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Supplementary Methods 

Hongming Xu, Sunho Park, Jean René Clemenceau, Jinhwan Choi, Sung Hak Lee and Tae Hyun Hwang. 

“Spatial heterogeneity and organization of tumor mutation burden with immune infiltrates within tumors 

based on whole slide images correlated with patient survival in bladder cancer”. 

 

 

1. Tumor Detection:  

To establish the tumor detector, our cooperated pathologist was asked to annotate tumor regions on a set of 

representative cancer slides. Since the WSI has a huge size (e.g., a few GB/slide), annotated ground truth 

regions (at 20× magnification) are first divided into a set of non-overlapping image tiles, where each tile 

has 512×512 pixels. Instead of overlapping tiles, the non-overlapping tiles were used to train the tumor 

detector because of two considerations. First, random image augmentations will be performed along with 

the training process, which can help in better training. Second, generating overlapping tiles for training will 

incur a higher time cost due to the several-times increase in training dataset size. After generating the 

dataset, we train a lightweight CNN-based tumor detector (with only about 0.28M trainable parameters) for 

identifying bladder cancer regions in the WSI. The architecture of our trained CNN model is shown in 

Fig.s1, where the input is an image tile and output is the corresponding probability belonging to cancer 

regions. Our trained CNN model consists of interleaving convolution and pooling layers. Drop-out layers 

following dense connections are added to against over-fittings. During training, image augmentations 

including rotation, zooming, flipping and color-based augmentations were randomly applied. During 

testing, the WSI is first divided into a set of non-overlapping tiles, and then is predicted to be a probability 

map. An empirical threshold (e.g., 0.5) is applied to binarize tumor regions. Small holes of tumor regions 

are filled by morphological processing.  

 

Fig.s1. Architecture of our designed CNN-based tumor detector.  

In this study, 100 patients' slides were randomly selected from the whole TCGA BLCA cohort by the 

pathologist (Dr. Sung Hak Lee), who manually annotated visible tumor regions using ImageScope software 

from Aperio. Among 100 annotated pathology slides, 48 WSIs (with 64,333 tumor tiles and 73,478 non-

tumor tiles) were used for training, while 12 WSIs (with 15,414 tumor tiles and 19,319 non-tumor tiles) 

were used for validation. The other 40 WSIs were used for independent tumor detection testing. Three 

evaluation metrics were used, including sensitivity (SEN), precision (PRE) and dice coefficient (DSC). For 

comparison, we implemented three transfer learning models: VGG16-TL1, VGG16-TL2, and Inception-

v3-TL. VGG16-TL1 was trained by fine-tuning three more trainable layers added on top of VGG16 [1], 

while VGG16-TL2 was trained by fine-tuning the last three convolutional layers [1]. Inception-v3-TL was 

trained by fine-tuning the last fifteen trainable layers. The number of trainable layers for baseline 

comparisons was empirically selected based on our training data size (e.g., avoid over-fitting). All models 
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were trained by using RMSprop optimizer to minimize binary cross entropy loss. The maximum training 

epoch was set as 100. The early stopping was applied if there was no performance improvement on 

validation set. The batch size was set as 128. The learning rate was set as 0.001. The comparative tumor 

detection results are listed in Table s1, where 0.5 was used to binarize tumor prediction probability maps.  

For detail experimental results, please see Table s1, Fig.s6, Fig.s7 in supplementary results. 

 

2. Representative Tile Selection: 

Once tumor regions were detected, representative tumor tiles were selected by affinity propagation (AP) 

clustering [2] for accelerating subsequent feature extraction. The selection of AP clustering rather than other 

popular clustering techniques such as k-means algorithm is mainly because it does not require to pre-define 

the number of clusters and provides unique solution with different runs of the algorithm. To efficiently 

select representative tiles, the detected tumor regions are first divided into a set of 128×128 tumor tiles (at 

2.5× magnification). The multi-scale local binary pattern (LBP) texture features are then computed from 

every image tile, which produces a 40 dimensional feature vector [3]. Note that low resolution tumor tiles 

are analyzed here, which can help in accelerating computations and capturing macro-scale information from 

the image by using LBP descriptors. Since geometrically close tumor tiles usually have similar texture 

patterns, we further incorporate the 2-D location of image tile as the features. Thus each tumor tile is 

characterized by a 42 dimensional feature vector. The AP clustering then treats each feature vector as a 

node in a network and recursively transmits real-valued messages along edges of the network until it finds 

a good set of exemplars and corresponding clusters. As suggested by the reference [2], we define the 

similarities between feature vectors of tumor tiles as the negative square Euclidean distance between them. 

The “preferences” that influence the number of finally generated clusters are set as the median value of 

similarities between feature vectors. Fig.s2 illustrates an example of AP clustering for selecting 

representative tumor tiles from a whole slide image. 
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Fig.s2. Example of affinity propagation clustering on a whole slide image. In the image, different color of 

blocks represents different clusters. One representative tumor tile is selected from each cluster. Note that in 

this example there are 80 representative tumor tiles which are selected from 1149 tumor tiles. The locations 

of selected tiles are indicated with red stars and numbers. 

 

3. Feature Extraction: 

In this module, we analyze representative tumor tiles and compute a high-level feature representation for 

the WSI. Since some of TCGA pathology slides only have the highest magnification at 20×, all 

representative tumor tiles are extracted at 20× for high-level feature extraction. This module includes the 

following three steps: 

 

(1) Color normalization: Because TCGA pathology images were collected from many different institutions, 

there exist severe color variations due to different staining procedures. To suppress the influence of color 

variations, a color deconvolution based method [4] is utilized to normalize tumor tiles into a standard color 

appearance. Fig.s3. shows an example of color normalization, where the first row shows original tumor 

tiles and the second row shows the tumor tiles after color normalization. 
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Fig.s3. Illustration of tumor tile color normalization.  In the image, the first row shows four examples of 

tumor tiles before color normalization, while the second row shows correspondingly tumor tiles after color 

normalization. 

 
(2) Transfer learning: Transfer learning on pre-trained convolutional neural networks have been applied for 

different classification problems, such as skin cancer [5] and breast cancer [6]. Unlike these transfer 

learning studies where all images have explicit labels, this study explores to predict TMB from gigabyte 

whole pathology slides. Tumor representative tiles are determined from WSI for analysis, but they may not 

contain information relevant to the class assigned to the WSI. In other words, there is no guarantee that a 

patient slide has the same label with its tumor representative tiles. Therefore, instead of fine-tuning pre-

trained models directly for TMB prediction, we make use of pre-trained models as the feature extractor. 

Motivated by the superior performance on ImageNet classification, we utilize a Xception CNN architecture 

[7] for transfer learning. The Xception module replaces regular convolutions with depthwise separable 

convolutions, which has shown an improved classification performance over Google Inception module and 

residual learning. We remove the output layer of the pre-trained Xception model and re-use all other weights 

trained by ImageNet. Given an input tumor tile at 20x magnification (with a size of 1024x1024 pixels), the 

transfer learning model outputs a high-level feature representation which is a 2048 dimensional vector. 

Fig.s4 illustrates transfer learning using the pre-trained Xception model. 
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Fig.s4. Illustration of transfer learning on Xception model trained by ImageNet. 

 

(3) Feature integration: After extracting histological features from all representative tumor tiles, the feature 

vector representing the whole patient slide is obtained by integrating features of individual tumor tiles 

together. The integration is performed by using the weighted mean of features extracted from representative 

tiles, where each representative tile stands for the major characteristics of tumor tiles within the cluster. If 

a cluster includes more tumor tiles, its representative tile is assigned a larger weight such that the WSI could 

be effectively described by representative tumor tiles. 

 

4. TMB Classification: 

The SVM classifier was trained to make patient-level predictions with three steps. (1) Since feature vector 

of the WSI has a high dimensionality (i.e., 2048) that was much larger than the number of patient samples, 

feature dimension was reduced to prevent over-fitting to the training dataset. To ensure efficiency and 

simplicity, principal component analysis (PCA) is utilized, which selects a small number of principal 

feature components (i.e., 100 for TCGA BLCA, 40 for TCGA LUAD) to train the classifier. The number 

of principal feature components is determined by optimizing the prediction performance during cross-

validations. (2) Feature standardization was performed on each feature component, which ensured its values 

have zero mean and unit variance. (3) SVM classifiers (e.g., with the RBF kernel or Linear kernel) are 

trained to predict patient-level TMB status. 

 

After building up the TMB prediction classifier, the testing is performed following a similar procedure of 

the training process. First, feature dimension reduction and standardization are performed based on the PCA 

transformation matrix and scaling factors computed from training samples. Then, the trained SVM classifier 

is applied to predict the patient slide into either low or high TMB category.  

 

5. TILs Detection: 

We trained and applied deep learning model to detect TILs regions in WSI. To train the TILs detector, we 

made use of a public dataset, where 43,440 image tiles were adopted [8]. These image tiles consist of 21,698 

TILs patches and 21,742 Non-TILs patches, with dimensions of 150µm×150µm or 250µm×250µm. We 

selected the centering 112µm×112µm regions from these image tiles for training and testing evaluation. 

The whole data set was randomly divided into 3 parts: training (80%), testing (10%) and validation (10%). 

Since TILs detection is a challenging problem, we trained 3 different deep learning models: Resent18, 

Resent34 and Shufflenet. Image augmentations including random flipping and color jittering were applied 

along with training. We trained TILs detectors by freezing different percentile of trainable layers, and using 

different parameter configurations in terms of optimizer, batch size and learning rate. Table s2 lists the grid-

search of different parameter settings. Overall, we trained 144 different TIL detectors. Fig. s5 (a) shows 
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testing accuracies of 144 models with different configurations. The best TILs detector which was trained 

by fine-tuning all trainable layers of Resnet18 and using Adam optimizer with the learning rate of 0.0001 

and batch size of 4 provides the best test accuracy (80.06%). The best TILs detector was selected and 

utilized for TILs detection from the WSI. For example, given a WSI image, the TILs detection was 

performed by first dividing the WSI into a set of 112µm×112µm image patches which were predicted as 

the probabilities belonging to TILs. The WSI-level TILs prediction was finally obtained by stitching tile-

level predictions. Fig. s5(b) illustrates an example of TILs detection, where red pixels indicate detected TIL 

regions in the WSI. 

 

(a)       (b) 

Fig.s5. TILs detection evaluation. (a) Evaluation of 144 trained TIL detectors. In the figure, the horizontal 

axis corresponds to the training times of different models, while the vertical axis corresponds to testing 

accuracies of different models. Note that different symbols (e.g., circles, squares, triangles and pentagons) 

represent different models with different frozen ratios. Each symbol (e.g., square) has 24 copies, which 

corresponds to different parameter settings in terms of optimizers, batch sizes and learning rates. It could 

be found that two Resnet18 models with 0% frozen ratios provide noticeable higher accuracies than other 

models. (b) Example of TILs detection result on a pathology slide. The first image shows the WSI 

overlapped with image blocks. The second image shows the WSI overlapped with TILs detection heatmap. 

The third image shows TILs detection result, where red pixels indicate TILs regions. 
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Supplementary Results 

 

 

Fig.s6. Example of bladder cancer detection by different models. (a) A WSI with labeled (red) tumor 

boundaries. (b) VGG16-TL1. (c) VGG16-TL2. (d) Inception-v3-TL. (e) Designed CNN tumor detector. 

The first row of (b)-(e) shows prediction heatmaps overlapped on WSIs. The second row of (b)-(e) shows 

predictions comparing with manual annotations. As shown in (e), the designed CNN provides less FP and 

FN for this example. 

 

 

Fig.s7. Dice coefficients of bladder cancer detection with different thresholds, i.e., from 0.4 to 0.6. The size 

of circles proportionally corresponds to different model size. The designed CNN tumor detector 

continuously provides higher DSC values than other models. In addition, the designed CNN tumor detector 

has only about 0.28M trainable parameters, which is more computationally efficient for making predictions 

on WSIs than other models (with over 10M trainable parameters). 
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(a)       (b) 

 

(c) 

Fig.s8. KM curves on TCGA bladder cohort. (a) A KM survival curve of TMB subtypes based on predicted 

patient-level TMB high and low using WSI. Red color represents predicted TMB high subgroup and blue 

color represents predicted TMB low subgroup (log-rank test P-value = 0.072). (b) A KM survival curve of 

TMB subtypes based on predicted patient-level TMB status and tile-level entropy analysis (e.g., High-High: 

WSI-based TMB high and high entropy of tile-level predictions). (c) A KM survival curve based on 

predicted TILs high and low using WSI. The median level of TILs densities (see Fig. s9(b)) is used as the 

cut-off value.  
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(a)                                                                (b) 

Fig.s9. Histogram of (a) entropy values of tile-level TMB predictions for TCGA BLCA cohort, and (b) 

TILs densities for TCGA BLCA cohort. Note that the red dashed line in (a) indicates the median (5.19) of 

entropy values on the whole cohort. The red dashed line in (b) indicates the median (0.0812) of TILs 

densities on the whole cohort. 

 

 

 

 

 

 

 

 

 
(a)                                                                             (b) 

Fig.s10. Comparison of TMB-H and TILs co-present densities within tumor regions. (a) Three patient 

subtypes for the whole TCGA BLCA cohort. (b) Three patient subtypes for the WEX-based TMB-H 

patients in TCGA BLCA cohort.  
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Supplementary Table s1:  List of acronyms used in this paper. 

Terminologies Acronyms Values 

High tumor mutation burden TMB-H High 

Low tumor mutation burden TBM-L Low 

Tumor mutation burden TMB High/Low 

Spatial heterogeneity of TMB SH-TMB High/Low 

Tumor-infiltrating lymphocytes TILs Not applicable 

Whole slide images WSIs Not applicable 

Bladder cancer BLCA Not applicable 

The cancer genome atlas TCGA Not applicable 

Whole exome sequencing WES Not applicable 

Convolutional neural networks CNN Not applicable 

Affinity propagation AP Not applicable 

Support vector machine SVM Not applicable 

Radial basis function RBF Not applicable 

Principal component analysis PCA Not applicable 

Proposed excluding tumor detection P-E-TD Not applicable 

Proposed excluding representative tile selection P-E-RTS Not applicable 

Proposed excluding color normalization P-E-CN Not applicable 

Overall survival OS Not applicable 

Kaplan Meier KM Not applicable 

WES-based TMB high & WSI-based TMB high & low SH-

TMB 

HHL (in Fig.4(b)) Not applicable 

Predicted TIL high & predicted TMB high & low SH-TMB HHL (in Fig.4(c)) Not applicable 

Predicted TIL low & predicted TMB high & low SH-TMB LHL (in Fig.4(c)) Not applicable 

Predicted TIL high & WES-based TMB high & WSI-based 

TMB high & low SH-TMB 

HHHL (in Fig.4(d)) Not applicable 

Predicted TIL low & WES-based TMB high & WSI-based 

TMB high & low SH-TMB 

LHHL (in Fig.4(d)) Not applicable 

 

 

 

 

Supplementary Table s2:  TCGA BLCA tumor detection comparative results. Our designed CNN tumor 

detector provides the highest sensitivity (90.65%) and dice coefficient (90.76%), while Inception-v3-TL 

provides the highest precision (94.91%). 

Models SEN (%) PRE (%) DSC (%) 

VGG16-TL1 87.26 92.66 89.45 

VGG16-TL2 87.49 93.72 90.09 

Inception-v3-TL 84.9 94.91 89.23 

Designed CNN 90.65 91.59 90.76 
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Supplementary Table s3. Grid Search for finding the best tils detector. By using different parameter settings, 

144 different tumor detectors were trained. 

Parameters Models Frozen 

Ratios 

Optimizers Learning Rates Batch Sizes 

Settings {‘resnet18’,’resnet34’,

‘shufflenet’} 

{0%, 80%} {‘sgd’,’adam

’} 

{‘0.001’,’0.0001

’,‘0.00001’} 

{4,16,32,64} 

 

 

 

 

Supplementary Table s4: Ablation study of TMB prediction performance on 253 bladder cancer patients 

by using SVM classifier with RBF and Linear kernels, respectively. 

Techniques 
Accuracy (%) Specificity (%) Sensitivity (%) AUROC 

SVM-

RBF 

SVM-

Linear 

SVM-

RBF 

SVM-

Linear 

SVM-

RBF 

SVM-

Linear 

SVM-

RBF 

SVM-

Linear 

P-E-TD 64.03  62.06 62.90  60.48 65.12  63.57 0.683  0.666 

P-E-CN 64.43  67.19 66.13  69.35 62.79  65.12 0.687  0.719 

P-E-RTS 71.94  71.15 71.77  68.55 72.09  73.64 0.753  0.769 

P-InceptionV3 65.22  62.85 58.06  59.68 72.09  65.89 0.664  0.645 

P-Resnet50 63.64  60.87 65.32  54.84 62.02  66.67 0.690  0.691 

P-Xception 73.12  69.57 75.81  68.55 70.54  70.54 0.752  0.748 

 

 

 

Supplementary Table s5. Comparison of running time between P-E-RTS (using all detected tumor tiles) 

and P-Xception (using selected tumor tiles) for the example slide TCGA-2F-A9KO shown in Figure 1(b) 

of the paper. Our testing was run on a Win10 desktop with Intel(R) i7-7800X CPU, 3.50GHZ, 64GB RAM. 

Methods Running time (s) 

P-E-RTS 2338.20s 

P-Xception 402.83s 
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Supplementary Table s6. Clinical and pathologic variables of the TCGA BLCA as stratified by the two 

TMB subtypes. Note that the “High-Low” group includes patients with predicted patient-level TMB-

high and low SH-TMB, while the “Other” group includes the rest of patients in the BLCA cohort. 

The p-value with an asterisk indicates the statistical significance (i.e., p-value<0.05). 

 High-Low Others Total p-value 

N 76 (20.7 %) 292 (79.3 %) 368  

Median age (Range) 68.5 (45-87) 69.0 (34-90) 69.0 (34-90) 0.902 

Age>60 55 (72.4 %) 214 (73.3 %) 269 (73.1 %) 0.872 

Sex     

MALE 51 (67.1 %) 224 (76.7 %) 275 (74.7 %) 0.086 

FEMALE 25 (32.9 %) 68 (23.3 %) 93 (25.3 %)  

Stage     

I 0 (0.0 %) 1 (0.3 %) 1 (0.3 %) 0.024* 

II 28 (36.8 %) 88 (30.1 %) 116 (31.5 %)  

III 16 (21.1 %) 114 (39.0 %) 130 (35.3 %)  

IV 32 (42.1 %) 87 (29.8 %) 119 (32.3 %)  

ND 0 (0.0 %) 2 (0.7 %) 2 (0.5 %)  

Lymphovascular.invasion      

NO 23 (30.3 %) 95 (32.5 %) 118 (32.1 %) 0.064 

YES 36 (47.4 %) 99 (33.9 %) 135 (36.7 %)  

ND 17 (22.4 %) 98 (33.6 %) 115 (31.3 %)  

Inflammatory.Infiltrate.Response     

ABSENT 34 (44.7 %) 116 (39.7 %) 150 (40.8 %) 0.428 

LYMPHOCYTES 42 (55.3 %) 176 (60.3 %) 218 (59.2 %)  

RPPA.cluster     

1 11 (14.5 %) 55 (18.8 %) 66 (17.9 %) 0.761 

2 12 (15.8 %) 59 (20.2 %) 71 (19.3 %)  

3 13 (17.1 %) 44 (15.1 %) 57 (15.5 %)  

4 10 (13.2 %) 36 (12.3 %) 46 (12.5 %)  

5 14 (18.4 %) 53 (18.2 %) 67 (18.2 %)  

ND 16 (21.1 %) 45 (15.4 %) 61 (16.6 %)  

mRNA.cluster     

BASAL_SQUAMOUS 27 (35.5 %) 98 (33.6 %) 125 (34.0 %) 0.942 

LUMINAL 5 (6.6 %) 18 (6.2 %) 23 (6.3 %)  

LUMINAL_INFILTRATED 17 (22.4 %) 55 (18.8 %) 72 (19.6 %)  

LUMINAL_PAPILLARY 22 (28.9 %) 103 (35.3 %) 125 (34.0 %)  

NEURONAL 4 (5.3 %) 15 (5.1 %) 19 (5.2 %)  

ND 1 (1.3 %) 3 (1.0 %) 4 (1.1 %)  

 

 

 

 

 

 

 

 

 

 

 



14 
 

 

Supplementary Table s7. Multivariate Cox proportional analysis of tumor stage and the TMB subtypes in 

relation to the risk of death in the TCGA BLCA cohort. The p-value with an asterisk indicates the 

statistical significance (i.e., p-value<0.05). 

 Hazard Ratio (95% CI) p-value 

Stage#   

III vs II  1.42287 (0.91257, 2.21852) 0.11965 

IV vs II  2.95049 (1.95561, 4.45152) 0 

TMB others vs patient level TMB high & Low spatial TMB 

heterogeneity 

 1.79586 (1.18052, 2.73194) 0.00623* 

#Only one stage I patients 

 

 

 

 

Supplementary Table s8. Clinical and pathologic variables of the TCGA BLCA patients as stratified by the 

three TMB subtypes, as shown in Fig.4(c) in the paper. The p-value with an asterisk indicates the 

statistical significance (i.e., p-value<0.05). 

Gender Hazard Ratio (95% CI) p-value 

FEMALE vs MALE  1.39379 (0.90777, 2.14002) 0.1291 

Age   

60 older vs 60≤  2.85441 (1.57398, 5.17645) 0.00055* 

AJCC.pathologic.tumor.stage   

III vs II  1.18750 (0.61789, 2.28221) 0.60615 

IV vs II  1.86517 (0.95066, 3.65944) 0.06986 

Lymphovascular.invasion   

YES vs No  2.05379 (1.27877, 3.29854) 0.00291* 

mRNA.cluster (vs Luminal_papillary)   

Basal_squamous  1.44447 (0.84275, 2.47582) 0.18101 

Luminal  1.64039 (0.72750, 3.69880) 0.23284 

Luminal_infiltrated  1.39544 (0.76291, 2.55242) 0.27944 

Neuronal  2.67671 (1.10942, 6.45812) 0.02845* 

TMB subtypes (Fig.4(c))   

LHL vs HHL  3.30484 (1.34371, 8.12820) 0.00923* 

Others vs  HHL  3.49581 (1.72801, 7.07214) 0.0005* 

 

 

 

 

 

 

 

 

 

 

 

 


