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SUMMARY
It is important to determine if severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and
SARS-CoV-2 mRNA vaccinations elicit different types of antibodies. Here, we characterize the magnitude
and specificity of SARS-CoV-2 spike-reactive antibodies from 10 acutely infected health care workers with
no prior SARS-CoV-2 exposure history and 23 participants who received SARS-CoV-2 mRNA vaccines.
We found that infection and primarymRNA vaccination elicit S1- and S2-reactive antibodies, while secondary
vaccination boosts mostly S1 antibodies. Using absorption assays, we found that SARS-CoV-2 infections
elicit a large proportion of original antigenic sin-like antibodies that bind efficiently to the spike of common
seasonal human coronaviruses but poorly to the spike of SARS-CoV-2. In converse, vaccination modestly
boosts antibodies reactive to the spike of common seasonal human coronaviruses, and these antibodies
cross-react more efficiently to the spike of SARS-CoV-2. Our data indicate that SARS-CoV-2 infections
and mRNA vaccinations elicit fundamentally different antibody responses.
INTRODUCTION

Since late 2019 severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) has spread across the world, causing a global

pandemic (Carvalho et al., 2021; Zhou et al., 2020). This promp-

ted the rapid development of several SARS-CoV-2 vaccines

including two that use anmRNA-based platform (reviewed in Ex-

cler et al., 2021; Gebre et al., 2021; Golob et al., 2021). The

mRNA vaccines, Pfizer BNT162b2 and Moderna mRNA-1273,

employ lipid nanoparticles that encase modified mRNA encod-

ing the spike protein of SARS-CoV-2 (Topol, 2021). SARS-

CoV-2 mRNA vaccines have been found to be safe and effective

at preventing severe COVID-19, hospitalizations, and death

(Baden et al., 2021; Polack et al., 2020). SARS-CoV-2 mRNA

vaccines elicit antibody responses that partially recognize and
This is an open access article under the CC BY-N
protect against severe disease caused by antigenically distinct

SARS-CoV-2 variants (Collier et al., 2021; Doria-Rose et al.,

2021; Liu et al., 2021; Wang et al., 2021a, 2021b; Widge et al.,

2021; Wu et al., 2021).

Some studies suggest that prior infections with common sea-

sonal human coronaviruses (hCoVs) impact the severity of

SARS-CoV-2 infections (Gouma et al., 2021; Sagar et al.,

2021). Most individuals are exposed to hCoVs early in childhood

(Anderson et al., 2021; Dijkman et al., 2012; Dyrdak et al., 2021;

Gaunt et al., 2010; Huang et al., 2020; Killerby et al., 2018) and

then re-exposed to antigenically drifted forms of these viruses

throughout life (Edridge et al., 2020; Eguia et al., 2021; Kistler

and Bedford, 2021). Common hCoVs include the HKU1 and

OC43 human betacoronaviruses (b-hCoVs) and 229E and

NL63 human alphacoronaviruses (a-hCoVs) (Andersen et al.,
Cell Reports 41, 111496, October 18, 2022 ª 2022 The Authors. 1
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Figure 1. Specificity of SARS-CoV-2 antibodies induced after SARS-CoV-2 infection versus vaccination

(A and B) ELISAs were completed to quantify levels of serum antibodies binding to the SARS-CoV-2 full-length spike (FL-S) protein, the S1 domain (S1) of S, and

the S2 domain (S2) of S after SARS-CoV-2 infection (A) and mRNA vaccination (B).

(C–E) We calculated fold change in antibody titers before and after seroconversion and pre-/post-prime and boost doses of a SARS-CoV-2 mRNA vaccine.

(legend continued on next page)
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2020; Boni et al., 2020; Jaimes et al., 2020; Okba et al., 2020).

Studies from our group and others have shown that some indi-

viduals possessed antibodies that could bind to SARS-CoV-2

proteins prior to the COVID-19 pandemic (Anderson et al.,

2021; Ng et al., 2020; Song et al., 2021). SARS-CoV-2 is a

b-hCoV, and antibodies reactive to the OC43 and HKU1

b-hCoVs are boosted upon SARS-CoV-2 infections (Aguilar-Bre-

tones et al., 2021; Anderson et al., 2021; Gouma et al., 2021;

Nguyen-Contant et al., 2020; Song et al., 2021) and SARS-

CoV-2 mRNA vaccinations (Amanat et al., 2021; Jackson et al.,

2020; Roltgen et al., 2022). It is unknown if the recall of b-hCoV

antibodies upon SARS-CoV-2 infections impacts disease

outcome. A recent study suggests that the recall of OC43

b-hCoV antibodies is associated with a compromised de novo

SARS-CoV-2 response in individuals with fatal COVID-19

(McNaughton et al., 2022).

The boosting of hCoV antibodies upon infection with the anti-

genically distinct SARS-CoV-2 is consistent with the doctrine of

‘‘original antigenic sin,’’ first proposed to describe influenza virus

antibody responses by Thomas Francis in 1960 (Francis, 1960).

We recently developed absorption assays to show that sequen-

tial heterosubtypic influenza virus infections elicit antibodies

that, paradoxically, do not bind effectively to the boosting viral

strain (Arevalo et al., 2020). In that study, we sequentially in-

fected ferrets with two antigenically distinct influenza virus

strains and analyzed serum samples collected after each infec-

tion. We found that many antibodies elicited by secondary influ-

enza virus infections did not bind effectively to the secondary

boosting influenza virus strain. We proposed that antigenically

distinct influenza viruses engagememory B cells elicited by prior

infections through multiple low-affinity interactions with thou-

sands of B cell receptors on memory B cells. Low-affinity anti-

bodies secreted in a soluble form through this recall response

fail to bind to the antigenically distinct recall antigens because

they require the level of multivalent binding that is provided on

B cells.

In the current report, we used a similar absorption technique to

define the specificity of b-hCoV antibodies elicited by SARS-

CoV-2 infections and mRNA vaccinations. We completed a se-

ries of studies to determine if these boosted b-hCoV antibodies

could cross-react to SARS-CoV-2.

RESULTS

SARS-CoV-2 infections and vaccinations elicit
antibodies against the SARS-CoV-2 spike protein
We obtained samples from individuals before and after acute

SARS-CoV-2 infections (n = 10) and pre-/post-two doses of a

Pfizer BNT162b2 mRNA SARS-CoV-2 vaccine (n = 23). Samples

from SARS-CoV-2-infected individuals were obtained from a

health care worker sero-monitoring study in which all infections
(F and G) SARS-CoV-2 pseudotype neutralization assays were completed with ser

vaccinated participants (G).

(H) Fold change in neutralization titers was calculated before and after seroconve

For (A), (B), (F), and (G), we completed paired t tests or one-way ANOVA of log2-tra

(H), we completed one-way ANOVA of titer fold changes; ****p < 0.0001, **p

Neutralizing antibody titers of SARS-CoV-2 mRNA vaccinated participants have
were relatively mild (Gouma et al., 2021). All 10 individuals

were unvaccinated and seronegative in the beginning of this

study and acquired a PCR-confirmed SARS-CoV-2 infection in

the spring and summer of 2020. Blood samples were collected

from SARS-CoV-2-infected individuals 5–28 days (mean 17.9

days) after PCR-confirmed infections. Blood samples were

collected from SARS-CoV-2 mRNA-vaccinated individuals

(Goel et al., 2021a) 7–15 days post-primary immunization

(mean 14.2 days), the day of or the day before the booster immu-

nization (mean 21.2 days post-primary), and 7–12 days post-

booster immunization (mean 7.5 days post-boost). Individuals

in our infection and vaccination studies had similar ages, and

both groups were predominantly female (Table S1).

Consistent with previous studies (reviewed in Lombardi et al.,

2021 and Roltgen and Boyd, 2021), antibodies against the full-

length spike (FL-S) of SARS-CoV-2 increased following infection

(Figure 1A) and vaccination (Figure 1B). SARS-CoV-2 FL-S anti-

body levels were similar following infections and primary vacci-

nations, and antibody levels were significantly boosted following

the second dose of vaccine (Figures 1B and 1C). The SARS-

CoV-2 FL-S protein consists of two domains, the S1 domain,

which encompasses the receptor-binding domain (RBD) essen-

tial for cell attachment and entry (Barnes et al., 2020; Letko et al.,

2020; Walls et al., 2020; Wrapp et al., 2020) and the N-terminal

domain (NTD), and the S2 domain, which shares more sequence

homology with hCoVs (Nguyen-Contant et al., 2020; Okba et al.,

2020). Infection and primary vaccination elicited high levels of

both S1 and S2 antibodies (Figures 1A and 1B), whereas sec-

ondary vaccinations boosted S1 antibodies more efficiently

compared with S2 antibodies (Figures 1B, 1D, and 1E). SARS-

CoV-2 neutralizing antibody levels were similar following infec-

tion and prime-boost vaccination (Figures 1F–1H).

SARS-CoV-2 infections and vaccinations elicit
antibodies against b-hCoVs
Wepreviously found that antibodies against the FL-S of the com-

mon OC43 b-hCoV are boosted upon SARS-CoV-2 infection in

hospitalized patients with severe disease (Anderson et al.,

2021). Other studies have also shown that levels of antibodies

against b-hCoVs including both OC43 and HKU1 are higher in

COVID-19 patients compared with healthy donors (Aydillo

et al., 2021; Bangaru et al., 2022; Grobben et al., 2021;

McNaughton et al., 2022; Roltgen et al., 2022; Shrock et al.,

2020; Song et al., 2021). Consistent with these findings, we

found that antibodies reactive to the FL-S of the common

OC43 and HKU1 b-hCoVs increased upon SARS-CoV-2 infec-

tions in health care workers, while antibodies to the FL-S of the

common 229E a-hCoV did not (Figure 2A). Studies have shown

that antibodies against common b-hCoVs increase upon

SARS-CoV-2 mRNA vaccination (Amanat et al., 2021; Grobben

et al., 2021; Roltgen et al., 2022). Although we found small
a samples from SARS-CoV-2-infected individuals (F) and SARS-CoV-2mRNA-

rsion and pre-/post-prime and boost doses of a SARS-CoV-2 mRNA vaccine.

nsformed titers; ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05. For (C)–(E) and

< 0.01 *p < 0.05. Data are representative of two independent experiments.

been previously reported in Goel et al. (2021a).

Cell Reports 41, 111496, October 18, 2022 3



A B

C

V1 V2 V1 V2 V1 V2 V1 V2

50

200

800

3200

12800

51200

204800

819200

Ig
G

 a
nt

ib
od

y 
tit

er
 

(re
cip

ro
ca

l d
ilu

tio
n)

infection

OC43 HKU1 SARS-CoV 229E
V1 V2 V3 V4 V1 V2 V3 V4 V1 V2 V3 V4 V1 V2 V3 V4

50

200

800

3200

12800

51200

204800

819200

Ig
G

 a
nt

ib
od

y 
tit

er
 

(re
cip

ro
ca

l d
ilu

tio
n)

mRNA vaccination

OC43 HKU1 SARS-CoV 229E

** ** ****
***

***
****

**

**
*

****
****

****
****

****

in
fe

ct
io

n
pr

im
e 

va
cc

in
e

bo
os

t v
ac

ci
ne

in
fe

ct
io

n
pr

im
e 

va
cc

in
e

bo
os

t v
ac

ci
ne

in
fe

ct
io

n
pr

im
e 

va
cc

in
e

bo
os

t v
ac

ci
ne

in
fe

ct
io

n
pr

im
e 

va
cc

in
e

bo
os

t v
ac

ci
ne

0.1

1

10

100

1000

Ig
G

 a
nt

ib
od

y 
fo

ld
 c

ha
ng

e

FL-S fold change

OC43 HKU1 SARS-CoV 229E

***
***

****
****

**

Figure 2. Antibodies to the FL-S of other betacoronaviruses are boosted upon SARS-CoV-2 infection and after vaccination to a lesser extent

(A and B) ELISAs were completed to quantify levels of serum antibodies binding to the FL-S protein of other betacoronaviruses (OC43, HKU1, SARS-CoV) and

alphacoronavirus (229E) after SARS-CoV-2 infection (A) and mRNA vaccination (B). Paired t tests or one-way ANOVA of log2 transformed antibody titers;

****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05. Data are representative of two independent experiments.

(C) We calculated fold change in antibody titers against spike before and after seroconversion and pre-/post-prime and boost doses of a SARS-CoV-2 mRNA

vaccine. One-way ANOVA of antibody fold change; ****p < 0.0001, ***p < 0.001, **p < 0.01.
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increases in OC43 and HKU1 FL-S antibody titers following

SARS-CoV-2 mRNA vaccinations (Figure 2B), the magnitude of

OC43 and HKU1 FL-S antibody boosts were much lower

following vaccinations compared with infections for most indi-

viduals (Figure 2C). mRNA vaccination did not increase anti-

bodies reactive to the FL-S of the common 229E a-hCoV

(Figures 2B and 2C).

We also completed experiments to determine how SARS-

CoV-2 infections and mRNA vaccinations impact antibodies

reactive to the original SARS-CoV b-hCoV, since most humans

have not been exposed to this virus. There are several epitopes

in both the S1 and S2 spike domains that are conserved between

the original SARS-CoV and SARS-CoV-2, and others have

shown that antibodies specific to SARS-CoV are boosted upon

SARS-CoV-2 vaccination and infection (Aydillo et al., 2021;

Roltgen et al., 2022; Walls et al., 2020). Consistent with these

previous studies, antibodies reactive to the FL-S of the original

SARS-CoV increased following SARS-CoV-2 infection (Fig-
4 Cell Reports 41, 111496, October 18, 2022
ure 2A) and mRNA vaccination (Figure 2B). Antibodies reactive

to the FL-S of the original SARS-CoV increased more substan-

tially following infection relative to prime vaccination and were

at similar levels following booster vaccination (Figure 2C).

Wenext determined if antibodies elicitedbySARS-CoV-2 infec-

tions and vaccinations targeted the S1 or S2 domains of the spike

of theOC43,HKU1, andSARS-CoV b-hCoVs. Antibodies boosted

by infections and vaccinations primarily targeted the S2 domain of

the OC43 and HKU1 spike (Figures 3A and 3B), with infections

boosting S2 responses more effectively compared with vaccina-

tions (Figure 3D). Booster vaccinations did not affect OC43 and

HKU1S1orS2antibody levels (Figures3B–3D).Antibodieselicited

by infections and vaccinations targeted both the S1 and S2

domains of the original SARS-CoV (Figures 3A–3D). Antibodies

elicited by infections and primary vaccinations were more biased

toward the S2 domain of SARS-CoV, whereas booster vaccina-

tions elicited more antibodies reactive to the S1 domain of

SARS-CoV (Figures 3C and 3D).
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Figure 3. Antibodies reactive to the S2

domain of seasonal betacoronaviruses are

boosted upon SARS-CoV-2 infection and af-

ter vaccination to a lesser extent

(A and B) ELISAs were completed to determine the

levels of S1- and S2-specific antibodies against

spike of OC43, HKU1, and SARS-CoV after SARS-

CoV-2 infection (A) or SARS-CoV-2 mRNA vacci-

nation (B). Paired t tests or one-way ANOVA of

log2-transformed antibody titers; ****p < 0.0001,

***p < 0.001, **p < 0.01, *p < 0.05. Data are repre-

sentative of two independent experiments.

(C and D) Fold change of S1- and S2-specific an-

tibodies was calculated before and after serocon-

version and pre-/post-prime and boost mRNA

vaccines. One-way ANOVA of antibody fold

change; ****p < 0.0001, ***p < 0.001, **p < 0.01.
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SARS-CoV-2 infections elicit higher levels of original
antigenic sin antibodies compared with SARS-CoV-2
mRNA vaccinations
Wedevelopedamagnetic-bead-basedabsorptionassay todeter-

mine if OC43 and HKU1 FL-S antibodies elicited by SARS-CoV-2

infection and vaccination cross-react with SARS-CoV-2 FL-S.We

incubated serum samples with beads coupled with different FL-S

proteins, and then we depleted bead-reactive antibodies using a

magnetic column. We quantified antibody levels in serum ab-

sorbed with antigen-coupled beads to assess antibody cross-

reactivity. As a control, we quantified levels of influenza virus

hemagglutinin (HA) antibodies in these experiments, andwe found

that HA-reactive antibodies were not depleted with SARS-CoV-2,

OC43, HKU1, or 229E FL-S-labeled beads (Figure 4).

SARS-CoV-2 FL-S-reactive antibodies elicited by infection

were efficiently depleted with SARS-CoV-2 FL-S-coupled
C

beads but not with OC43, HKU1, or

229E FL-S-coupled beads (Figure 4).

OC43 FL-S-reactive antibodies boosted

by SARS-CoV-2 infection were efficie-

ntly depleted with OC43 FL-S-coupled

beads, but surprisingly, these antibodies

were not efficiently depleted with SARS-

CoV-2 FL-S-coupled beads (Figure 4).

Similar results were obtained when

we examined HKU1 antibodies. HKU1

FL-S-reactive antibodies boosted by

SARS-CoV-2 infection were efficiently

depleted with HKU1 FL-S-coupled be-

ads, but these antibodies were not

depleted with SARS-CoV-2 FL-S-cou-

pled beads (Figure 4). These results

are surprising since these OC43 and

HKU1 FL-S-reactive antibodies were

boosted upon SARS-CoV-2 infection.

These data suggest that OC43 and

HKU1 FL-S-reactive antibodies boosted

by SARS-CoV-2 infections do not bind

efficiently to SARS-CoV-2.
Similar to antibodies elicited by infection, SARS-CoV-2 FL-S-

reactive antibodies elicited by vaccination were efficiently

depleted with SARS-CoV-2 FL-S-coupled beads but not

OC43, HKU1, or 229E FL-S-coupled beads (Figure 4). OC43

and HKU1 FL-S-reactive antibodies elicited by SARS-CoV-2

vaccination were efficiently depleted with OC43 and HKU1

FL-S beads, respectively. Interestingly, OC43 FL-S-reactive an-

tibodies elicited by vaccination were partially depleted with

SARS-CoV-2 FL-S-coupled beads (Figure 4). Following SARS-

CoV-2 FL bead absorptions, vaccine-elicited OC43 FL-S-reac-

tive antibodies were at similar levels compared with what we

observed prior to SARS-CoV-2 mRNA vaccination (OC43 titer

at V1 after mock absorption was 7,785; OC43 titer at V2 after

mock absorption was 15,322; and OC43 titer at V2 after

SARS-CoV-2 absorption was 7,326). Therefore, unlike anti-

bodies elicited by infection, the OC43 FL-S-reactive antibodies
ell Reports 41, 111496, October 18, 2022 5
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Figure 4. Seasonal coronavirus spike anti-

bodies boosted by SARS-CoV-2 infection do

not bind effectively to the SARS-CoV-2 spike

Sera samples from 10 SARS-CoV-2-infected health

care workers and 10 SARS-CoV-2 mRNA-vacci-

nated participants were absorbed with SARS-CoV-

2, OC43, HKU1, and 229E spike-coupled beads or

mock-treated beads prior to antibody quantification

by ELISA. We determined reciprocal antibody titers

in samples before and after infection and pre-/post-

the first dose of an mRNA vaccine for SARS-CoV-2,

OC43, HKU1, 229E, and an unrelated antigen,

influenza hemagglutinin H1.
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elicited by vaccination were highly cross-reactive to SARS-CoV-

2. Taken together, our data suggest that SARS-CoV-2 infe-

ction elicits OC43 and HKU1 FL-S-reactive antibodies that

bind poorly to SARS-CoV-2 FL-S, while SARS-CoV-2 mRNA

vaccinations elicits a relatively lower level of these types of

antibodies.

DISCUSSION

SARS-CoV-2 infections (Cho et al., 2021; Goel et al., 2021a; Jal-

kanen et al., 2021; Roltgen et al., 2022; Turner et al., 2021) and

SARS-CoV-2 mRNA vaccinations (Liu et al., 2021; Widge et al.,

2021; Wu et al., 2021) elicit antibody responses against the spike

protein in most individuals. SARS-CoV-2 infections elicit more

variable levels of antibodies, which is influenced by age and dis-

ease severity (Roltgen and Boyd, 2021; Sasson et al., 2021;

Sette and Crotty, 2021; Takahashi et al., 2020). SARS-CoV-2-

reactive antibodies tend to be elevated in patients with severe

COVID-19 (Guthmiller et al., 2021; Kuri-Cervantes et al., 2020;

Legros et al., 2021; Mathew et al., 2020; Piccoli et al., 2020; Rob-

biani et al., 2020; Roltgen et al., 2020; Rydyznski Moderbacher

et al., 2020). Antibodies elicited by 2 doses of SARS-CoV-2

mRNA vaccines can be at similar levels as those induced by se-

vere COVID-19 (Roltgen et al., 2022). Disease severity may also

influence the breadth of SARS-CoV-2 antibody responses with

more extensive epitope spreading in individuals with severe

COVID-19 (Shrock et al., 2020). Studies have shown that anti-

bodies elicited by vaccination and infections differentially recog-

nize and neutralize SARS-CoV-2 variants (Chen et al., 2021; Cho

et al., 2021; Goel et al., 2021b; Greaney et al., 2021; Planas et al.,

2021; Stamatatos et al., 2021; Starr et al., 2021; Wang et al.,

2021a).

We found differences in OC43 and HKU1 spike binding be-

tween antibodies elicited by SARS-CoV-2 infections versus

mRNA vaccinations. SARS-CoV-2 infections elicited high

levels of antibodies that bound to the S2 region of the OC43

and HKU1 spike proteins; however, our absorption assays

demonstrated that these antibodies bound poorly to the

SARS-CoV-2 spike. Our data are consistent with a recent study

that showed that OC43-specific B cell clones that poorly recog-
6 Cell Reports 41, 111496, October 18, 2022
nize SARS-CoV-2 can be elicited in pa-

tients with severe COVID-19 (Aguilar-Bre-

tones et al., 2021). We found that SARS-

CoV-2 mRNA vaccinations elicited lower
levels of antibodies that reacted to the S2 region of the OC43

and HKU1 spike proteins. Unlike antibodies elicited by infec-

tions, these vaccine-elicited antibodies appeared to be more

cross-reactive and partially bound to both SARS-CoV-2 and

common b-hCoV spike proteins. Further studies will be required

to fully understand mechanisms that lead to different types of

antibody responses elicited by SARS-CoV-2 infections versus

vaccinations. It is possible that memory B cells elicited by prior

b-hCoV infections are recalled by both SARS-CoV-2 infections

and vaccinations and that long-lived germinal centers elicited

by mRNA vaccinations (Lederer et al., 2022; Roltgen et al.,

2022; Turner et al., 2021) are required to allow for somatic hyper-

mutations that promote the formation of cross-reactive S2 anti-

bodies that bind efficiently to the spike proteins of both b-hCoVs

and SARS-CoV-2. Consistent with this, a recent study found that

S2-specific B cells with a memory phenotype are quickly re-

cruited following primary immunization of humans (Brewer

et al., 2022).

Boosting of OC43 and HKU1 S2-reactive antibodies following

SARS-CoV-2 infection is consistent with Thomas Francis’ doc-

trine of original antigenic sin (Francis, 1960). Francis found that

antibodies elicited by influenza vaccines often bound strongly

to influenza virus strains that an individual was exposed to in

childhood, although it is not apparent if these recalled influenza

virus antibody responses typically occur at the expense of pro-

ducing de novo antibodies (as we reviewed here [Cobey and

Hensley, 2017]) The functional consequences of eliciting low-af-

finity S2-reactive antibodies following SARS-CoV-2 infections

are unclear. Our previous studies found no correlation between

OC43-reactive antibody induction and disease outcome

following SARS-CoV-2 infection (Anderson et al., 2021), but

recent studies have suggested that the recall of OC43-reactive

antibodies is associated with a compromised de novo SARS-

CoV-2 response in individuals with fatal COVID-19 (McNaughton

et al., 2022) and that recalled b-hCoV-specific immunoglobulin G

(IgG) antibodies are unable to neutralize SARS-CoV-2 (Aguilar-

Bretones et al., 2021). Further studies are required to determine

how the induction of different types of hCoV and SARS-CoV-2

antibodies affect disease outcome following SARS-CoV-2

infections.
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Limitations of the study
Our study has some limitations.We only analyzed samples from a

relatively small number (n = 10) of individuals with mild illness at

timepointsearly after infectionwhowere identified fromanexpan-

sivesero-monitoringprogram (Goumaetal., 2021).Thestrengthof

this infection cohort is thatweobtainedserumsamplesbeforeand

after SARS-CoV-2 infection from seronegative individuals who

had similar demographics to our cohort who received 2 doses of

aSARS-CoV-2mRNAvaccine. Future studies should further inter-

rogate the specificity of antibodies elicited bymore severe SARS-

CoV-2 infections, since it has been widely reported that antibody

levels are generally higher following severe COVID-19. Additional

studies also should track original antigenic sin antibodies elicited

by SARS-CoV-2 over longer periods of time. A recent study

demonstrated severe SARS-CoV-2 infections result in an early

recruitment of b-hCoV cross-reactive memory B cells followed

by the accumulation of SARS-CoV-2 RBD-specific memory B

cells that persist long term (Sokal et al., 2021). The duration and ki-

netics of recalled b-hCoV B cells after recovery is unclear and

should be addressed in future studies. It is worth noting that the

BNT162b2 vaccine employs a pre-fusion stabilized spike protein

in which 2 prolines are substituted into the S2 region. It is possible

that someof thedifferences thatwemeasured inour studyare due

to differences in the stability of spike expressed by the vaccine

relative to spike in SARS-CoV-2 virions. Finally, future studies

should evaluate if ‘‘breakthrough’’ SARS-CoV-2 infections and

additional doses of SARS-CoV-2mRNA vaccines elicit antibodies

that can bind to the spike of b-hCoVs.
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HKU1 S1 subunit protein Sino Biological Cat. 40021-V08H

HKU1 S2 subunit protein Sino Biological Cat. 40021-V08B

SARS-CoV spike protein Sino Biological Cat. 40634-V08B

SARS-CoV S1 subunit protein Sino Biological Cat. 40150-V08B1

SARS-CoV S2 subunit protein Sino Biological Cat. 40150-V08B3

229E spike protein Sino Biological Cat. 40605-V08B

IVR-190 H1N1 rHA Produced for this paper N/A

Experimental models: Cell lines

293T ATCC Cat. CRL-3216, RRID:CVCL_0063

293F Laboratory of Scott Hensley, University

of Pennsylvania, PA

Thermo Fisher cat. R79007

VeroE6/TMPRSS2 Laboratory of Stefan Pohlman, German

Primate Center, Leibniz Institute for

Primate Research

Hoffmann et al. (2020)

Recombinant DNA

Plasmid: pCAGGS SARS-CoV-2 spike Laboratory of Florian Krammer,

Mt. Sinai, NY

Amanat et al. (2020)

Plasmid: pCG1 SARS-2 S Laboratory of Stefan Pohlman, German

Primate Center, Leibniz Institute for

Primate Research

Hoffmann et al. (2020)

Plasmid: OC43 rS1 Laboratory of Scott Hensley, University

of Pennsylvania, PA

Anderson et al. (2021)

Plasmid: OC43 rS2 Laboratory of Scott Hensley, University

of Pennsylvania, PA

Anderson et al., (2021)

Plasmid: mAb CR3022 HC Laboratory of Ian Wilson, Scripps

Research Institute, CA

Yuan et al. (2020)

(Continued on next page)
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Plasmid: mAb CR3022 LC Laboratory of Ian Wilson, Scripps

Research Institute, CA

Yuan et al. (2020)

Plasmid: mAb CR9114 HC Laboratory of Ian Wilson, Scripps

Research Institute, CA

Dreyfus et al. (2012)

Plasmid: mAb CR9114 LC Laboratory of Ian Wilson, Scripps

Research Institute, CA

Dreyfus et al. (2012)

Software and algorithms

Prism8 GraphPad Software www.graphpad.com/scientific-

software/prism/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Scott E.

Hensley (hensley@pennmedicine.upenn.edu).

Materials availability
All unique reagents generated in this study will be available from the lead contact upon reasonable request.

Data and code availability
d The published paper includes all data generated or analyzed during the study.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Samples from human Subjects
The infection cohort described in this report consists of health care workers within the University of Pennsylvania Healthcare System

who were recruited into a SARS-CoV-2 sero-monitoring study that included biweekly blood draws as previously described (Gouma

et al., 2021). A nasal pharyngeal (NP) swab was collected from all healthcare workers who tested positive for SARS-CoV-2 IgG and or

IgM antibodies or who were experiencing COVID-like symptoms during the study period in 2020. NP swabs were PCR tested for the

presence of SARS-CoV-2 viral RNA. Seroconverted health care workers with PCR-confirmed SARS-CoV-2 infection (n = 10 adults

R18 years old) were included in this analysis. Age and sex of participants of this study are reported in Table S1. This study was

approved by the Institutional Review Board of the University of Pennsylvania under protocol 842847.

The vaccination cohort described in this report consists of participants (n = 23 adults R18 years old) who enrolled in a study at

the University of Pennsylvania that included blood draws before and after two vaccination doses with an mRNA-based COVID-19

vaccine as previously described (Goel et al., 2021a). Whole blood was collected from participants who provided proof of vacci-

nation with Pfizer (BNT162b2) mRNA vaccines. Samples were collected at 4 timepoints: 1–2 weeks before vaccination (baseline)

(visit 1; V1), 1–2 weeks post-primary immunization (visit 2; V2), the day of or day before booster immunization (visit 3; V3), and 1–

2 weeks post-booster immunization (visit 4; V4). Only participants without prior SARS-CoV-2 exposure were included in this

report. Plasma and PBMCs were isolated from whole blood for downstream assays. Age and sex of participants of this study

are reported in Table S1. This study was approved by the Institutional Review Board of the University of Pennsylvania under pro-

tocol 844642.

All sera and plasma samples were heat-inactivated in a 56�C water bath for 1 h prior to serological testing. All samples were

collected after obtaining informed consent and studies were approved by the University of Pennsylvania Institutional Review

Board.

Cell lines
293F cells were from Thermo fisher (Thermo Fisher cat. R79007). 293T cells were from ATCC (ATCC cat. CRL-3216, RRID:

CVCL_0063). VeroE6/TMPRSS2 cells were a gift from Stefan Pohlman (German Primate Center, Leibniz Institute for Primate

Research) as described previously (Hoffmann et al., 2020). All cell lines were cultured using manufacturer’s guidelines and used

as described in method details below.
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METHOD DETAILS

Proteins for serological studies
SARS-CoV-2 full length spike (FL-S) protein was purified by Ni-NTA resin from 293F cells transfected with a plasmid that encodes the

FL-S (A gift from Florian Krammer, Icahn School of Medicine at Mt. Sinai, New York City NY) (Amanat et al., 2020). S1 and S2 subunits

of the SARS-CoV-2 spike were purchased from Acro Biosystems (ACROBiosystems, Newark, DE; cat. S1N-C52H3, and S2N-

C52H5, respectively) and reconstituted in 200 mL Dulbecco’s phosphate buffered saline (DPBS) to a final concentration of 500 mg/

mL. OC43 FL-S was also purchased (Sino Biological, Wayne PA; cat. 40588-V08B) and reconstituted in DPBS. OC43 subunit and

H1N1 rHA (IVR-190) proteins were purified in our laboratory as previously described (Anderson et al., 2021; Whittle et al., 2014).

Briefly, mammalian expression plasmids encoding the S1 (amino acids 15–760) or S2 (amino acids 766–1305) domains of the

OC43 spike protein were cloned with an N-terminal OC43 S signal peptide, and a C-terminus encoding a Factor Xa cleavage site,

a trimerization domain from T4 fibritin (FoldOn), a site-specific biotinylation sequence (AviTag), and a hexa-histidine purification

tag. A mammalian expression plasmid encoded a codon-optimized H1N1 rHA (IVR-190) followed by a FoldOn trimerization domain,

an AviTag, and a hexa-histidine tag at the C-terminus in place of the transmembrane domain and cytoplasmic tail of HA. 293F cells

were transfected with S1, S2, or rHA encoding plasmids and proteins were purified from cell culture supernatant 6 days later with Ni-

NTA resin (Qiagen, Hilden, Germany). Proteins were concentrated and buffer exchanged into PBS with Amicon centrifugal filters

(Millipore, Burlington, MA) prior to quantification on a spectrophotometer (NanoDrop, Thermo Fisher Scientific, Waltham, MA).

HKU1 FL-S, S1, S2, SARS-CoV FL-S, S1, S2, and 229E FL-S were purchased (Sino Biological, Wayne PA; cat. 40606-V08B,

40021-V08H, 40021-V08B, 40634-V08B, 40150-V08B1, 40150-V08B3, and 40605-V08B, respectively).

ELISAs
Antibodies reactive to SARS-CoV-2, OC43, HKU1, SARS-CoV, and 229E antigens were quantified by enzyme-linked immunosorbent

assays (ELISA) as previously described (Anderson et al., 2021; Flannery et al., 2020). Absorbed sera samples were also tested for the

presence of influenza virus H1 HA antibodies. In brief, ELISA plates (Thermo Fisher Scientific, Waltham, MA: cat. 14-245-153) were

coated overnight at 4�C with either 2 mg/mL SARS-CoV-2, SARS-CoV, or influenza rHA antigens, 1.5 mg/mL OC43, HKU1, or 229E

antigens, or Dulbecco’s phosphate buffered saline (DPBS) to control for background antibody binding. Sera was heat-inactivated in a

56�C water bath for 1 h prior to serial dilutions starting at 1:50 in dilution buffer. ELISA plates were blocked for 1 h before 50 mL of

diluted sera was added and plates were incubated for 2 h on an orbital shaker. ELISA plates were washed 3 times with 13 PBS sup-

plementedwith 2%Tween (PBS-T) before the addition of goat anti-human IgG conjugated to horseradish peroxidase secondary anti-

body at a 1:5000 dilution (Jackson ImmunoResearch Laboratories, West Grove, PA: cat. 109-036-098). ELISA plates were developed

with TMB substrate, and the reactions were stopped after 5 min by the addition of 250 mM hydrochloric acid prior to reading on a

SpectraMax 190microplate reader (Molecular Devices, San Jose, CA). Serum antibody titers were obtained from a standard curve of

either serially diluted monoclonal antibody (CR3022 for SARS-CoV-2 and SARS-CoV (Yuan et al., 2020) or CR9114 for influenza virus

HA (Dreyfus et al., 2012) starting at 0.5mg/mL) or serially diluted pooled serum (for OC43, HKU1, and 229E ELISAs). Standard curves

were included on every plate to control for plate-to-plate variation. Antibody titers for each sample were measured in at least two

technical replicates performed on separate days.

Quantification of serum SARS-CoV-2 pseudotype neutralizing antibody titers
The ability of polyclonal sera to neutralize SARS-CoV-2 was measured using a pseudo-typed VSV neutralization assay as previously

described (Anderson et al., 2021; Goel et al., 2021a). Pseudotyped vesicular stomatitis virus (VSV) virions with SARS-CoV-2 Spike

from wildtype D614G SARS-CoV-2 were produced through transfection (Hoffmann et al., 2020) of 293T and harvested by centrifu-

gation prior to being aliquoted and stored at �80�C. Heat inactivated serum samples were serially diluted 2-fold and mixed with 50–

200 focus forming units/well of SARS-CoV-2 VSV pseudotype virus and 600 ng/mL of 1E9F9, a mouse anti-VSV Indiana G (Absolute

Antibody, Oxford, UK: cat. Ab01402–2.0). Approximately 24 h later, cells were washed, fixed with 4% paraformaldehyde, and foci

were visualized and enumerated on an S6 FluoroSpot Analyzer (CTL, Shaker Heights OH). Serum SARS-CoV-2 neutralizing anti-

bodies were measured as the greatest serum dilution at which pseudotype virus focus count was reduced in Vero E6 cells stably

expressing TMPRSS2 by at least 50% (FRNT50) relative to control cells in the absence of human serum. FRNT50 titers for each

sample were measured in at least two technical replicates performed on separate days. Fold-change in neutralization titers were

calculated before and after infection and vaccination with an mRNA vaccine.

Carboxyl magnetic bead absorptions
SARS-CoV-2, OC43, HKU1, and 229E FL-S antigens were coupled to carboxyl magnetic beads (RayBiotech, Peachtree Corners,

GA; cat. 801-114-2) at a concentration of 35 mg antigen/100 mL magnetic beads. Mock beads were prepared by the addition of

DPBS in place of antigen. Briefly, 175 mg of diluted antigen or PBS (for mock) was added to 500 mL of magnetic beads and themixture

was incubated for 2 h at 4�C with constant mixing. The unbound fractions were removed using a magnetic stand and conjugated

beads were quenched by the addition of 300 mL 50 mM Tris, pH 7.4 prior to a 15-min incubation at room temperature with constant

mixing. Quenching buffer was removed using a magnetic stand and the conjugated beads were washed 4 times with 300 mL wash
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buffer (DPBS supplemented with 0.1% BSA and 0.05% Tween-20). After the final wash, beads were resuspended in 300 mL wash

buffer and were stored at 4�C prior to use in serum absorption assays.

Sera samples were absorbed with beads coupled to SARS-CoV-2, OC43, HKU1, and 229E FL-S, and mock beads. Sera samples

were diluted in PBS to a final dilution of 1:25. Next, 20 mL of antigen coupled-magnetic beads or mock-treated beads were added to

100 mL of diluted sera and the mixtures were incubated for 1 h at room temperature on a plate mixer at 800rpm. Fractions containing

the unabsorbed antibodies were removed using a 96-well plate magnetic stand. Unabsorbed fractions were diluted in buffer (DPBS

supplemented with 1% milk and 0.1% Tween-20) prior to running in ELISA.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using Prism version 8 (GraphPad Software, San Diego CA). Reciprocal serum dilution antibody

titers were log2 transformed for statistical analysis. ELISA antibody titers below the limit of detection (LOD) were set to a reciprocal

titer equal to half the LOD. Log2 transformed antibody titers were compared with paired and unpaired t-tests, and one-way ANOVAs

with Tukey’s multiple comparisons. Statistical significance was defined as a p-value <0.05.
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  Infection  Vaccination p-value 
Total (N) 10 23   

Median Age in years [min-max] 35 [25-49] 38 [23-67] 0.8735 

Number of Female [%] 8 [80%] 15 [65%] 0.6822 

 
Table S1. Age and sex of individuals in this study. Related to the Figures 1-4 and the STAR Methods.  
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