1 Supplementary information

2 Table S1 List of strains

Strain	Genotype	Source
<i>E. coli</i> DH5α	Cloning strain (the genotype: F ⁻	Invitrogen
	Φ80/acZΔM15 Δ(lacZYA-argF) U169 recA1	
	endA1 hsdR17(rk ⁻ , mk ⁺) phoA supE44 thi-1	
	gyrA96 relA1 λ ⁻	
E. coli	Protein expression strain	Invitrogen
BL21(DE3)pLysS	F-ompT hsdSB (rB-, mB-) galdcmrne131	
	(DE3) carrying pLysS (Cam ^r)	
M. smegmatis	<i>ept-1</i> ; high-frequency transformation	(1)
mc ² 155	mutant of <i>M. smegmatis</i> ATCC607	
M. tuberculosis	APD1 AnonCD	(2)
mc ² 6230		
M. smegmatis ∆rnhA	Derivative of mc ² 155 carrying inactivated	This study .
	allele of <i>rnhA</i> (<i>MSMEG_5562</i>) marked	
	with Kan ^r	
M. smegmatis ΔrnhC	Derivative of mc ² 155 carrying inactivated	This study
	allele of <i>rnhC</i> (<i>MSMEG_4305</i>) marked with	
	Hyg ^r	
M. smegmatis ∆rnhA	Ms $\Delta rnhA$ complemented with prnhA;	This study
p <i>rnhA</i>	Kanr, Hygr	
M. smegmatis ΔrnhC	Ms ΔrnhC complemented with p <i>Rv2228c</i>	This study
prnhC		
M. smegmatis ΔrnhC	<i>Ms</i> Δ <i>rnhC</i> containing pMV306G13+	This study
pMV306G13+	LuxABCDE chromosomally integrated;	
LuxABCDE	Kan ^r	
M. smegmatis	<i>M. smegmatis</i> mc ² 155 containing	This study
mc ² 155	pMV306G13+ LuxABCDE chromosomally	
pMV306G13+	integrated; Kan ^r	
LuxABCDE		

4 Table S2 List of plasmids

	Characteristic	Reference
pMAL-C2	Expression vector with IPTG inducible expression of the	NEB
	maltose binding protein as affinity tag and Factor Xa	
	cleavage site upstream of the multiple cloning site; Amp ^r	
pAAZ-Rv2228c	pMAL-C2 plasmid modified by replacement of factor Xa site	This study
	by His6-tag and 3C protease cleavage site; Rv2228c cloned	
	in-frame for expression.	
pMV306G13+	Mycobacterial integrating vector containing the <i>luxABCDE</i>	(3)
LuxABCDE	operon from <i>Photorhabdus luminescens,</i> Kan ^r	
pOLYG	pAL5000-based multicopy E. coli–Mycobacterium shuttle	(4)
	vector; Hyg	
pEJ414	Integrating plasmid containing promoterless <i>lacZ</i> gene, Km ^r	(5)
рВВК	$p32\Delta L$ with promoter and start codon of <i>M. tuberculosis</i>	(6)
	<i>fbpA</i> cloned as a 241 bp <i>Xba</i> I– <i>Bam</i> HI fragment with <i>kmr</i> gene	
	replacing hyg to give Kanamycin resistance.	
prnhA	pOLYG containing <i>rnhA</i> with 350 bp promoter region	This study
	cloned as a <i>Bgl</i> II/ <i>Hin</i> dIII fragment.	
p32GoriM	p32 Δ L- <i>nuc</i> with 0.8 kb <i>aacC1</i> gene replacing <i>hyg</i> to give	This study
	gentamicin resistance.	
p <i>Rv2228c</i>	Rv2228c cloned in-frame as a BamHI/EcoR1 fragment to	This study
	the p32ΔL promoter in p32GoriM	
pAAZ- <i>TopA</i>	pEJ414 containing 530bp upstream and 30bp coding	This study
	sequence of <i>MSMEI_6157</i> fused in frame to <i>lacZ</i>	
pAAZ- <i>GyrBA</i>	pEJ414 containing 231bp upstream and 1000bp coding	This study
	sequence of MSMEI_0007 fused in frame to lacZ	

Table S3. List of HIV RNase HI inhibitors and their activity against *M. tuberculosis* RNase HI at
100 μM (Active: compounds that show a reduction in the activity *M. tuberculosis* RNase HI at

- 9 100 μM. Inactive: compounds that show no reduction in the activity of *M. tuberculosis* at
- 10 100 μM.)

compound	Activity against <i>M. tuberculosis</i> RNase HI								
NSC353720	Active								
NSC600285	Active								
NSC600286	Active								
NSC353681	Active								
NSC14543	Inactive								
NSC20410	Inactive								
NSC143101	Active								
NSC35676	Inactive								
NSC45382	Inactive								
NSC56351	Inactive								
NSC73300	Inactive								
NSC18806	Active								
NSC112200	Inactive								
NSC130796	Inactive								
NSC133457	Inactive								
NSC228148	Inactive								
NSC605657	Inactive								
NSC610984	Inactive								
NSC99726	Active								
NSC80693	Active								
NSC668394	Inactive								
NSC31892	Inactive								
NSC727447	Inactive								
NSC51535	Active								
NSC117949	Active								
NSC128437	Inactive								

NSC204474	Inactive
NSC203867	Inactive
NSC99722	Inactive
NSC657715	Inactive
NSC613575	Inactive
NSC205497	Inactive
NSC99727	Inactive

pKanR	421	GATCGT	GGTCT/	۹CGA	GGC	CACA	CTC	CAGT	GCG	icgo	CAC	STO	GGC	CAT	СТС	GCO	igaa	GGG	CGC	480
										111					111					
pHIGH	2924	GATCGT	GGTCT/	ACGA	GGC	CACA	ACT (CAGT	GCO	ĊĠĊ	CAC	STO	GGC	CAT	CTC	GCO	igaa	GGG		2980
pKanR	481	AGCAGC	GCGCAG	CGGC	GGC	GAGC		\GTT	GCG	CGG	GCGC	CGC.	ΑΑΑ	GTC	CGC	GTO	AGC	CAT	GGA	540
•						1111			111	111				111	111	111				
pHIGH	2981	AGCAGC	GCGCAG	CGGC	ĠĠĊ	GAGC		ĠŤĬ	GCO	ĊĠĊ	SCGO	GC	AAA	GTC	:cgc	GTO	AGC	ĊĂŤ	GGA	3040
•																				
			м					s	D	G	Y	s	D	G	Y	N	R	0	Р	
pKanR	541	GGCATT	GCTAT	G			4	AGCO	JACG	GCT	AC/	٩GC	GAC	GGC	TAC	AAC	CGG	CĂG	CCG	588
				I						111						111				
pHIGH	3041	GGCATT	GCTAT	GAGC	GAC	GGCT	ACA	GCC	iaco	GCT	TAC/	AGC	GAC	GGC	TAC	AAC	CGG	CAG	CCG	3100
•		re	рВ: м	S	D	G	Y	s	D	G	γ	S	D	G	Y	Ν	R	0	Р	
											-							-		

13

FIG S1 Nucleotide sequence of the C-terminus of *repA* of pHIGH101 (pHIGH) showing position of the 3 bp deletion reported by Bourn et al which confers 8-fold higher copy number, compared to the 12 bp deletion detected in this study in *repB* on the kanamycin-resistant vector backbone (pKanR). The stop codon of *repA* overlaps with the start codon of *repB*. Arrows indicate three identical direct repeats that could favour a polymerase slippage mechanism of deletion. The amino acid sequence of RepB is indicated next to the coding sequence in each case.

20

23 References

- Snapper SB, Melton RE, Mustafa S, Kieser T, Jacobs WR, Jr. 1990. Isolation and characterization of efficient plasmid transformation mutants of *Mycobacterium smegmatis*. Mol. Microbiol **4**:1911-9.
- 2. Sambandamurthy VK, Derrick SC, Hsu T, Chen B, Larsen MH, Jalapathy KV, Chen M, 27 28 Kim J, Porcelli SA, Chan J, Morris SL, Jacobs WR, Jr. 2006. Mycobacterium tuberculosis 29 Δ RD1 Δ panCD: a safe and limited replicating mutant strain that protects 30 immunocompetent and immunocompromised mice against experimental tuberculosis. Vaccine 24:6309-20. 31
- Andreu N, Zelmer A, Fletcher T, Elkington PT, Ward TH, Ripoll J, Parish T, Bancroft GJ,
 Schaible U, Robertson BD, Wiles S. 2010. Optimisation of bioluminescent reporters for
 use with mycobacteria. PLoS One 5:e10777.
- Ó Gaora P, Barnini S, Hayward C, Filley E, Rook G, Young D, Thole J. 1997. Mycobacteria
 as Immunogens: Development of Expression Vectors for Use in Multiple
 Mycobacterial Species. Med. Princ. Pract. 6:91-96.
- Papavinasasundaram KG, Anderson C, Brooks PC, Thomas NA, Movahedzadeh F,
 Jenner PJ, Colston MJ, Davis EO. 2001. Slow induction of RecA by DNA damage in
 Mycobacterium tuberculosis. Microbiology **147**:3271-3279.
- 41 6. Downing KJ, McAdam RA, Mizrahi V. 1999. *Staphylococcus aureus* nuclease is a useful
 42 secretion reporter for mycobacteria. Gene **239**:293-9.
- 43

44