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SUPPLEMENTARY NOTE 1: SAMPLE CHARACTERIZATION

A. Optical properties

Supplementary Figure 1
∣∣ Optical properties of the exfoliated monolayer WS2 on Si/SiO2. a, Bright field

optical image of the sample. The red circle indicates the size and location of the laser spots used in the MDCS experiments.
The sample is slightly overfilled by the laser spots, but because there is no response from the substrate this doesn’t affect the
measurements. The scalebar is 50 µm. b, Absorbance of the sample (red) at T=6K, and MDCS pulse spectrum (black).

To quantify the absorption of the monolayer, reflected spectra of the local oscillator

(LO) were collected from the WS2 flake and the adjacent substrate at 6K. The spectra were

normalised, to account for slight variations in the laser spectrum, and the difference between

the spectra was found and taken to approximate the absorption of the flake. While this

measurement is simplistic, after accounting for the narrowing and blueshift of the excitonic

resonances it agrees well with previous, more rigorous calculations performed using the

transfer matrix method performed at room temperature [1].

A thin film model was also applied to calculate the reduction in the incident laser intensity

at the location of the monolayer on the layered SiO2/Si substrate (300 nm thermal oxide)

due to interference effects [2]. This found that due to the interference of the incoming and

reflected waves from the substrate the intensity at the location of the WS2 monolayer was

reduced to around 41% of the incident intensity at the peak of the A exciton. This reduction

was taken into account when calculating the exciton density in the WS2 monolayer.
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B. Estimating electron doping

For the MDCs measurements we have laser spot sizes on the order of 50µm diameter,

which means that to minimise scatter we need a clear monolayer area of similar size. This

makes it difficult to obtain a precise measure of electron density, as having contacts on the

sample becomes problematic. We took two different approaches to estimate the electron

density.

First, we took gate voltage dependent measurements on another identically-prepared

sample taken from the same bulk crystal. There are problems with such measurements on

un-encapsulated monolayer WS2 due to the adsorption and de-adsorption of environmental

molecules which effectively change the Fermi level. Differences then appear depending on

whether the sample is in vacuum or in atmosphere, and over time when an applied gate

voltage increases the electron density, as discussed in detail below. With these challenges, it

was only possible to place an upper limit on the difference in Fermi energy from atmospheric

to vacuum conditions of 15meV. If we assume that the atmospheric conditions effectively

quench any intrinsic doping, then this also places an upper limit on the Fermi energy for

the MDCS measurements, which were conducted in vacuum.

The second approach was to compare the ratio of the exciton and trion peaks in the pho-

toluminescence and low-temperature absorption measurements with literature values, since

this ratio is strongly dependent on electron density. In our absorption measurements the

exciton peak amplitude is ∼ 5 times larger than the trion peak. There are limited mea-

surements of absorption spectra as a function of doping density, but theory work looking at

MoS2 showed that for a Fermi energy of 4.9meV an exciton absorption five times the trion

absorption was reported [3]. This ratio is similar to what we see in our WS2 monolayer under

vacuum at 6K, and can provide a rough estimate. However, there has been no experimental

confirmation, and the different conduction band ordering in WS2 may change things signifi-

cantly. For room temperature PL measurements, reported electron densities typically range

from < 1× 1011 to 2× 1012 cm−2 but without a consistent quantitative trend for the relative

peak amplitudes. Perhaps the most reliable report, where they have used two independent

methods to determine the doping density, shows that even for electron densities less than

1× 1011 cm−2 the trion peaks remain stronger than the exciton peak in photoluminescence

measurements [4]. In the room temperature PL measurements in Supplementary Fig. 2b,

3



the PL from the trion is less than two times larger than the exciton, and consistent with a

doping density ∼1 × 1011 cm−2. We used this value as a starting point for our modelling,

but note that there remains significant uncertainty. In the modelling we varied this doping

density and found that the best match with the experiment was obtained with a value of

1 × 1011 cm−2, and results consistent with the experiments were obtained for values up to

3× 1011 cm−2.

C. Vacuum effect and gate voltage dependent measurements in monolayer WS2

To investigate the effect of vacuum on the optical response of the WS2 used in this

study, we performed photoluminescence (PL) measurements under non-resonant excitation

with a Nd:YAG continuous wave (cw) laser source (λex=532 nm) in both air and vacuum

at ambient temperature. The respective spectra were fitted with three Voigt profiles for

neutral excitons (X), charged excitons (X−) and localized excitons (XL) with the energies

EX ≈ 2.02 eV, EX− ≈ 1.99 eV and EXL ≈ 1.93 eV, which is in agreement with previous

reports [5, 6]. In air (Supplementary Fig. 2a), the PL stems mostly from neutral exciton

emission with the exciton spectral weight of wX ≈ 0.91±0.05. However, the asymmetric line

shape points to a non-negligible contribution of charged and localized excitons, which are

represented by the fitted red and green shaded peaks in Supplementary Fig. 2, respectively.

Localized excitons can form in a WS2 crystal at certain defects [7] and charged excitons form

when the monolayer is doped [8]. In addition, defects can increase the level of doping and

enhance the formation of charged and localized excitons [9]. Physisorption gating [10] by

oxygen and water molecules can compensate this defect-induced doping, which makes the

resulting effects on the PL less significant in air. However, when placing the monolayer into

vacuum (p ≈ 1×10−6mbar), the physisorbed molecules are released from the sample surface,

and the contributions of the charged and localized excitons to the PL spectrum increase

dramatically (Supplementary Fig. 2b) with the spectral weights of wX− ≈ 0.56±0.10 and

wXL ≈ 0.18±0.08, respectively.

To measure the difference between the Fermi levels in air and vacuum, we emulated the

vacuum effect (i.e. uncompensated defect-induced doping) by contacting a monolayer WS2

sample on top of a highly doped Si/SiO2 substrate (tSiO2 ≈ 300 nm, ϵSiO2 ≈ 3.9 [11]) acting

as a backgate, as illustrated schematically in Supplementary Fig. 2c, which provides the
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Supplementary Figure 2
∣∣ Physisorption gating measurements. a,b, Photoluminescence (PL) spectrum of a WS2

monolayer (a) in air and (b) in vacuum (orange solid lines). c, Schematic illustration of a backgated WS2 monolayer. d, PL
spectrum of a gated WS2 monolayer in air at VG=30 V. The PL spectra in panels (a,b,d) were fitted with three Voigt profiles
(black dashed lines) for the neutral (blue shaded), charged (red shaded) and localized excitons (green shaded). e, PL spectra
in air at a gate voltage of 60 V measured 10 (red), 11 (black), and 12 (blue) minutes after the voltage was applied.

ability to tune the Fermi level across the band gap. Supplementary Figure 2d shows the

PL spectrum at VG = 30V in air, with the spectral weight of the charged excitons, wX− ≈

0.66±0.04, similar to their spectral weight in vacuum. The approximate difference between

the Fermi levels in vacuum and air can be calculated as [12]:

∆EF =
πℏ2ϵSiO2ϵ0
tSiO2e

2m∗ VG ≈ 15meV (1)

where the effective electron mass in the conduction band is m∗ = 0.35 ·me [13].

Despite the significant redistribution of the spectral weight towards a charged exciton

seen in a gated sample (Supplementary Fig. 2d), we find that the spectral weight of the

neutral excitons increases over time once a fixed voltage is applied (Supplementary Fig.

2e). A feasible explanation is that, at higher voltages, more water and air molecules are

able to bind to the monolayer surface, which leads to increasing physisorption gating that

counteracts the external gating. Hence, the Fermi energy difference between the samples in

air and in vacuum extracted above gives an upper limit of the actual value.
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SUPPLEMENTARY NOTE 2: FURTHER EXPERIMENTAL DETAILS

A. Experimental geometry and pulse sequences

Supplementary Figure 3
∣∣ Experimental laser and pulse geometry. a, Four-beam box geometry used in our MDCS

experiments, with the wavevector of each pulse labelled. The four-wave mixing signal emitted in the direction given by -k1 +
k2 + k3 overlaps with the local oscillator on the fourth corner of the box. The negative contribution from k1 arises from a
complex conjugate in the equations, which also impacts the time evolution of the phase of the signal. The k1 pulse is thus
marked with (*) for reference. For polarization control k1 and k3 are σ+, while k2 and kLO can either be σ+ or σ−

corresponding to co-circular and cross-circular polarization schemes respectively. b, Different pulse orderings and delays being
scanned for the different types of MDCS measurements; one-quantum (1Q), zero-quantum (0Q), and two-quantum (2Q). The
arrow above the pulses indicates the time period that is scanned.

In the main text and Supplementary Information we report results from three types

of MDCS measurements, referred to as one-quantum (1Q), zero-quantum (0Q), and two-

quantum (2Q). Experimentally the difference between each of these measurements is simply

related to the pulse ordering and which delay is scanned, as shown in Supplementary Fig.

3b. This is also impacted by the geometry of the experiments and which four-wave mixing

signal is detected. Our experimental geometry is depicted in Supplementary Fig. 3a, which

shows the measured signal is emitted in the direction given by -k1 + k2 + k3. The negative

contribution from k1 arises from a complex conjugate in the equations, which also impacts

the time evolution of the phase of the signal. For 1Q measurements the delay between the

first two pulses is scanned. In this time period the system evolves in a coherent superposition

between ground and excited states. In the pulse ordering shown, with the k1 pulse first and

referred to a rephasing pulse ordering, any decrease of the macroscopic coherence as a result

of inhomogeneous broadening can be “rephased” in the third time period due to the different

direction of the phase evolution. This rephasing leads to a photon echo, and emission of the

signal at a time t3 = t1. It is this rephasing and photon echo that causes the narrowing of

the 2D peaks along the anti-diagonal direction and reveals the homogeneous linewidth, such
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as in Fig. 2. In the case where the k2 pulse arrives first, the phase evolution in the first and

third time periods is in the same direction, and there is no rephasing. This is referred to as

the non-rephasing pulse ordering. For 0Q 2D spectra the pulse ordering doesn’t change, but

instead of scanning t1, the delay between the second and third pulses, t2 is scanned. For the

2Q scans shown below, the pulse ordering is changed so that the k1 pulse arrives last. In

this case the first two pulses generate a coherence between the ground and doubly excited

state, and its phase evolution is measured by scanning the t2 delay.

B. Intensity Dependence

Supplementary Figure 4
∣∣ Power dependent measurement of the exciton. Integrated exciton signal from co-linear

polarized 1Q spectra, and pulse fluence per beam calculated from laser specifications. Both axes are on a log scale to show
data points follow a square dependence (dashed line). Measurements for this work were taken at ∼0.9 µJ cm−2. The fluence
error bars are calculated from small differences in power and uncertainty in the spot size measurements for the three
excitation pulses.

To ensure that the MDCS measurements were conducted at an intensity at which the

third-order susceptibility dominates (and contributions from higher order effects can be

ignored), we measured the signal amplitude as a function of pulse fluence. The electric field

amplitude of the four-wave mixing signal (proportional to the third-order response of the

sample) scales as the product of the electric field amplitude, E, in each excitation pulse, that
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is, as E3. The signal is detected interferometrically by combining with the local oscillator

(LO). The amplitude measured is therefore proportional to the product of the signal and LO

electric fields. Thus, in the third-order regime, the measured signal amplitude should scale

as E4, or intensity squared (I2) (which is proportional to fluence squared). A sample response

which deviates from this dependence is therefore indicative of higher order contributions.

Supplementary Figure 4 confirms our data follows a square dependence (dashed line) for

fluences up to at least 8 µJ cm−2 per beam, indicating an excitation regime where third-

order effects dominate and higher order effects are minimised [14].

To obtain an estimate of the exciton density we assume one absorbed photon creates

one exciton. The laser photon density can be calculated by dividing the fluence per pulse

(0.9 µJ cm−2) by the photon energy (which we take as the centre of the MDCS spectrum,

2.02 eV). The MDCS pulse spectrum is corrected to 41% of the incident intensity, and

multiplied by the WS2 absorption from Supplementary Fig. 1b. The ratio results in ∼ 0.5%

absorbed photons. Lastly, multiplying 0.5% by the calculated photon density yields the

density of absorbed photons. From this, we estimate our exciton density is 1.3× 1010 cm−2,

which is roughly an order of magnitude smaller than our estimated total electron density of

1× 1011 cm−2.
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SUPPLEMENTARY NOTE 3: FULL 2D SPECTRA

Supplementary Figure 5
∣∣ Full 1Q MDCS spectra for different polarization schemes. a-d, The 2D spectra over

the full signal range for polarization schemes; (a) co-circular, (b) cross-circular, (c) cross-circular with t2=100 fs: σ+σ−σ+σ−,
(d) cross-circular with t2=100 fs: σ+σ+σ−σ−. The colour scales in (a) and (b) are normalised to their respective exciton
peak amplitudes, while (c) and (d) are normalised to the exciton peak in (b). The dotted box indicates the axes range used in
the main text. In the σ+σ−σ+σ− ordering the phase evolution of the S-T coherent superposition shifts the centre of these
cross-peaks in towards the diagonal. The roughly equal amplitudes of the attractive polaron peaks evident in (c) and (d)
confirm that both pathways contribute equally to the cross-peaks discussed in the main text.

In the main text, we focus our investigation on the substructure of the attractive polaron

region, leaving the repulsive polaron region out of discussion. In Supplementary Fig. 5a,b

we show the full spectra for the two polarization schemes in the main text. These plots

are dominated by the repulsive polaron diagonal peak, which is two times larger than the

attractive polaron peaks in the co-circular, and four times larger in the cross-circular.. Tak-

ing into account the laser spectrum, which has intensity at the attractive polaron energy

more than double what it is at the repulsive polaron energy, the nonlinear response of the

attractive polarons is ∼ 10− 20 times weaker than for the attractive polaron. Cross-peaks

between attractive and repulsive polarons can also be identified, as well as a peak due to

biexcitons [15]. As discussed in the main text, the cross-circular polarization data incor-
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porates two pathways as a result of having t2 = 0: σ+σ−σ+σ− and σ+σ+σ−σ−; that is,

the order of the second and third light matter interactions can be swapped. In Supplemen-

tary Fig. 5c and d, these pathways are separated by setting t2=100 fs. On first inspection

these 2D spectra show that the two different pathways contribute approximately equally,

as predicted by the modelling. They are not identical, however, because in the σ+σ−σ+σ−

scheme the systems evolves in t2 as a coherent superposition of S and T polarons, and when

t2=100 fs the phase of these peaks has changed, which, when added to the broad background

signal, causes the centre of the cross-peaks to move in towards the diagonal.
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SUPPLEMENTARY NOTE 4: QUANTUM MECHANICAL PATHWAY ANAL-

YSIS

The measurements (Supplementary Fig. 2 in the main text) show that the co-circularly

polarized 2D spectrum only shows diagonal attractive polaron peaks, while the cross-

circularly polarized 2D spectrum only had cross-peaks. To understand the nature of these

peaks, we list every possible (30 total) quantum mechanical (QM) pathway in our co-circular

and cross-circular polarization schemes. Supplementary Figure 6 summarises the QM path-

ways with Feynman-Liouville diagrams [16], where the listed |⟩ and ⟨| slot into the green (or

orange) boxes, and their associated shapes indicate positions on the 2D spectra.

In the absence of interactions, these pathways will all cancel and there would be no signal.

Specifically, the excited state absorption (ESA) pathways would cancel with the respective

stimulated emission (SE) and/or ground state bleach (GSB) pathway. In the case of the

co-circular polarization (diagonal peaks), there is only one ESA pathway, but both SE and

GSB pathways. Because the ESA pathway requires the creation of a second indistinguishable

polaron, the transition dipole moment of that transition is a factor of
√
2 larger, leading to

a signal that is twice the amplitude, which can thus cancel with the SE and GSB pathways.

In general, the presence of interactions leads to imperfect cancellation of these pathways,

and the appearance of peaks in the 2D spectra.

This statement that there is no signal in the absence of interactions, even for diagonal

peaks, may seem counter-intuitive to those accustomed to thinking of these experiments

in the context of two-level systems (or few-level systems), where simply the presence of a

bright state generates a peak on the diagonal. In the two-level system, there is no possibility

of having two indistinguishable excitons in the same state, no ESA pathway to cancel the

GSB and/or SE, and thus a signal appears on the diagonal. The inability to excite a second

exciton is equivalent to having an infinite repulsive interaction between identical excitons.

Hence, the presence of a signal for a two-level system is consistent with this framework of

requiring interactions for peaks to appear.

It is evident from the pathways and respective peak locations shown in Supplementary

Fig. 6 that the peaks which appear in the experimental data correspond to pathways that

only include polarons where the excitons (either pseudospin-up or -down) are dressed by the

same Fermi sea. The presence of these peaks must then be a result of interactions between

11



Supplementary Figure 6
∣∣ Quantum-mechanical pathway analysis. a, QM pathways for both co- and cross-circular

polarizations, illustrated with Feynman-Liouville diagrams and labelled with shapes. The boxes with red backgrounds

indicate pathways including states in which experimental signal is absent. The red and blue arrows indicate opposite

handedness circularly polarized laser pulses, σ+ and σ− respectively. The listed | ⟩ and ⟨ | states slot into the green (or

orange for doubly excited states) boxes, to fill out the Feynman-Liouville diagram. The diagrams include the ground state

(g), the attractive polaron states listed in the main manuscript, and doubly excited states. Filled shapes indicate ground

state bleach (GSB), striped shapes indicate stimulated emission (SE), and hollow shapes indicate excited state absorption

(ESA) pathways. The ESA pathways can include a coherent superposition during t2, in which case the hollow section is

striped the other way. The ESA pathways that include a population during t2 are left as hollow shapes. b, Illustration of

expected peak locations for a co-linear polarized 1Q rephasing measurement. c, Illustration of expected peak locations in a

co-linear polarized 0Q measurement.
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these polarons. In contrast, the pathways that involve polarons dressed by the two different

Fermi seas (with different spin) do not produce measurable peaks in the experiments. The

implication then is that interactions between polarons involving different Fermi seas are

much weaker than the interactions between polarons involving the same Fermi sea.

Comparing the cross-circular 0Q spectra (Fig. 3 in main text) to the pathway analysis

in this Supplementary Fig. 6 we find that the experimental peaks in the σ+σ−σ+σ− and

σ+σ+σ−σ− also align with the pathways and diagram of Supplementary Fig. 6c. This

further confirms that the QM pathways presented here are indeed the ones that contribute

to the measured signals.
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SUPPLEMENTARY NOTE 5: POLARON MODEL

As discussed in Methods, we describe the system using the minimal Hamiltonian

Ĥ0 =
∑
σ=⇑,⇓

(
E0

XX̂
†
σX̂σ + E0

T T̂
†
σ T̂σ + E0

SŜ
†
σŜσ

)
+

∑
σ=⇑,⇓

(
αt

√
NeT̂

†
σX̂σ + αs

√
NeŜ

†
σX̂σ +H.c.

)
.

(2)

Here, E0
X , E

0
S, and E0

T are the exciton, singlet trion, and triplet trion energies in the absence

of exciton-trion coupling, and the strength of the exciton-trion coupling at low doping is

related to the Fermi energy and j trion binding energy [17]:

αj

√
Ne ≃

√
3

2

√
εjEF . (3)

As discussed in Methods, to a good approximation the exciton couples to a coherent super-

position of trions in N sites within an area A:

Ŝσ =
1√
Ne

Ne∑
j=1

Ŝσ,j, T̂σ =
1√
Ne

Ne∑
j=1

T̂σ,j, (4)

This effectively leads to interactions between trions since a given electron is only available

for a single trion formation, i.e.,

(Ŝσ,j)
2 = (T̂σ,j)

2 = Ŝ⇑,jT̂⇓,j = T̂⇑,jŜ⇓,j = 0. (5)

To proceed, we make reference to the experiment, where the signal arises from processes

involving either one or two excitations. We therefore now construct an orthonormal basis

for all such states. For the single excitations, this is simply

|Xσ⟩ = X̂†
σ |0⟩ , |Sσ⟩ = Ŝ†

σ |0⟩ , |Tσ⟩ = T̂ †
σ |0⟩ . (6)

Here, the state |0⟩ represents the state of the medium prior to the first pulse, which we take

to consist of Fermi seas in the K and K′ valleys. For two excitations, things become more

complicated since there are 21 such terms: six terms involving two identical excitations,

and 15 terms involving two distinguishable excitations. Using the expansion of the trion
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states in Eq. (4) together with the phase-space filling in Eq. (5), we arrive at the following

orthonormal basis:

|Xσ, Xσ⟩ =
1√
2
X̂†

σX̂
†
σ |0⟩ (7a)

|Tσ, Tσ⟩ =
Ne√

2Ne(Ne − 1)
T̂ †
σ T̂

†
σ |0⟩ (7b)

|Sσ, Sσ⟩ =
Ne√

2Ne(Ne − 1)
Ŝ†
σŜ

†
σ |0⟩ (7c)

|S⇑, T⇓⟩ =
Ne√

Ne(Ne − 1)
Ŝ†
⇑T̂

†
⇓ |0⟩ (7d)

|S⇓, T⇑⟩ =
Ne√

Ne(Ne − 1)
T̂ †
⇑Ŝ

†
⇓ |0⟩ (7e)

|X⇑, X⇓⟩ = X̂†
⇑X̂

†
⇓ |0⟩ (7f)

|Xσ, Sσ′⟩ = X̂†
σŜ

†
σ′ |0⟩ (7g)

|Xσ, Tσ′⟩ = X̂†
σT̂

†
σ′ |0⟩ (7h)

|S⇑, S⇓⟩ = Ŝ†
⇑Ŝ

†
⇓ |0⟩ (7i)

|T⇑, T⇓⟩ = T̂ †
⇑T̂

†
⇓ |0⟩ (7j)

|S⇑, T⇑⟩ = Ŝ†
⇑T̂

†
⇑ |0⟩ (7k)

|S⇓, T⇓⟩ = Ŝ†
⇓T̂

†
⇓ |0⟩ . (7l)

The normalisation of the two-exciton state in Eq. (7a) arises from the bosonic commutation

relation, [X̂†
σ, X̂σ′ ] = δσσ′ , and the terms in Eqs. (7b) to (7e) involving blocking effects. The

remaining terms involve distinguishable particles that do not have any blocking.

1. Interactions

While the state space in Eqs. (6) and (7) contains a large number of terms, we emphasize

that this is the minimal model containing excitons in both valleys and the corresponding

singlet and triplet trions, along with their possible interactions. Indeed, the interactions are

effectively encoded in the normalisation of the two-excitation terms in (7b) to (7e). To see
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this, consider for instance the following matrix element of the Hamiltonian

⟨Tσ, Tσ| Ĥ0 |Xσ, Tσ⟩ = αt

√
2(Ne − 1). (8)

The blocking effect in Eq. (5) results in the factor
√
Ne − 1 instead of the usual factor

√
Ne

arising from bosonic statistics, similar to the case of two photons coupled to atoms in a

cavity [18]. The difference can therefore be viewed as an interaction due to phase-space

filling. Taking all such terms into account, and expanding to leading order in 1/Ne, we

obtain the following interaction terms in the Hamiltonian,

Ĥint ≃− 1

2
√
Ne

∑
σ

[
αsŜ

†
σŜ

†
σX̂σŜσ + αtT̂

†
σ T̂

†
σX̂σT̂σ

]
− αs

2
√
Ne

(
Ŝ†
⇑T̂

†
⇓X̂⇑T̂⇓ + Ŝ†

⇓T̂
†
⇑X̂⇓T̂⇑

)
− αt

2
√
Ne

(
T̂ †
⇑Ŝ

†
⇓X̂⇑Ŝ⇓ + T̂ †

⇓Ŝ
†
⇑X̂⇓Ŝ⇑

)
+H.c. (9)

This explicitly demonstrates that within the model (2) we only have interactions between

trions that share the same Fermi sea.

2. Relating parameters of the model to experimental observables

In the presence of the K and K′ Fermi seas, the frequencies of the exciton and trion peaks

shift to those of the repulsive and attractive polarons. The shift of a given branch is O(EF ),

and at the density of the experiment we have EF ≃ 0.3 meV. This is within the experimental

uncertainty of any given peak position, and hence a shift of this order of magnitude is not

measurable. We thus take the energies of the trions in the absence of the coupling, E0
X , E

0
T

and E0
S, to be essentially the same as the energies observed in experiment, with a small shift

to ensure that the peaks in the presence of coupling coincide with the two attractive and

the one repulsive polaron peaks. This leads to the average (theory) values

〈
E0

X

〉
= 2091.2 meV,

〈
E0

T

〉
= 2063.6 meV,

〈
E0

S

〉
= 2056.7 meV , (10)

where the average is over disorder in the sample that leads to an inhomogeneous broadening,

as discussed below in Sec. A 1. We emphasize that these parameters of the model are
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obtained directly from the experimental density and the frequencies of the observed peaks.

3. Exciton valley exchange

Finally, we remark on the possibility of including an exchange coupling between K and

K′ excitons due to inter-valley electron-hole exchange. This effectively leads to exchange

processes that couple X⇑ ↔ X⇓ as well as S⇑↓ ↔ T⇓↓ and S⇓↑ ↔ T⇑↑. This process is

expected to scale linearly with momentum at low exciton momenta, and for the momentum

associated with the pulses in our experiment, we estimate the rate to be ∼ 20 µeV [19]. This

is much smaller than any other relevant energy scale, and therefore the exchange process

can be ignored for the excitons.

The rate of exciton exchange inside a trion is more involved, since the excitons now move

relative to the electron. In this case, the rate of such exchange has previously been measured

in MoSe2 to be ∼ 2.9 meV [20]. We have checked that including a trion exchange coupling

of this magnitude in our MDCS spectra does not lead to any visible difference compared

with the spectra in the absence of exchange; thus, in all results presented in the manuscript

we have taken the exchange to zero in order to reduce the number of theoretical parameters.

A. MDCS Simulation details

We now discuss how the MDCS is simulated within the model (2). We will do this

using two approaches. The first is based on correlation functions, and this has been used to

calculate all results presented in the main text, as discussed in the Methods. The second

approach is based on a master equation description of the system. As we demonstrate, these

two approaches yield comparable results.

1. Approach based on correlation functions

As discussed in Methods, the third order response contributing to the rephasing experi-

mental protocols illustrated in Supplementary Fig. 3 is due to ground state bleach, stimulated

emission, and excited state absorption [21]. Their contributions to the material polarization
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are

P
(3)
σσ′ = −

(
i

ℏ

)3

µ4
XE

3
0

(
Tr

[
ρ̂0X̂σ′eiĤ0t1X̂†

σe
iĤ0(t2+t3)X̂σe

−iĤ0t3X̂†
σ′

]
+ Tr

[
ρ̂0X̂σ′eiĤ0(t1+t2)X̂†

σ′e
iĤ0t3X̂σe

−iĤ0(t2+t3)X̂†
σ

]
− Tr

[
ρ̂0X̂σ′eiĤ0(t1+t2+t3)X̂σe

−iĤ0t3X̂†
σ′e

−iĤ0t2X̂†
σ

])
= −

(
i

ℏ

)3

µ4
XE

3
0

(
Tr

[
ρ̂0X̂σ′eiĤ0t1X̂†

σ

]
Tr

[
ρ̂0X̂σe

−iĤ0t3X̂†
σ′

]
+ Tr

[
ρ̂0X̂σ′eiĤ0(t1+t2)X̂†

σ′

]
Tr

[
ρ̂0X̂σe

−iĤ0(t2+t3)X̂†
σ

]
− Tr

[
ρ̂0X̂σ′eiĤ0(t1+t2+t3)X̂σe

−iĤ0t3X̂†
σ′e

−iĤ0t2X̂†
σ

])
. (11)

The trace is over the possible states of the system, with the density matrix ρ̂0 = |0⟩⟨0|

describing the initial state of the system prior to any excitations.

The exact time evolution of the contributions in Eq. (11) using the Hamiltonian in Eq. (2)

can be straightforwardly calculated since the expectation value is taken over a state that

corresponds to the vacuum of excitons and trions. However, to obtain the spectra, in

practice it is simplest to first Fourier transform to frequency space. For instance, in the case

of single quantum spectroscopy, this Fourier transform is with respect to t1 and t3 at fixed

t2. Including a homogeneous linewidth Γ, for the ground state bleach term we have

∫ ∞

0

dt1 dt3 e
i(ω1+iΓ)t1ei(ω3+iΓ)t3 Tr

[
ρ̂0X̂σ′eiĤ0t1X̂†

σ

]
Tr

[
ρ̂0X̂σe

−iĤ0t3X̂†
σ′

]
= −Tr

[
ρ̂0X̂σ′

1

ω1 + Ĥ0 + iΓ
X̂†

σ

]
Tr

[
ρ̂0X̂σ

1

ω3 − Ĥ0 + iΓ
X̂†

σ′

]
. (12)

The other terms are Fourier transformed similarly. Note that some care must be taken in

the two-exciton terms, since t3 can appear in multiple time-evolution operators.

Apart from the homogeneous broadening described by Γ, we also have inhomogeneous

broadening. We model this as dominated by dielectric disorder due to spatial fluctuations of

the substrate and the presence of impurities and adsorbates, in accordance with the results of

Ref. [22]. This leads to fluctuations of the attractive and repulsive polaron energies, leading

to an approximately Gaussian lineshape (see Sec. A 2) of width σA and σR, respectively.

Importantly, the fluctuations in the energies are correlated [22], and since σA ≃ σR we
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simply average the signal by varying the input parameters E0
X , E

0
S and E0

T around their

average positions in Eq. (10) according to

〈
P

(3)
σσ′

〉
disorder

=

∫
dϵ

e−ϵ2/2σ2
R

√
2πσR

P
(3)
σσ′

(
E0

X =
〈
E0

X

〉
+ ϵ, E0

S =
〈
E0

S

〉
+ ϵ

σA

σR

, E0
T =

〈
E0

T

〉
+ ϵ

σA

σR

)
.

(13)

2. Master equation description

An alternative approach is to model the MDCS response via a master equation descrip-

tion, as is more common in the literature. This approach has the advantage of including

decoherence processes more generally, rather than simply via a phenomenological dephasing

parameter as given above. However for the 28-level system considered, it also has consider-

able drawbacks. One is simply the additional computational time required to perform the

simulations in the large state space of the density matrix of the system, as well as including

the effects of inhomogeneous broadening. Another more subtle issue is that there is not

enough information to define all the decoherence channels unambigously. The effects of var-

ious dephasing and relaxation channels all contribute to the MDCS spectra in different ways,

but can not easily be distinguished without a large number of additional measurements. To

address these issues, we perform key simulations of interest with both approaches, without

inhomogeneous broadening. This allows us to confirm that our theoretical approach is valid

without over-fitting to the experimental results.

To simulate the MDCS spectra using a master equation approach, we implement a similar

approach to that detailed in Ref. [23, 24]. The master equation is assumed to be of Lindblad

type [25–27]

ρ̇ = − i

ℏ
[Ĥ0, ρ] +

∑
j

γj

(
L̂jρL̂

†
j −

1

2

{
L̂†
jL̂j, ρ

})
(14)

where γj and L̂j represent the decoherence rates and operators respectively.

We solve the evolution of the master equation in tetradic representation or ‘super-

operator’ form [23, 28]. This involves expressing the density matrix in vector form, making

the evaluation of the time evolution simpler, at the expense of larger memory requirements.
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The Lindblad equation therefore takes the form

⃗̇ρ(t) = Lρ⃗(t) (15)

where

L = −i
(
Ĥ0 ⊗ I − I ⊗ ĤT

0

)
+
∑
j

γj

(
L̂j ⊗ L̂∗

j −
1

2

{
L̂†
jL̂j ⊗ I + I ⊗ (L̂†

jL̂j)
T
})

(16)

where ⊗ indicates the Kronecker product and I is the identity matrix with the same dimen-

sions as the Hamiltonian. The time evolution of the density matrix can then be written in

terms of the propagator G(t) = eLt,

ρ⃗(t) = G(t)ρ⃗(0) (17)

where the propagator can be Fourier transformed analytically [23]

G(ω) =
1

iω − L
(18)

to give the frequency response.

We can now define the MDCS response in terms of the following expressions

P (3)(t1, t2, t3) ∝ −
∑
j

Rj (19)

R1 =
〈
µ̂−G(t3)V̂

+ρ0V̂
−G(t1)V̂

+G(t2)
〉
, (20)

R2 = −
〈
µ̂−G(t3)V̂

+G(t2)V̂
+ρ0V̂

−G(t1)
〉
, (21)

R3 =
〈
µ̂−G(t2)V̂

+ρ0V̂
−G(t1)V̂

+G(t3)
〉
, (22)

R4 =
〈
µ̂−G(t3)V̂

−G(t2)V̂
+G(t1)V̂

+ρ0

〉
, (23)

R5 = −
〈
µ̂−G(t3)V̂

+G(t1)V̂
+ρ0V̂

−G(t2)
〉
, (24)

R6 =
〈
µ̂−G(t1)V̂

+ρ0V̂
−G(t2)V̂

+G(t3)
〉
, (25)

R7 =
〈
µ̂−G(t3)V̂

+G(t2)V̂
−G(t1)V̂

+ρ0

〉
, (26)

R8 = −
〈
µ̂−G(t2)V̂

+G(t1)V̂
+ρ0V̂

−G(t3)
〉
. (27)
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where ρ0 is the initial (steady state) density matrix of the system. These response functions

Rj can also be used to define the rephasing (R1, R2, R3), non-rephasing (R5, R6, R7) and

double-quantum (R4, R8) contributions to the MDCS spectra. In the comparison that fol-

lows, we only compute and compare to the rephasing spectrum (
∑3

j=1Rj). In the expression

above we assume that the dipole operator for each transition consists of Pauli x-operators,

such that V̂ = −µ̂ · E⃗ = −σx
(
µ⃗ · E⃗

)
= V̂ + + V̂ −.

The system Hamiltonian, as described above and in the main text can be expressed in

terms of matrix elements as follows. Note that the interactions (i.e., blocking effects) are

encoded in the basis states and thus we use Ĥ0. The single particle states are,

⟨Xσ|Ĥ0|Xσ⟩ = E0
X (28a)

⟨Sσ|Ĥ0|Sσ⟩ = E0
S (28b)

⟨Tσ|Ĥ0|Tσ⟩ = E0
T (28c)

where σ = {⇑,⇓} which correspond to the K and K′ valleys respectively.

The diagonal terms are,

⟨Xσ, Xσ′ |Ĥ0|Xσ, Xσ′⟩ = 2E0
X (29a)

⟨Xσ, Sσ′ |Ĥ0|Xσ, Sσ′⟩ = E0
X + E0

S (29b)

⟨Xσ, Tσ′|Ĥ0|Xσ, Tσ′⟩ = E0
X + E0

T (29c)

⟨Sσ, Sσ′ |Ĥ0|Sσ, Sσ′⟩ = 2E0
S (29d)

⟨Tσ, Tσ′ |Ĥ0|Tσ, Tσ′⟩ = 2E0
T (29e)

⟨Sσ, Tσ′|Ĥ0|Sσ, Tσ′⟩ = E0
S + E0

T . (29f)

where both σ = {⇑,⇓} and σ′ = {⇑,⇓} in the respective K-valleys but avoiding double

counting of states when the state is indistinguishable on swapping valleys.
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The cross terms can be slightly more complex. Specifically, we have

⟨Xσ, Sσ′| Ĥ0 |Xσ, Xσ′⟩ = αs

√
Ne(1 + δσ,σ′) (30a)

⟨Xσ, Tσ′| Ĥ0 |Xσ, Xσ′⟩ = αt

√
Ne(1 + δσ,σ′) (30b)

⟨Sσ, Sσ| Ĥ0 |Xσ, Sσ⟩ = αs

√
2(Ne − 1) (30c)

⟨Tσ, Tσ| Ĥ0 |Xσ, Tσ⟩ = αt

√
2(Ne − 1) (30d)

⟨Sσ, Tσ| Ĥ0 |Xσ, Sσ⟩ = αt

√
Ne (30e)

⟨Sσ, Tσ| Ĥ0 |Xσ, Tσ⟩ = αs

√
Ne (30f)

⟨S⇑, T⇓| Ĥ0 |X⇑, T⇓⟩ = αs

√
Ne − 1 (30g)

⟨S⇓, T⇑| Ĥ0 |X⇓, T⇑⟩ = αs

√
Ne − 1 (30h)

⟨S⇓, T⇑| Ĥ0 |X⇑, S⇓⟩ = αt

√
Ne − 1 (30i)

⟨S⇑, T⇓| Ĥ0 |X⇓, S⇑⟩ = αt

√
Ne − 1 (30j)

⟨S⇓, S⇑| Ĥ0 |X⇑, S⇓⟩ = αs

√
Ne (30k)

⟨S⇑, S⇓| Ĥ0 |X⇓, S⇑⟩ = αs

√
Ne (30l)

⟨T⇑, T⇓| Ĥ0 |X⇑, T⇓⟩ = αt

√
Ne (30m)

⟨T⇓, T⇑| Ĥ0 |X⇓, T⇑⟩ = αt

√
Ne (30n)

In this basis the dipole operators are the creation and annihilation operators for the

exciton states in the two valleys, ie. V̂ + = X̂†
σ. As the indistinguishable states are not

duplicated in the state space, the corresponding creation/annihilation operators pick up an

additional factor of
√
2. This is required to ensure the correct cancellation of the signal

when there are no interactions between states.

To mimic the phenomenological dephasing implemented in the correlation function ap-

proach above, we include the following Lindblad operators,

L̂Xσ = X̂†
σX̂σ (31a)

L̂Sσ = Ŝ†
σŜσ (31b)

L̂Tσ = T̂ †
σ T̂σ (31c)

Each operator is then included with the same dephasing rate Γ discussed in the previous
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section. In principle a number of other effects could be included via additional Lindblad

terms, including exciton recombination and correlated dephasing within and between valleys.

However these effects are considerably more difficult to extract reliably from the MDCS data.

We therefore limit the comparison to the pure dephasing discussed above.

In Supplementary Fig. 7 we show the simulated 1Q rephasing spectra with co- and cross-

circular polarization, computed via the two approaches. For accurate comparison, these

plots do not include the effects of inhomogeneous broadening. We see very good correspon-

dence between the approaches. It is worth noting the minor differences in peak width and

magnitudes which stem from the different approach to including dephasing in the calcula-

tions.

It is also worth noting that the amplitude of the exciton peaks, and the exciton-trion

cross-peaks compared to the trion peaks are relatively larger in the simulations than in the

experimental measurements. This can be mostly clearly seen in Fig. 2f of the main text,

at the edges of the observed energy window. It is likely that these discrepancies also stem

from the idealised decoherence model used, as loss processes and additional dephasing types

can reduce this signal. However more detailed measurements and theoretical analysis are

required to understand the details.
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Supplementary Figure 7
∣∣ Comparison of simulation models. a-d, Simulated 1Q rephasing 2D spectra with

co-circular polarization using correlator code (a) and master equation code (b). Cross-polarized scheme using the correlator
(c) and master equation code (d). To make both models easier to compare, no inhomogeneous broadening is included here.
Both models run with fitted experimental values from Supplementary Fig. 13, and estimated electron/exciton densities.

SUPPLEMENTARY NOTE 6: BIPOLARON STATES IN WS2

In this section we provide more evidence and detailed explanation behind the attribution

of the bipolaron peaks in the 1Q 2D spectrum (Fig. 2d) discussed in the main text. To aid

this discussion, Supplementary Fig. 8 shows the energies of and separations between all of

the singly excited states and unbound doubly excited states. Also shown are the biexciton

and bipolaron states.

Confirmation that these peaks come from doubly excited states

The negative peaks in the real part of the 1Q 2D spectrum (Supplementary Fig. 4a of

the main text), give a strong indication that these peaks arise from excited state absorption

pathways, and thus involve doubly excited states. However, there are other possible effects

that can generate negative peaks, such as excitation induced shifts [29] or bandgap renor-
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Supplementary Figure 8
∣∣ Energy level diagram for possible excited states in WS2. Energies of the repulsive and

attractive polaron states and complexes are indicated, with the exciton component as pseudospin-up (red shading) or
pseudospin-down (blue shading). The stated biexciton binding energy is as from [15].

malisation. One unambiguous means to identify doubly excited states is two-quantum (2Q)

MDCS [15, 30]. In this type of measurement the first two pulses create a coherent superpo-

sition between the ground state and any doubly excited states (a 2Q coherence). The third

pulse can then drive the system into a (1Q) coherent superposition of singly and doubly

excited states or ground and singly excited states. These types of pathways are depicted in

Supplementary Fig. 9, along with the expected locations of the corresponding peaks in a 2Q

2D spectrum. The 2D spectrum correlates ℏω2Q, the energy of the 2Q coherence, with the

emission energy, ℏω3. Thus, peaks a 2Q 2D spectrum provide unambiguous confirmation of

the presence and energy of doubly excited states.

Supplementary Figure 9 shows the experimental 2Q spectrum, possible QM pathways,

and their respective peak locations. The fact that a broad peak occurs in the 2Q spectrum

at ℏω2Q = 4.105± 0.005 eV, ℏω3 = 2.052± 0.050 eV in Supplementary Fig. 9n, shows that

doubly excited states are present and contribute to the third-order signal. With reference to
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Supplementary Figure 9
∣∣ Bipolaron 2Q pathway analysis. a-l, 2Q pathways for excitation of the bipolaron (⇑⇓↑ and

⇑⇓↓). In this case, the k2 and k3 pulses arrive simultaneously so the t1 Feynman diagram rung has been removed for
simplicity. m, illustration of peak locations in a cross-circular 2Q spectrum arising from pathways in (a-l). n, Experimental
cross-circular 2Q spectrum.

the energy level diagram in Supplementary Fig. 8, the location of the peak clearly matches

what would be expected for the bipolaron, based on the energies from the 1Q measurements,

that is: ℏω2Q = 4.102 eV, with ℏω3 peaks expected at 2.039, 2.046, 2.056, and 2.063 eV.

In these 2Q measurements there is no rephasing, so inhomogeneous broadening blurs the

peaks, making it impossible to resolve the different peaks. However, it is clear that there

is a broad peak observed around these energies, which provides strong confirmation that

the negative peaks in the 1Q 2D spectrum arise from excited state absorption pathways

involving these doubly excited states. It is possible that the unbound S + S, S + T, and T

+ T doubly excited states identified in Supplementary Fig. 8 could contribute to this broad

peak via the pathways in Supplementary Fig. 9e-l. However the ℏω2Q energies expected are

10, 17, and 24meV above the bipolaron energy, and all well above the centre of the peak in

the experimental results. Hence even if they do contribute, they cannot explain the whole

signal.
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Supplementary Figure 10
∣∣ Bipolaron 1Q pathway analysis. a-d, 1Q pathways for excitation of the bipolaron. e,

Illustration of peak locations in a cross-circular 1Q spectrum arising from pathways in (a-d). f, Experimental cross-circular
1Q spectrum.

Pathways leading to the peaks arising from the bipolaron states

The pathways that contribute to the bipolaron peaks in the 1Q 2D spectra are shown in

Supplementary Fig. 10. Pathways for both the σ+σ−σ+σ− and σ+σ+σ−σ− are shown, since

the results showed that both contribute to these peaks. For each, there are two possible

pathways with ℏω1 = ℏωS and ℏω1 = ℏωT . The emission energy for these pathways can be

determined by taking the difference between the energy of the bipolaron ⇑⇓↓ (or equivalently

the ⇑⇓↑) state and the final state of the system, as can be seen in Fig. 4c in the main text.

From the location of the peaks, we determine the energy of the bipolaron states to be

4.102 eV. This gives emission energies 17meV below the S and T energies.

If we then consider the binding energy to be the minimum energy required to break

apart this complex, then the lowest energy combination it could be split into would be

X + S (as per the energy level diagram in Supplementary Fig. 8), all other pairs of the

included quasiparticles (X + T or XX + e) are higher in energy. This gives a binding energy

of 46 ± 3meV, which is significantly higher than predicted when considering a charged

biexciton as two-body exciton + trion bound state. This large binding energy is indicative
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of the cooperative binding between all three quasiparticles.

Another key to identifying these bipolarons as arising from cooperatively bound charged

biexcitons comes from the observation of pathways in Supplementary Fig. 10a,b, that on

the left hand side of the diagrams there is initial absorption to the S⇓↑ (T⇓↓) followed by

excitation to the bipolaron ⇑⇓↑ (⇑⇓↓). The emission from the bipolaron then leaves behind

a T⇑↑ (S⇑↓) polaron. That is, the ↑ (↓) electrons that initially dress the ⇓ exciton are

left dressing the ⇑ exciton after going via the bipolaron. This process requires that in the

bipolaron state both excitons are interacting strongly with the electron.

Alternative pathways that could lead to these peaks and why we rule them out

In the process of identifying the pathways and nature of the bipolaron peaks, we consid-

ered alternate pathways and possible bound states, but ultimately ruled them all out. Below

we detail pathways for alternate bound states and how they deviate from our experimental

observations.

Supplementary Figure 11 considers the pathways for the case of a simple two-body binding

of an exciton to a trion as the basis for these peaks. For each of these a different binding

energy is required for XS (46meV) and XT (53meV), which is not so unreasonable. However,

in Supplementary Fig. 11(a-d), the pathways that yield the observed peaks in the 1Q 2D

spectrum, the system evolves over t2 as a superposition between X and S (or X and T)

states, which should show up as a peak at ω2 = 36meV (or 29meV) in the 0Q 2D spectrum

for the σ+σ−σ+σ− pulse ordering. No such peaks are observed, the only peaks in the

0Q spectrum emitting at 2.039 - 2.046 eV occur at ±7meV, consistent with the bipolaron

pathways identified in Supplementary Fig. 10.

In principle the pathways in Supplementary Fig. 11e,f could generate the peaks in the 1Q

2D spectrum and are consistent with the peaks at ℏω2 = 0 in the 0Q spectrum. However,

in this case we would also expect peaks arising from the pathways in (g-h), which would

appear at ℏω1 equal to the exciton energy and ℏω3 = 2.01 eV, and no such peak is observed.

Similarly, peaks from (c-d) should also contribute to this position, yet no peaks are observed.

We therefore rule out the possibility of a two-body bound exciton-trion state as contributing

to these bipolaron peaks.

Another possibility is that these peaks arise from a doubly charged biexciton, consisting
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Supplementary Figure 11
∣∣ Bound exciton-trion 1Q pathway analysis. a-h, Possible QM pathways for exciton-trion

states. i, illustration of peak locations in a cross-circular 1Q spectrum arising from pathways in (a-h). j, Experimental
cross-circular 1Q spectrum for reference.

of two trions bound together. Possible pathways for these states are shown in Supplementary

Fig. 12. Just considering these pathways, the peaks seen in the 1Q spectrum could arise from

the pathways (a-d) involving a T + S bound state with a binding energy of 17meV, being the

energy by which the peaks are shifted to lower ℏω3 values. However, these pathways suggest

bound states between trions with electrons in the same band (i.e. T⇑↑ + S⇓↑ or S⇑↓ + T⇓↓). It

is expected that Pauli blocking would prevent the formation of such a bound state involving

indistinguishable electrons. The other possible bound states in Supplementary Fig. 12(e-

h) involve four electrons and two holes that are all distinguishable. For these square and

circle pathways to generate peaks in Supplementary Fig. 12j at the triangle and diamond

locations, there would need to be a different binding energy for the S + S (10meV) and T +
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Supplementary Figure 12
∣∣ Doubly charged biexciton 1Q pathway analysis. a-h, 1Q excited state absorption

(ESA) pathways. i illustration of peak locations in a cross-circular 1Q spectrum arising from pathways in (a-h). Red crossed
shapes indicate QM pathways in which the attractive polarons are bound to different Fermi seas. j Experimental
cross-circular 1Q spectrum for reference.

T (24meV) bound states, which is unlikely, given they both involve the same combination

of electrons and holes. Furthermore, Monte Carlo calculations indicate that the 6-body

bound state is not stable [31]. Thus, we rule out the possibility that these pathways, and

the associated doubly charged biexciton state, contribute to the signal measured.

Further comparison of the data and states identified here with previous PL data

Photoluminescence (PL) measurements on WS2 and WSe2 have also identified a peak

attributed to a charged biexciton, emitting ∼ 50meV below the exciton energy [32–36]. The

timescales in photoluminescence measurements are intrinsically different, as they are time
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averaged measurements, and the optically excited states typically have time to relax to the

lower energy dark exciton states, or in doped systems to dark trion states. For the case of

a dark trion, the exciton and electron cannot be in the same valley as this would mean the

electrons are in the same band, hence only the inter-valley configuration is allowed. It is

thus assumed that in PL measurements the charged biexciton consists of a dark exciton in

one valley, a bright exciton the other valley and an electron in the same valley as the bright

exciton. The emission is then either from the bright exciton, leaving behind a dark trion;

or from the bright trion, leaving behind a dark exciton. In PL measurements there is no

way to distinguish between these two possibilities, and different authors have made the case

for both, which leads to vastly different binding energies being determined. In all cases it

appears to be assumed, even if not explicitly stated, that the binding is between an exciton

and a trion. However, the MDCS measurements presented here indicate that the charged

biexciton is formed as a result of the strong interaction between each of the two excitons and

electron. This picture of a cooperatively bound charged biexciton is also consistent with PL

measurements, the only difference being that because one of the excitons is a dark exciton,

the emission will always be from the bright exciton and leave behind a dark, inter-valley

trion. That is, while in the MDCS measurements we see emission at two different ℏω3 values,

the PL will show only one spectral peak. We therefore conclude that the PL measurements

that report this charged biexciton should consider the emission as leaving behind a trion,

and determine the binding energy based on the spectral shift from the exciton emission.

31



SUPPLEMENTARY NOTE 7: FITS TO 1Q & 0Q 2D SPECTRA

Supplementary Figure 13
∣∣ One-quantum linewidth fits. a, Experimental cross-circularly polarized 1Q 2D amplitude

spectrum. Red (blue) arrows indicate slices at the attractive (repulsive) polaron peak for diagonal and anti-diagonal. b-c,
Diagonal slices (black) of (a) along the σ line for both the attractive (b) and repulsive polaron (c), fit with Gaussian profiles
(red or blue respectively). Peaks appearing to the sides of the attractive polaron (shaded green), are due to the edges of other
peaks. The inhomogeneous linewidth (σ) is shown above for Gaussian FWHM in meV. d-e, Anti-diagonal slices (black) of (a)
along the Γ arrows, for both attractive (d) and repulsive polaron (e). The linewidth is fit with a square-root-Lorentzian, with
FWHM in meV displayed above the fits. In (d) there are two peaks from the two singlet-triplet cross-peaks. Uncertainties are
derived from the 95% confidence bounds of the fits.

Further details of interactions between quasiparticles and their local environment can

be obtained from the shape and width of the 2D peaks in MDCS plots. Here we provide

these numbers as a step towards further analysis and understanding of these interactions.

We fit anti-diagonal and diagonal slices of the 2D spectral amplitudes with square-root-

Lorentzian (Lorentzian for intensity) and Gaussian models respectively, assuming we are in

the inhomogeneous limit [37]. In this limit, for diagonal peaks the width along the diagonal

is the inhomogeneous linewidth, and along the anti-diagonal the width corresponds to the

homogeneous linewidth. For cross-peaks with correlated inhomogeneous broadening the

anti-diagonal width can be a measure of the strength of the correlation but is also related to

the homogeneous linewidths of the two transitions. In Supplementary Fig. 13, the diagonal

and anti-diagonal linewidths of the attractive and repulsive polaron are similar.

Supplementary Figure 14 shows 0Q 2D spectra of the two cross-circular schemes (σ+σ+σ−σ−
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Supplementary Figure 14
∣∣ Zero-quantum linewidth fits. a-b, Experimental σ+σ+σ−σ− (a) and σ+σ−σ+σ− 0Q 2D

spectra. Vertical arrows indicate the point at which slices were taken for (c-f). The peaks in (a) are from QM pathways that
evolve via a population state, where the linewidth along ℏω2 is related to the population lifetime. The peaks in (b) evolve via
coherent superpositions between excitations in different valleys (e.g.

∣∣T⇑↑
〉 〈

S⇓↑
∣∣, ∣∣S⇑↓

〉 〈
T⇓↓

∣∣). In this case the linewidth
along ℏω2 gives an upper limit for the decoherence rate of these inter-valley coherences. c-f, Vertical slices of the attractive
(red) and repulsive (blue) polarons for both (a) and (b), fit with square-root-Lorentzian profile where Γ (FWHM) is shown in
meV.

and σ+σ−σ+σ−) with vertical slices through the peaks. For the σ+σ−σ+σ− polarization

sequence, where the system evolves as a coherence between excitations in the K and K′

valley (e.g. |T⇑↑⟩ ⟨S⇓↑| or |S⇑↓⟩ ⟨T⇓↓|), the linewidths are related to the decoherence time of

these inter-valley coherences: T2 =
2ℏ
Γ
, where Γ is the FWHM of the Lorentzian fit in meV.

For the σ+σ+σ−σ− polarization scheme the system evolves via population states and the

widths are related to the state lifetimes. In this case however, they are likely limited by the

constraints of our experiment.
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