Supplementary Information

The small molecule ebselen binds to YTHDF proteins interfering with the recognition of N6-methyladenosine modified RNAs

Mariachiara Micaelli¹, Andrea Dalle Vedove¹, Linda Cerofolini^{2,3}, Jacopo Vigna⁴, Denise Sighel¹, Sara Zaccara⁵, Isabelle Bonomo¹, Georgios Poulentzas¹, Emanuele Filiberto Rosatti¹, Giulia Cazzanelli¹, Laura Alunno¹, Romina Belli⁶, Daniele Peroni⁶, Erik Dassi¹, Shino Murakami⁵, Samie R. Jaffrey⁵, Marco Fragai^{2,3}, Ines Mancini⁴, Graziano Lolli¹, Alessandro Quattrone^{1*}, Alessandro Provenzani^{1*}

¹ Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Trento, Italy

² Magnetic Resonance Center (CERM) – Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy

³ Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Florence, Italy

⁴ Department of Physics, University of Trento, Trento, Italy

⁵ Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA

⁶ Department of Cellular, Computational and Integrative Biology, CIBIO, Mass Spectrometry Facility, University of Trento, Trento, Italy

*co-corresponding authors

alessandro.provenzani@unitn.it

alessandro.quattrone@unitn.it

Figure S1

Supplementary Figure 1. (A) Purification of the YTH domain of YTHDF1 protein. SDS-PAGE analysis of purification steps of the YTHDF1 domain. Washing steps have been carried out using increasing concentrations of Imidazole (20mM-50mM). The five elution fractions have been obtained using 300mM of Imidazole. (B) Calculation of the Z-factor for the quenching assay. Quenching effect of the m6A moiety against the YTH domain has been measured in sixteen replicates, with DMSO as a negative control. Z=0.531 is an indicator of an excellent assay. (C) Purification of the YTH domain. Washing steps have been carried out using increasing concentrations of Imidazole (20mM-50mM). The two elution fractions have been obtained using 300mM of Imidazole.

Supplementary Figure 2. Purification of the YTH domain of YTHDC1 protein. SDS-PAGE analysis of purification steps of the YTHDC1 domain with Coomassie Blue staining. Washing steps have been carried out using increasing concentrations of Imidazole (20mM-50mM). The elution fraction has been obtained using 300mM of Imidazole. Eluted protein was further purified by gel filtration.

Supplementary Figure 3. Determination of the EC50 of interaction between an m6A RNA probe with the YTH domain of YTHDF1 calculated with the DMR. rYTH was immobilized to the wells with amino-coupled chemistry and different concentrations of RNA were added to the plate. Measurements were performed before adding the RNA, in order to define a baseline, and after the addition. Final response (pm) was obtained by subtracting to the last measurement the baseline. Signal for each well was obtained by subtracting the signal of a reference area with the protein coated to an uncoated one. Data were fitted according to a four-parameter nonlinear regression curve. $R^2 = 0.8918 EC50 = 63.76 nM$.

Supplementary Figure 4. Protein level of the epitranscriptome apparatus and m6A level in PC-3 cells. (A) Representative western blot of YTHDF1-3, ALKBH5 and METTL3 in PC-3 cells after 24, 48 and 72 hours of ebselen treatment at three doses, 10, 25, 50 μ M. (B) Quantification of the relative changes of YTHDF1-3, ALKBH5 and METTL3 in PC-3 cells after 24, 48 and 72 hours of ebselen treatment at three doses, 10, 25, 50 μ M. No changes were observed. Three biological replicates were performed. (C) Quantitative real-time PCR of YTHDF1-3, ALKBH5 and METTL3 in PC-3 cells after 24 hours of ebselen treatment at 10 μ M.

Figure S5

Supplementary Figure 5. Caption: $2F_o$ - F_c map (blue) is contoured at 1s for Ebselen and Cys412 side chain. The selenium anomalous map is contoured at 3.5 σ and shown in orange.

Supplementary Figure 6. Specific interaction of a m6A containing RNA probe with the YTH domain of YTHDF1. (A) Superimposition of 2D ¹H ¹⁵N HSQC NMR spectra of free YTH domain of YTHDF1 (100 μ M, black spectrum) and YTHDF1 in the presence of m6A-RNA (40 μ M, red spectrum). (B) Intensity decreases of the signals of the YTH domain of YTHDF1 (100 μ M) in the presence of m6A-RNA fragment (40 μ M); the residues exhibiting the largest decreases are highlighted in red. (C) Cartoon representation of YTH domain (PDB code: 4rcj) in complex with a shorter RNA fragment (in yellow) with respect to the one used in the NMR titration. The residue exhibiting the largest decreases in signal intensity in the presence of m6A-RNA (40 μ M) are colored in magenta and represented as sticks; in grey unassigned residues.

Figure S7 A

Figure S7 B

Figure S7 C

Figure S7 D

Figure S7 E

Figure S7 F

Supplementary Figure 7. NMR spectra of Ebselen analogues, A) compound 4, B) compound 2, C) compound 8, D) compound 6, E) compound 5, F) compound 7, G) compound 9, H) compound 10.

Figure S8 C

Solled by			SIG	IdI	
Multiplier		:	1.0	000	
Dilution		:	1.0	000	
Use Multiplier	&	Dilution	Factor	with	ISTDs

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	de la
1	3.452	BB	0.3430	68.82885	2.79771	2.7359
2	6.149	BB	0.2143	2446.98145	160.09654	97.2641

.

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	8.541	BV	0.1736	17.89709	1.66301	0.5688
2	8.851	VV	0.1467	80.19249	8.76839	2.5485
3	9.134	VB	0.1605	3002.78857	300.59180	95.4294
4	10.460	BB	0.1804	29.54241	2.52703	0.9389
5	11.008	BB	0.1678	16.18805	1.52592	0.5145

Figure S8 E

.

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Peak Re #	etTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		-				
1	4.038	MM	0.4595	26.64482	9.66390e-1	1.7096
2	6.142	MM	0.1453	2.91722	3.34672e-1	0.1872
3	6.476	MM	0.3135	7.32158	3.89217e-1	0.4698
4	7.266	MM	0.2660	1521.17834	95.32454	97.6013
5	8.397	BB	0.0494	5.02014e-1	6.24825e-1	0.0322
Totals	:			1558.56398	97.63964	

Figure S8 F

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	4.769	MF	0.6065	1.91567e4	526.43036	95.7333
2	5.554	FM	0.6036	693.22144	19.14192	3.4643
3	11.014	VB	0.3318	160.56773	6.79176	0.8024
Total	.s :			2.00105e4	552.36404	

Figure S8 G

1000 601

0.4445

5

6

Totals :

7.588 MM

10.723 BB

1988.68151 121.74381

7.18332 2.69313e-1

0.3612

0.0691

0.2176 1.37417 8.63845e-2

Supplementary Figure 8. HPLC analysis of Ebselen analogues: A) compound **4** (RP18 isocratic MeOH/Water 9:1 flow 0.5 mL/min); B) compound **6** (RP18 isocratic MeOH/Water 9:1 flow 0.5 mL/min); C) compound **8** (RP18 gradient ACN/Water 3:7 to 8:2 flow 1 mL/min); D) compound **2** (RP18 gradient ACN/Water 3:7 to 8:2 flow 1 mL/min); E) compound **5** (RP18 isocratic MeOH/Water 9:1 flow 0.5 mL/min); F) compound **7** (RP18 isocratic MeOH/Water 9:1 flow 0.5 mL/min); G) compound **9** (RP18 isocratic MeOH/Water 9:1 flow 0.5 mL/min); H) compound **10** (RP18 isocratic MeOH/Water 9:1 flow 0.5 mL/min); H) compound **10** (RP18 isocratic MeOH/Water 9:1 flow 0.5 mL/min); H) compound **10** (RP18 isocratic MeOH/Water 9:1 flow 0.5 mL/min); H) compound **10** (RP18 isocratic MeOH/Water 9:1 flow 0.5 mL/min); H) compound **10** (RP18 isocratic MeOH/Water 9:1 flow 0.5 mL/min); H) compound **10** (RP18 isocratic MeOH/Water 9:1 flow 0.5 mL/min); H) compound **10** (RP18 isocratic MeOH/Water 9:1 flow 0.5 mL/min); H) compound **10** (RP18 isocratic MeOH/Water 9:1 flow 0.5 mL/min); H) compound **10** (RP18 isocratic MeOH/Water 9:1 flow 0.5 mL/min); H) compound **10** (RP18 isocratic MeOH/Water 9:1 flow 0.5 mL/min); H) compound **10** (RP18 isocratic MeOH/Water 9:1 flow 0.5 mL/min); H) compound **10** (RP18 isocratic MeOH/Water 9:1 flow 0.5 mL/min); H) compound **10** (RP18 isocratic MeOH/Water 9:1 flow 0.5 mL/min); H) compound **10** (RP18 isocratic MeOH/Water 9:1 flow 0.5 mL/min); H) compound **10** (RP18 isocratic MeOH/Water 9:1 flow 0.5 mL/min); H) compound **10** (RP18 isocratic MeOH/Water 9:1 flow 0.5 mL/min); H) compound **10** (RP18 isocratic MeOH/Water 9:1 flow 0.5 mL/min); H) compound **10** (RP18 isocratic MeOH/Water 9:1 flow 0.5 mL/min); H) compound **10** (RP18 isocratic MeOH/Water 9:1 flow 0.5 mL/min); H) compound **10** (RP18 isocratic MeOH/Water 9:1 flow 0.5 mL/min); H) compound **10** (RP18 isocratic MeOH/Water 9:1 flow 0.5 mL/min); H) compound **10** (RP18 isocratic MeOH/Water 9:1 flow 0.5 mL/min); H) compound **10** (RP18 isocratic MeOH/Water 9:1 flow 0.5 mL/min); H) co