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Participants 
Experiment 2 
Participants were recruited using the internal database of the Max Planck Institute for 
Empirical Aesthetics (Frankfurt, Germany), with the requirement that they were at least 
18 years old and had a basic understanding of English. All participants provided 
consent in accordance with the “Approval of Research Projects Using Standard 
Procedures” protocol of the Max Planck Society Ethics Council (revised version 2017). 
The experiment took about 1 hour and the reimbursement was 14 €. A total of 20 
participants (10 female, 10 male), aged 20-59 (M = 30.05, SD = 11.88) took part in the 
experiment 
 
 
Experiment 3 
All participants were recruited online using Amazon Mechanical Turk. All online 
participants provided consent in accordance with the Max Planck Society Ethics 
Council approved protocol (application 2018-38). We asked for five requirements in 
order to take part in the experiment: (i) participants must be at least 18 years old, (ii) 
participants must be fluent English speakers, (iii) participants must use a laptop to 
complete the experiment (no desktop computers allowed), (iv) participants must use 
an up-to-date Google Chrome browser (due to compatibility with PsyNet), and (iv) 
participants must be sitting in a quiet environment (to ensure that their tapping could 
be recorded precisely). In addition, to help recruit reliable participants, we only 
recruited participants with a 95% or higher approval rate on previous tasks on Amazon 
Mechanical Turk. Participants were paid at a US $9/hour rate according to how much 
of the experiment they completed (e.g., if participants failed a pre-screening task and 
left the experiment early, they were still paid proportionally for their time). The complete 
experiment took approximately 20-25 minutes.  

A total of 226 participants provided valid tapping data in at least one trial, having 
already excluded all those who failed the pre-screening tests or the practice phase. 
For those participants who reported demographic information, ages ranged from 19 to 
77 (M = 35.9, SD = 11.9), and 46% identified as female (54% as male).  
 
 
Implementation 
We implemented REPP as a Python package. In all experiments, REPP was integrated 
into our in-house system to perform behavioral experiments - PsyNet (Harrison et al. 
2020). This system is based on the Dallinger framework1 for hosting and deploying 
experiments. Participants interact with the experiment via a web browser, which 
communicates with a back-end Python server cluster responsible for organizing the 
experiment and communicating with REPP. This cluster can run using a local 
webserver (for in-lab experiments) or by a cloud Platform as a Service such as Heroku 
(for online experiments). Currently, PsyNet is only supported by Google Chrome.  
 
 

 
1 https://github.com/Dallinger/Dallinger  
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Procedure 
Participants were informed that the experiment can only be performed using laptop 
speakers. We then used a volume calibration test so participants can adjust the volume 
of the speakers to a level that is sufficiently good to be detected by the microphone. In 
the volume calibration page, we play an audio stimulus through the speakers and 
record the signal with the built-in microphone, using a sound meter to visually indicate 
whether the level was appropriate or not (see Figure S1 for a screenshot of the volume 
test). Participants were then instructed about how to tap on their laptop in a way that 
is compatible with REPP and also feels natural to them: “Tap on the surface of your 
laptop with your index finger (e.g., do not tap on the keyboard or tracking pad, and do 
not tap using your nails or any object)”. Here we used a tapping calibration test to ask 
participants to practice tapping in the required way and test if the microphone could 
detect their signal, also using a sound meter to give feedback visually (see Figure S1 
for a screenshot of the tapping test). In cases where the signal was too low, participants 
were indicated to tap in different locations of the laptop or try to tap louder.   
 
Pre-screening Tests 
When running experiments online, it is important to ensure participants follow the 
instructions and perform the task as required (e.g., Clifford & Jerit, 2014; Crump et al., 
2013). In addition, REPP has several technical requirements that participants must 
meet in order to provide valid tapping data. To address this, we used two pre-screening 
tests in the online experiments reported in this paper (Experiment 3): an attention test 
and a recording test. 
 

Attention Test. The attention test was used to determine whether participants 
were paying attention to the instructions or not (see Figure S2 for a screenshot of the 
attention test). The test consisted of two pages that could only be passed if a participant 
carefully read the instructions. The attention test was presented at the beginning of the 
experiment after asking for general demographic information. In our implementation, 
participants who failed the first page in the attention test were excluded from the 
experiment, whereas the second page was used for post-hoc quality assessment (we 
did not exclude participants based on failure to answer correctly in the second page).  

 
Recording Test. The recording test was used to determine whether 

participants were using hardware and software that did not meet the technical 
requirements of REPP, such as malfunctioning speakers or microphones, or the use 
of strong noise-cancellation technologies (see Figure S3 for a screenshot of the 
recording test). The recording test was used at the beginning of the experiment, after 
providing general instructions with the technical requirements of the experiment. Thus, 
this test can also be used as an attention test, as participants must follow the given 
instructions (e.g., accept the enabling of the microphone in the browser, unplug any 
headphones or wireless devices, turn up the volume of the computer) in order to 
successfully pass the test. For example, bots that click randomly on the screen would 
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naturally not be able to complete these steps. The recording test consisted of a 
recording page that played a test stimulus with six marker sounds. The markers were 
recorded with the laptop’s microphone and analyzed using the signal processing 
pipeline. During the marker playback time, participants were supposed to remain silent 
(not respond). In our implementation, we used two recording trials. Those cases in 
which all marker sounds could not be detected in one of the two recording trials were 
excluded from the experiment.  

 

 
Figure S1. Volume and tapping calibration tests using sound meters to provide visual feedback 
 

 
Figure S2. Attention test to determine whether participants follow the instruction in online 
experiments 
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Figure S3. Recording test to determine the performance of REPP in online experiments 
 
 
Practice Phase 
In Experiment 2 (laboratory), the practice phase consisted of two trials of isochronous 
tapping to a metronome sound (each trial was 20 seconds long, one with IOIs of 800 
ms and the other with IOIs of 600 ms). Participants performed a practice phase the 
first time they used each method, one for REPP and one for the independent in-lab 
method. A researcher was present during the practice phase to provide feedback on 
participants' practice trials. 

In Experiment 3 (online), the practice phase consisted of four trials of 
isochronous tapping to a metronome sound (two with IOIs of 800 ms and two with IOIs 
of 600 ms, 20 seconds long each). Moreover, the recording of the first practice trial 
was analyzed in real time to provide feedback based on the quality of the audio and 
tapping signal (using the Failing Criteria described below). If the signal of the recording 
did not pass the failing criteria, participants were reminded of the instructions and were 
able to continue with the other practice trials. At the end of the practice phase, all trials 
were analyzed online using the same procedure and participants who failed two or 
more trials were excluded from the experiment. All participants were compensated 
proportionally to the time spent in the experiment, even if they failed the screening 
tests or practice phase. Figure S4 shows an example of the instructions and tapping 
trial given in the practice phase of Experiment 3. In each trial, to help participants only 
tap when the stimulus was played (and remain silent when the marker sounds were 
presented), we visually indicated on the screen when to start and when to stop tapping. 
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Figure S4. Instructions and tapping trial in the practice phase 
 
 
Beat Synchronization Task 
In the beat synchronization task (Experiment 2 and 3), participants were instructed to 
tap in time to with the beat until the music ends (Figure S5 shows a screenshot of the 
instructions for the beat synchronization task). As commonly used in this type of 
paradigm, to help participants find the beat, a metronome marking the beats in the first 
11 seconds of the clip was added to the stimulus. To motivate participants to continue 
tapping accurately until the end of the clip we also added three more metronome beats 
to the end of the recording. Thus, to calculate participants' tapping performance in this 
task, we only analyzed the stimulus onsets when the metronome was not played. The 
materials of the beat synchronization task consisted of four 30-second-long excerpts 
of music from two distinct music genres with different style, tempo, and tapping 
difficulty: track 1 (“You're the First, the Last, My Everything” by Barry White) and track 
2 (“Le Sacre du Printemps” by Stravinsky). The presentation order was fixed, namely: 
track 1, track 2, track 1, and track 2. The musical excerpts were taken from the MIREX 
2006 Audio Beat Tracking database, which also provides annotations for beat locations 
given by listeners who tapped along to the music (McKinney et al., 2017). Based on 
these annotations, we identified the target beat locations from those consistently 
produced by the annotators using the following procedure: First, we performed kernel 
density estimation with a kernel width of 20 ms to find the mode of participants' 
responses in any given time. Second, we locate the peaks of the probability density to 
find all onset locations in the music by identifying local maxima in the kernel density 
function.  
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Figure S5. Instructions for the beat synchronization task 
 
 
Failing Criteria 
When measuring SMS in online experiments, it is crucial to determine whether 
participants are tapping in the required way (e.g., following the instructions) and 
whether any technical constraints may preclude the recording of their signal, such as 
cases with poor internet connection, malfunctioning hardware, or strong noise-
cancellation technologies. To identify and exclude these cases in the online 
experiments reported in this paper (Experiment 3), we used two-step failing criteria. 
First, since REPP cannot work efficiently unless it detects all marker sounds with high 
precision, we failed all trials in which we could not detect all marker sounds included 
in the stimulus preparation step, or where the markers were displaced relative to each 
other for more than 15 ms. Second, we failed all trials where the percentage of detected 
taps (i.e., the number of detected tapping onsets out of the total number of stimulus 
onsets) was less than 50% or more than 200%. This measure is useful to deter 
participants from not responding at all or from tapping at an extremely fast rate, 
irrespective of the audio stimuli. Importantly, none of these criteria exclude trials based 
on actual tapping performance, but only based on whether the signal can be correctly 
recorded and processed by REPP and whether participants produced a minimally/ 
maximally acceptable number of tapping responses.  

In Experiment 3 (online), the failing criteria was used in the practice phase to 
exclude participants who did not provide at least two valid tapping trials. We also used 
the failing criteria in the main tapping tasks to fail individual tapping trials. Moreover, 
as a data cleaning step, we removed from the analysis all tapping trials where the 
markers were displaced relative to each other for more than 5 ms, ensuring that we 
only included cases with nearly optimal latency and jitter.  
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Custom Markers 
REPP relies on custom markers located at the beginning and end of each stimulus to 
unambiguously identify the position of the tapping and stimulus onsets in the audio 
recording. We extensively piloted the parameters to generate and extract the marker 
onsets and found the following to work most efficiently across computer models and 
brands. 
 

Generation procedure. The marker sound was created with a combination of 
a filtered white noise (50%) and pure tones (50%), namely: 
 

Eq. S1 
marker_sound(t) = 0.5*Gmarker_range(t) + 0.5*Fmean(marker_range)(t), 

  
Where, marker_range=(marker_range(1), marker_range(2)) represents the 

frequency range of the resulting sound marker_sound(t);  Gmarker_range(t) refers to white 
Gaussian noise that was bandpass filtered with a filter with cutoff frequencies of 
marker_range(1) and marker_range(2), and Fmean(marker_range)(t) refers to the pure tone 
with a frequency of mean(marker_range) defined as the geometric mean of the two 
frequencies in marker_range, namely:  

 
Eq. S2 
mean(marker_range) = sqrt(marker_range(1)*marker_range(2)) 

  
We applied a linear attack and release of 2 ms and a total duration of 15 ms 

providing a crisp onset. The frequency range for the markers (marker_range) was set 
between 200 and 340 Hz and the markers were max normalized and scaled by 90%. 

We then positioned three marker sounds at the beginning of the stimulus and 
three at the end. The marker sounds were positioned with IOIs at 0, 280, and 230 ms. 
To create the final target stimulus, we then shift the corresponding list of stimulus 
onsets to take into account the added markers (see Figure S6). In particular, we shift 
the stimulus onsets by using a time window of 2 seconds between the three markers 
at the start and the beginning of the stimulus, and a time window of 3 seconds between 
the three last markers and the end of the stimulus. 
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Figure S6. Diagram of the procedure to shift the stimulus onsets according to the marker onsets 
 

The initial markers serve two main purposes: to indicate participants that the 
trial is about to start, and to align the stimulus onsets with the tapping onsets. In our 
technology, we only use the first marker onset to conduct the alignment procedure, but 
the code could be easily extended to use other alternatives (for example using all 
markers to provide increased accuracy). In particular, we calculate the time of each 
stimulus and tapping onset relative to the first marker. The markers at the end are used 
to notify participants that the trial is finished and calculate key metrics to assess the 
performance of our technology (see Failing Criteria). Specifically, (1) we assess the 
total number of detected markers, ensuring we only accept trials where the six markers 
are detected, and (2) calculate the markers’ detection error, a metric that can be used 
to assess the timing accuracy of our technology, namely: 

 
Eq. S3 
max_marker_error = max(abs(detected_marker_onsets - known_marker_onsets)), 

  
where known_marker_onsets refer to the known list of marker onsets used to 

generate the markers, and detected_marker_onsets refer to the list of detected marker 
onsets after the onset extraction and cleaning procedure. Thus, by only accepting trials 
where the markers’ error is below a certain threshold (e.g., 5 or 10 ms), one can make 
sure the timing accuracy of the technology remains high in all trials. 

 
Extraction procedure. The markers’ extraction procedure consists of three 

steps: channel separation, cleaning heuristic, and onset extraction. In the first step, we 
extract the markers’ channel from the raw recording by using a bandpass filter with 
cut-off frequencies set to the markers’ range (200-340 Hz). To extract the envelope of 
the sound, we max normalize the markers’ channel and perform a standard envelope 
extraction procedure (e.g., McDermott & Simoncelli, 2011).  

A cleaning heuristic is then used to improve the resulting signal. Although this 
heuristic is not essential, it helps increase the robustness of the process with noisy 
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recording or with laptops using strong noise cancellation technologies. This heuristic 
relies on a test channel selected to be one octave below the markers’ range (100-170 
Hz), so it uses part of the spectrum that is not used by the marker channel but is close 
to it.  

We first take the extracted markers and test channels and perform envelope 
extraction by computing the stimulus maximum in different bins, determined by a 
“cleaning bin window” parameter set to 100 ms. Second, we compute the ratio between 
the two signals in all bins. Namely: 

 
Eq. S4 
cleaning_ratio(t) = marker_channel(t) / test_channel(t) 

 
Since this ratio could have extreme values (for example when test_channel(t) 

is close to zero), we compute a trimmed ratio defined as follows: 
 
Eq. S5 
trimmed_cleaning_ratio(t) = min(max(cleaning_ratio(t), 1/max_cleaning_ratio), 
max_cleaning_ratio) 
 
Intuitively, this ratio is large exactly where there is more energy in the markers 

compared with the test range. We then use this ratio to boost the markers’ signal 
exactly in bins where the ratio is high by point-multiplying the amplitude by the ratio in 
the bin. Note that we never boost more than the max_cleaning_ratio (set to 10) or less 
than 1/ max_cleaning_ratio. Effectively, we amplify the regions that are likely to contain 
the markers but up to a certain factor (determined by max_cleaning_ratio) so that 
outlier locations that are not markers will not be enhanced too much. The resulting 
signal has enhanced markers’ amplitude, which helps combat signal attenuation as a 
result of noise cancelation and noisy backgrounds (for example overcoming loud 
abrupt transient background sounds that can compete with the markers in their 
loudness). Namely: 

 
Eq. S6 
enhanced_markers_channel(t) = markers_channel(t)*trimmed_cleaning_ratio(t) 

 
Finally, we max normalize the enhanced markers’ channel and apply a simple 

onset extraction algorithm to detect all samples exceeding a relative threshold set to 
22.5%. We found this threshold to work robustly when testing participants in online 
experiments, but in other testing conditions it can be reduced. 

Figure S7 shows four examples of the output of the markers’ extraction 
procedure: The two examples on the top (rows a and b) result in a successful extraction 
(i.e., all markers can be detected with high timing accuracy), whereas the two 
examples on the bottom (rows c and d) show common cases where the markers’ 
extraction procedure fails (i.e., some markers cannot be detected either due to a lack 
of signal or too much noise overlapping with the markers' channel). 
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Figure S7. Examples of the markers’ extraction procedure 
a Example of a successful trial where all markers can be detected with high timing accuracy. In 
this example, the raw recording (left plot) is very clean and there is no floor noise. b Another 
example of a successful trial. This time, although the raw recording is noisy (left plot), the 
technology can still detect all makers with high timing accuracy. This is because the noise does 
not overlap with the frequency range of the markers’ channel. c Example of a failed trial where 
the markers’ extraction procedure cannot detect all markers. In particular, the amplitude of 
some marker onsets is too low to be detected by the onset extraction threshold (e.g., see the 
zoomed view in the right plot). d Another example of a failed trial where the extraction procedure 
cannot detect all markers. This time, there is external noise overlapping with the markers’ range 
(i.e., 200-340 Hz), making it impossible to reliably detect the marker onsets (e.g., see the 
zoomed view in the right plot). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Behavior Research Methods 

 

 

12 

Trialing Alternative Measures of SMS 
Throughout the paper, we used the SD of the tap-stimulus asynchrony to measure 
participants’ tapping performance. Here, we repeat the main analyses reported in the 
two behavioral experiments (Experiment 2 and 3) using alternative measures of SMS. 
First, we repeated the main analyses using mean asynchrony instead of SD of 
asynchrony (see Figure S8), obtaining very similar results to the ones reported in 
Experiment 2 and 3 (see Figure 3 and 4, respectively).  
 

 
 
Figure S8. Replication of tapping accuracy analysis using mean asynchrony 
a Experiment 2: test-retest reliability measured in the two methods. b Experiment 2: concurrent 
validity of REPP. c Experiment 3: test-retest reliability of REPP when measuring participants' 
tapping performance online.  
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Second, we repeated the main analyses using alternative measures of SMS, 
previously suggested in the literature.  Namely:  

 
1. Vector length was calculated to measure participants’ synchronization using 

circular statistics (Fisher, 1993). The computation was performed on the unit circle, 
where 0 indicates unstable tapping with relative phases distributed uniformly 
(randomly) and 1 indicates perfect synchrony. For each response Ri we first 
identified the stimulus Sj that immediately precedes the response Ri. We next 
computed the phase associated with the response Ri using the following formula:  
 

 
Eq. S7 

𝜙! =
	𝑅!

𝑆"#$ − 𝑆"
 

 
We then computed the average vector length on the complex plane: 

 
Eq. S8 
 𝜙 = |𝛴!%$,…,( exp	 (−2𝜋𝑖 ∗ 𝛷!)	|/𝑁	  
 
The resulting value is typically high (>0.7) even for relatively poor tapping 
performance. We noticed that values below 0.5 indicated trials where 
participants did not perform the task as instructed (e.g., they did not try to 
synchronize to the stimulus cues or were confused about the starting cue, or). 
We therefore excluded trials with values lower than 0.5. Accordingly, a total of 
15 trials in Experiment 1 (2.34 %) and 197 trials in Experiment 2 (6.35 %) were 
excluded from the analysis.  
 

2. A leading model of SMS was proposed by Vorberg and Wing (Vorberg & Wing, 
1996; Vorberg & Schulze, 2002) to estimate key sensorimotor and cognitive 
processes involved in synchronization while accounting for different sources of 
internal noise. The model is based on three hypothesized components: a 
timekeeper noise, reflecting the instability of representing time intervals, motor 
noise representing an independent component originated from the motor system, 
and error correction, a constant that allows adaptation to the metronome sequence. 
For isochronous tapping, the model can be written as:  

 
Eq. S9 
At+1 = (1-α)At + Tt + Mt+1 -Mt + C,  
 
where, C is the constant metronome ISI, At  is the asynchrony at time t,  α is the 
phase correction constant, and var(Tt) = σT2 and var(Mt)=σM2 are the 
timekeeper and motor noise variances, respectively (these are parameters of 
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the model estimated from data). The model parameters can be estimated from 
the data using the bGLS methods described in Jacoby et al. (2015a). However, 
when tempo changes are introduced, one needs to use a more complicated 
model with an additional term estimating period correction. This model also 
requires more data to evaluate it reliably. Thus, we only used this model for the 
isochronous tapping task performed in Experiment 2 and 3. 
 

3. Lag-1 autocorrelation of the asynchrony is a simpler measure of error correction. 
Here we estimate the correlation of the asynchrony at lag-1 (corr(At, At-1)). Vorberg 
and Shultze (2002) suggest a link between this autocorrelation at lag-1 and the 
three hypothesized components of their model: timekeeper noise, motor noise, and 
phase correction (Vorberg and Shultze 2002; theorem 3.3).  
 

4. Lag-1 autocorrelation of the inter tap interval (ITI), defined as corr(rt, rt-1), where rt 

is the inter-response interval. It has been proposed that in synchronization this 1-
lag should be negative, however it was empirically found to be dependent on the 
production modality (Ammirante et al., 2016) and inter-stimulus interval (Repp, 
2011).  

 
The results of all SMS measures considered in this study are provided in Table 

S1. From this, it is clear that the SD of the tap-stimulus asynchrony, mean asynchrony, 
and vector length are highly reliable and provide results with similar effect sizes across 
all analyses. In comparison, the more complex measures (i.e., timekeeper and motor 
noise, phase correction, and measures of lag-1 autocorrelation) are less reliable and 
more sensitive to features of the design and analysis, such as the type of tapping task, 
number of participants included in the analysis, and missing values. In particular, with 
a small number of participants (Experiment 2, N = 20), some of the more complex 
measures yield inconsistencies when comparing the results obtained in the in-lab 
method (the loop-back setup using MATLAB) and REPP. This can be partly explained 
by the influential effects of outliers when computing correlations with small sample 
sizes. In fact, the results of Experiment 3 using a larger sample of participants (N = 
166) tend to be more consistent with those obtained using the MATLAB pipeline in 
Experiment 2. These inconsistencies may also arise from the slightly different 
thresholds used to include tapping onsets in each setup. For instance, the MATLAB 
algorithm is able to use a lower relative threshold to detect tapping onsets than REPP, 
as the signal’s floor noise is lower due to the more sophisticated equipment (the loop-
back setup). While robust measures of SMS are unaffected by these small differences 
(i.e., SD of asynchrony, mean asynchrony, and vector length), more complex 
measures are more sensitive to them. This is consistent with the finding that the 
reliability of the lag-1 autocorrelation of asynchrony is higher than the reliability of the 
lag-1 autocorrelation of ITI: the former only involves two onsets (the two consecutive 
asynchronies), whereas the later depends on more onsets (the three onsets involved 
in two consecutive ITIs).  
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Despite this, when considering the results in all analyses, the more complex 
measures of SMS generally provide reliable results, with the only exception found in 
two components from the Vorberg and Wing model: motor noise and error correction. 
Specifically, we found that timekeeper noise can be estimated more reliably than motor 
noise and phase correction. This is consistent with the idea that motor noise is very 
small and hard to estimate reliably (Jacoby et al., 2015b). However, it is apparent from 
these preliminary results that the current experiments were not powered enough to 
provide highly reliable estimates of these complex measures (see Jacoby et al. 2015a), 
both in terms of the number of trials per participant and tapping onsets per trial. We 
see great potential for future research using REPP for sophisticated individual 
differences modelling, as long as these studies use more robust individual difference 
tests with the right amount of data points per participant (e.g., Vishne et al. 2021).  
 
Table S1. Alternative measures of SMS 

Measure 

Exp. 2 
Concurrent  
Validity 

Exp. 2 
Reliability  
(Matlab) 

Exp. 2 
Reliability  
(REPP) 

Exp. 3 
Reliability  
(REPP - Online) 

SD of 
asynchrony 

r = .94   
ρ = .80 

r = .89   
ρ = .83 

r = .87   
ρ = .81 

r = .80   
ρ = .81 

Mean 
asynchrony 

r = .95   
ρ = .90 

r = .78   
ρ = .83 

r = .71   
ρ = .68 

r = .79   
ρ = .77 

Vector length 
r = .89   
ρ = .88 

r = .65   
ρ = .67 

r = .46   
ρ = .42 

r = .67   
ρ = .75 

Lag-1 cor. of 
asynchrony 

r = .69   
ρ = .64 

r = .65   
ρ = .46 

r = .67   
ρ = .42 

r = .66   
ρ = .69 

Lag-1 cor. 
ITI 

r = .55   
ρ = .34 

r = .28   
ρ = .19 

r = .50  
ρ = .47 

r = .38   
ρ = .40 

Timekeeper 
noise* 

r = .78   
ρ = .74 

r = .79   
ρ = .72 

r = .77   
ρ = .77 

r = .69   
ρ = .69 

Motor noise*  
r = .15   
ρ = .23 

r = .56   
ρ = .44 

r = .45   
ρ = .36 

r = .43   
ρ = .30 

Error 
correction* 

r = .40   
ρ = .39 

r = .71   
ρ = .68 

r = .33   
ρ = .41 

r = .50   
ρ = .48 

     
Note. The analysis strategy to calculate concurrent validity and test-retest reliability was the 
same used in Experiment 2 and 3, respectively. For measuring test-retest reliability in 
Experiment 3, we only considered participants who provided at least one valid tapping trial for 
each stimulus in each tapping task and test-retest condition (N = 166).  
*Indicates that the measure was from the Vorber and Wing model (Vorberg & Wing, 1996; 
Vorberg & Schulze, 2002), calculated as described in Jacoby et al. (2015a).  
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