeneous datasets into a common cell-embedding space


