
Supplementary Information for “Observation and control of

Casimir effects in a sphere-plate-sphere system”

Zhujing Xu,1 Peng Ju,1 Xingyu Gao,1 Kunhong

Shen,1 Zubin Jacob,2, 3 and Tongcang Li1, 2, 3, 4, ∗

1Department of Physics and Astronomy,

Purdue University, West Lafayette, Indiana 47907, USA

2Elmore Family School of Electrical and Computer Engineering,

Purdue University, West Lafayette, Indiana 47907, USA

3Birck Nanotechnology Center, Purdue University,

West Lafayette, Indiana 47907, USA

4Purdue Quantum Science and Engineering Institute,

Purdue University, West Lafayette, Indiana 47907, USA

(Dated: October 16, 2022)

1



Supplementary Note 1 – Casimir interaction calculation.

In this part, we discuss how we calculate the Casimir interaction in our three-body Casimir

system. We start with a two-body situation first. The Casimir force between an ideal con-

ductive sphere and an ideal conductive plate is F 0
C(x) = −π3h̄c

360
R
x3

, where x is the separation

between two surfaces, and R is the radius of the sphere. However, the finite conductivity

and dispersion of the real material needs to be considered in the calculation when we are

dealing with real materials. We use the Lifshitz theory to perform the calculation [1, 2],

which is briefly summarized here. The material response is characterized by its dielectric

function. The plasma model for the dielectric function of gold is ε(ω) = 1 − ω2
p

ω2 , where the

plasma frequency ωp is 9 eV/h̄ for gold [3]. At a finite temperature, the Casimir interaction

comes from both quantum and thermal fluctuations. At temperature T and separation x,

the Casimir energy per unit area is given by [1, 2]

E(x, T ) =
kBT

2π

∞∑
l=0

′
∫ ∞

0

k⊥dk⊥{ln[1− r2
TM(iξl, k⊥)e−2xq] + ln[1− r2

TE(iξl, k⊥)e−2xq]}, (1)

where ξl = 2πkBT l
h̄

is the Matsubara frequency and k⊥ =
√
k2
x + k2

y is the wave vector parallel

to the surface. In the summation, the l = 0 term will be multiplied by a factor of 1/2.

The reflection coefficients of the transverse electric and magnetic mode at each Matsubara

frequency and the momentum are

rTM(iξl, k⊥) =
ε(iξl)q(iξl, k⊥)− k(iξl, k⊥)

ε(iξl)q(iξl, k⊥) + k(iξl, k⊥)
, (2)

and

rTE(iξl, k⊥) =
q(iξl, k⊥)− k(iξl, k⊥)

q(iξl, k⊥) + k(iξl, k⊥)
, (3)

where q2(iξl, k⊥) = k2
⊥ + ξ2

l /c
2 and k2(iξl, k⊥) = k2

⊥ + ε(iξl, k⊥)ξ2
l /c

2. In our experiment,

the separation between two surfaces is far smaller than the dimensions of the cantilever and

the sphere. Therefore, we can apply the proximity-force approximation (PFA)[4] and the

Casimir force Fc between a microsphere and a cantilever is

FC(x, T ) = −2πRE(x, T ). (4)
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The calculation in [2] has shown that the contribution from thermal fluctuations at room

temperature is less than 4% when the separation is less than 800 nm. Thus the Casimir

effect in our experiment is dominated by quantum vacuum fluctuations.

We have discussed the Casimir force between two nearby surfaces so far. Next, we will

introduce the Casimir interaction in the three-body system. In our system, the thickness of

the center cantilever is 1 µm, and the typical separation in our measurement is from 50 nm

to 800 nm. Under such conditions, the contribution from the nonadditivity is relatively small

compared to the sum of the pair potential and hence we take the additivity approximation

in our calculation[5]. Under the thermal equilibrium, the force on the center cantilever can

be simplified as

F2,C = −FC(d1, T ) + FC(d2, T ). (5)

where d1 and d2 are the separation between cantilever 1 and cantilever 2, and cantilever

2 and cantilever 3, respectively. T is the temperature of the thermal environment. Our

Casimir system consists of three silicon cantilevers. Two of them are modified by attaching

polystyrene spheres on them to build the sphere-plate-sphere structure. All surfaces are

coated with 100-nm-thick gold films. In the calculation, we treat the interacting system as

two gold spheres and a gold plate. It is indicated in [2] that the Casimir force calculation

based on Supplementary Equation (1) and (4) for infinitely thick films only introduces an

error less than 0.1% for 100-nm-thick thin films. Under the proximity-force approximation,

the additivity approximation and the infinitely thick gold film approximation, we can calcu-

late the Casimir force on the center cantilever based on Supplementary Equation (1), (4),

and (5) without introducing much error.

To better understand the three-body Casimir system, we also performed more advanced

calculation for three-body Casimir force without the additivity approximation. Here we

discuss the effect of the thickness of the center plate on the nonadditivity component. The

configuration is shown in the inset of Supplementary Figure 1.(a). The Casimir system

consists of three gold plates. To study the Casimir force on the left gold plate(L), we

treat the system as a gold plate(L) and a multi-layer structure and they are separated by a
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Supplementary Figure 1. Calculation of Casimir force for a multi-layer system. (a). We

treat our Casimir system as a left gold plate(L) and a multi-layer system and calculate the

pressure on the gold plate(L). The multi-layer structure consists of three layers which are a

middle gold membrane(M), a vacuum and a right gold plate(R). The interface between the

gold plate(L) and the multi-layer structure is vacuum. The left gold plate(L) and the right

gold plate(R) are assumed to be infinitely thick. (b). The calculated Casimir pressure on

the gold plate(L) is shown as a function of d2 for different membrane thickness L1. Here d1

is set to be 100 nm. When the thickness of the gold membrane(M) is 10 nm, the Casimir

pressure on the gold plate(L) changes by 7.6 % when the separation d2 increases from 20

nm to 500 nm. If the thickness of the gold membrane(M) is 100 nm, the Casimir pressure

on the gold plate(L) only changes by 9× 10−4 % when d2 changes from 20 nm to 500 nm.

(c). The calculated Casimir pressure on the gold plate(L) is shown as a function of the

thickness L1 while the separation d1 and d2 are fixed. When the thickness L1 is larger than

50 nm, the direct Casimir force interaction between the gold plate(L) and the gold plate(R)

is negligible.

distance d1 in vacuum. The multi-layer structure consists of three layers which are a thin

gold membrane with a thickness of L1, a vacuum with thickness d2 and a infinitely thick
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gold plate. The Casimir pressure on the gold plate(L) is given by[6]

P (x, T ) = −kBT
π

∞∑
l=0

′
∫ ∞

0

qk⊥dk⊥{[r−1
1p (iξl, k⊥)r−1

2p (iξl, k⊥)e2xq − 1]−1

+[r−1
1s (iξl, k⊥)r−1

2s (iξl, k⊥)e2xq − 1]−1}, (6)

Here r1p and r1s are the reflection coefficients of the gold plate(L) for the p and s polarization

and they are written as

r1p(iξl, k⊥) =
ε(iξl)q(iξl, k⊥)− k(iξl, k⊥)

ε(iξl)q(iξl, k⊥) + k(iξl, k⊥)
, (7)

and

r1s(iξl, k⊥) =
q(iξl, k⊥)− k(iξl, k⊥)

q(iξl, k⊥) + k(iξl, k⊥)
. (8)

r2p and r2s are the reflection coefficients of the multi-layer structure for the p and s polar-

ization and we introduce the transfer matrix method to describe them. Here the transfer

matrix for the p(s) polarization is written as [6, 7]

Mp(s) = D
p(s)
0→1P1(L1)D

p(s)
1→2P2(d2)D

p(s)
2→3, (9)

where each layer is labeled as 0, 1, 2, 3 as shown in Supplementary Figure 4.(a). D
p(s)
j→j+1 is

the transmission matrix between layer j and j + 1 for the p(s) polarization and is given as

D
p(s)
j→j+1 =

1

2

1 + η
p(s)
j,j+1 1− ηp(s)j,j+1

1− ηp(s)j,j+1 1 + η
p(s)
j,j+1

 , (10)

where η
p(s)
j,j+1 is written as

ηpj,j+1 =
εj(iξ)Kj+1

εj+1(iξ)Kj

, ηsj,j+1 =
Kj+1

Kj

. (11)

Here Kj =
√
k2
⊥ + εj(iξ)ξ2/c2. P1(L1) and P2(d2) are the propagation matrix for layer 1 and

layer 2 and they are given as

P1(L1) =

eK1L1 0

0 e−K1L1

 , (12)
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and

P2(d2) =

eK2d2 0

0 e−K2d2

 . (13)

We can then get the reflection coefficients of the multi-layer structure as

r2p(s) = M
p(s)
21 /M

p(s)
11 , (14)

where M
p(s)
11 and M

p(s)
21 are the components of the transfer matrix Mp(s) based on Supple-

mentary Equation (10).

The calculated Casimir pressure on the gold plate(L) is shown in Supplementary Figure

1.(b). When the thickness of the middle gold membrane(M) is 100 nm, the Casimir pressure

on the gold plate(L) only changes by 9 × 10−4 % when d2 changes from 20 nm to 500 nm.

Here we consider a case that d1 = 100 nm. In our experiment, the thickness of the middle

gold membrane (center gold-coated silicon cantilever) is about 1µm, and hence the direct

Casimir force interaction between the left cantilever and the right cantilever is negligible in

our system.

Supplementary Note 2 – Experimental set-up and force measurement.

In our experiment, we built a three-cantilever Casimir system, as shown in Supplementary

Figure 2.(a). We modified all three cantilevers. We put a 70-µm-diameter polystyrene micro-

sphere on top of the left and the right cantilevers for creating a sphere-plate-sphere structure.

All surfaces are coated with 100-nm gold layers. Three independent fiber interferometers are

implemented to monitor the motion of each cantilever. We can use the piezo chips to drive

three cantilevers independently and change the separations between each two surfaces. The

inset of Supplementary Figure 2.(a) shows the optical image of the Casimir system. We also

show the scanning electron microscope (SEM) image of the sphere-cantilever and the bare

cantilever in Supplementary Figure 2.(b) and (c). We coat the cantilevers with gold films by

an E-beam evaporator. The recorded power spectrum densities (PSD) of three cantilevers

are shown in Supplementary Figure 3.

6



𝒅𝟏 𝒅𝟐
Cantilever 1 Cantilever 3

Cantilever 2

Fiber 1

Fiber 3

Fiber 2

𝐴1
𝐴3

𝐴2

(a)
(a)

(b) (c)

Supplementary Figure 2. Experimental setup of the Casimir system. (a). Schematics of

the three-cantilever Casimir setup. The motion of three cantilevers are detected by three

independent fiber interferometers. The inset shows an optical image of the system. (b) and

(c). Scanning electron microscope (SEM) image of a modified cantilever-sphere system and

a bare cantilever. Both surfaces are coated with 100-nm gold layers.

In the experiment, we apply dynamic force measurement scheme and phase-lock loop (PLL)

to track the resonant frequency in the presence of the Casimir interaction. Then we can get

the force gradient as dF
dx

= −2k δω
ω

, where k is the spring constant of the cantilever, δω is the

frequency shift in the presence of the interaction and ω is the natural resonant frequency. The

separation between each two surfaces is calibrated by the electrostatic force. The frequency

shift due to the electrostatic force and the Casimir force is ∆ω = − ω
2k

πε0R
x2

[(Vext−Vc)2+V 2
rms]−

ω
2k

dFC

dx
, where Vext is the external voltage applied on the surface, Vc is the patch potential,

Vrms is the rms voltage fluctuations. dFC

dx
is the force gradient due to the Casimir interaction

at separation x. Our measurements show that the contribution from rms voltage fluctuations
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Supplementary Figure 3. Power spectrum density (PSD) of three cantilevers in our

system.

is negligible compared to the Casimir interaction. After canceling the contribution from the

electrostatic force, we can get the Casimir force gradient dFc

dx
at each separation.

Here we introduce how we get the force gradient as shown in FIG.1 in the main text.

Supplementary Figure 4.(a) shows the frequency shift of cantilever 2 as a function of the

externally applied voltage between two surfaces when cantilever 3 is placed nearby and

cantilever 1 is far away. By fitting the data with a parabolic function, we can get a calibrated

separation of d2 = 310 nm for Fig.1.(d) in the main text. By fixing the separation d2 while

moving cantilever 1 to a closer position, we can measure the frequency shift as a function of d1,

as shown in Supplementary Figure 4.(b). The red diamonds are the total frequency shift due

to the Casimir interaction, including the contribution from both cantilever 1 and cantilever

3. The blue circles are the contribution only from cantilever 1. The measured frequency

shift gives the information of the force gradient by dF
dx

= −2k δω
ω

as shown in Fig.1.(d) in the

main text. We also show a measured patch potential between cantilever 1 and cantilever

2 at each separation d1. The patch potential is around -5 mV. The frequency shift from

patch potential is far smaller than the contribution from Casimir interaction. Similarly, the

calibrated separation d1, the measured frequency shift and the measured patch potential for
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Supplementary Figure 4. Measurement of the frequency shift and the patch potential

by electrostatic calibration when d1 is changing. (a). When cantilever 1 is far away, the

measured frequency shift of cantilever 2 in the presence of Casimir force and electrostatic

force between cantilever 2 and 3 is shown as a function of the applied voltage. The

parabolic fitting gives the calibrated separation d2 = 310 nm. (b). By extracting the data

when the patch potential is compensated, the frequency shift from Casimir interaction is

shown as a function of the separation d1. (c). Measured patch potential between cantilever

1 and cantilever 2 is shown as a function of separation d1.

Fig.1.(e) in the main text are shown in Supplementary Figure 5.

Supplementary Note 3 – External gain to the system

Now we introduce how we add external gain to the system to realize the amplification of

energy transfer by quantum vacuum fluctuations. In the experiment, we add extra gain to

cantilever 2 by feedback control as shown in Supplementary Figure 6.(a). Under the feedback

control, the damping rate of cantilever 2 becomes γ2 = γ20 − G, where γ20 is the natural

damping rate of cantilever 2 and G is the gain coefficient.

When G < γ20, the damping rate of cantilever 2 is still positive. We use the ringdown scheme

to calibrate the damping rate under such conditions as shown in Supplementary Figure 6.(b).

The cantilever 2 is first driven resonantly to a large amplitude. At Time = 0, we turn off

the driving voltage and record the displacement x2 as a function of time. By extracting the
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Supplementary Figure 5. Measurement of the frequency shift and the patch potential

by electrostatic calibration when d2 is changing. (a). When cantilever 3 is far away, the

measured frequency shift of cantilever 2 in the presence of Casimir force and electrostatic

force between cantilever 1 and 2 is shown as a function of the applied voltage. The

parabolic fitting gives the calibrated separation d1 = 276 nm. (b). By extracting the data

when the patch potential is compensated, the frequency shift from Casimir interaction is

shown as a function of the separation d2. (c). Measured patch potential between cantilever

2 and cantilever 3 is shown as a function of separation d2.

envelope of the oscillating dispalcement and fit it with a function x2 = A × exp(−γ2
2
t), we

can calibrate the real damping rate γ2 under a gain as shown in Supplementary Figure 6.(c).

When G > γ20, the damping rate of cantilever 2 is negative. When we turn on the gain at

Time = 0, the motion of cantilever 2 will be amplified as a function of time as shown in

Supplementary Figure 6.(d). We fit the envelope with the same function that A× exp(−γ2
2
t)

to extract the damping rate γ2 here.

In the experiment, we add gain by a derivative function in the PID control. The calibrated

γ2 at each derivative control parameter Kc ∗ Td/Ts is shown in Supplementary Figure 6.(f),

where Kc is the proportional gain, Td is the derivative time and Ts is the PID loop time. In

our system, the PID loop rate is 50000 Hz. We can control γ2 from 2π × 6 Hz to about γ2

from -2π × 6 Hz. A larger gain will lead to instability of the three-cantilever system. The

requirement of the steady condition will be discussed in the next session.
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Supplementary Figure 6. Extra gain is applied to cantilever 2 by a PID feedback

control loop. (a). Schematic of the three-cantilever and feedback control system. The

motion of cantilever 2 is recorded from the fiber interferometer and is sent to the computer.

The computer does the derivative of the signal and drive the piezo chips accordingly. (b)

and (c). We apply a gain to the system such that γ2 = γ20 −G > 0. (b). We use ringdown

scheme for damping rate γ2 calibration. We first drive cantilever 2 resonantly to a large

amplitude. We turn off the driving voltage and turn on the feedback control(gain) at Time

= 0s. (c). We extract the upper envelope of (b) and fit the amplitude by a function

x2 = A× exp(−γ2
2
t) and get the value γ2. (d) and (e). We apply a gain to the system such

that γ2 = γ20 −G < 0. We turn on the feedback control(gain) at Time = 0s and fit the

envelope with the same function x2 = A× exp(−γ2
2
t) to extract the negative damping rate

γ2. (f). The calibrated damping rate γ2 is shown at each derivative gain value in the PID

control.
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Supplementary Note 4 – Casimir force coupling and energy transfer

In this session, we will discuss the Casimir coupling in our three-body system. Under a slow

modulation on cantilever 2, the separation between each two cantilevers are time-dependent

such that

d1(t) = d10 − δd1 cos(ωmod1t)− δd2 cos(ωmod2t) + x1(t)− x2(t),

d2(t) = d20 + δd1 cos(ωmod1t) + δd2 cos(ωmod2t) + x2(t)− x3(t). (15)

Here d10,20 is the equilibrium separation when there is no modulation applied, δd1,d2 is the

modulation amplitude, and ωmod1,2 are two modulation frequencies. x1(t), x2(t) and x3(t)

describe vibrations of three cantilevers near their equilibrium positions. The motions of the

cantilevers follow equations

m1ẍ1 +m1γ1ẋ1 +m1ω
2
1x1 = FC(d1(t)),

m2ẍ2 +m2γ2ẋ2 +m2ω
2
2x2 = −FC(d1(t)) + FC(d2(t)),

m3ẍ3 +m3γ3ẋ3 +m3ω
2
3x3 = −FC(d2(t)). (16)

When the separation between each surfaces is far larger than the modulation amplitude

and the oscillation amplitude of three cantilevers such that d10,20 � δd, x1, x2, the

Casimir force term FC(d1,2) can be expanded to the second order with respect to the

term −δd1 cos(ωmod1t)− δd2 cos(ωmod2t) +x1(t)−x2(t) and δd1 cos(ωmod1t) + δd2 cos(ωmod2t) +

x2(t) − x3(t). In our experiment, we utilize parametric modulation to couple each two

cantilevers and the direct coupling is neglected since the coupling strength is far smaller

than the frequency differences between each two cantilevers in our experiment (about 470

Hz and 1230 Hz). The zero-order and first-order terms of FC(d1,2) shift the frequency of

the cantilevers but does not contribute to the energy transfer since they are off-resonant.

The contribution comes from the second derivative of the Casimir force FC(d1,2). Under the

limit of small modulation amplitudes and small oscillation amplitudes of three cantilevers,
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the equations can be written as

ẍ1 + γ1ẋ1 + ω2
1x1 =

Λ1

m1

cos(ωmod1t)(x1 − x2).

ẍ2 + γ2ẋ2 + ω2
2x2 =

Λ1

m2

cos(ωmod1t)(x2 − x1)

+
Λ2

m2

cos(ωmod2t)(x2 − x3).

ẍ3 + γ3ẋ3 + ω2
3x3 =

Λ2

m3

cos(ωmod2t)(x3 − x2). (17)

Here we have Λ1,2 = d2FC

dx2
|d10,20δd1,2.

We now generalize the displacements x1,2,3(t) to complex values z1,2,3(t) such that x1,2,3(t) =

Re[z1,2,3(t)]. We separate the fast-rotating term and the slow-varying term for z1,2,3(t) to

solve Supplementary Equation (17) such that

z1,2,3(t) = B1,2,3(t)e−iω1,2,3t, (18)

where B1,2,3(t) is the slow-varying oscillating component for three cantilevers and hence we

can neglect their second derivative terms B̈1,2,3(t). Under the limit of the small damping

rate of three cantilevers such that γ1,2,3 � ω1,2,3, the equations of motion can be written as

−iω1γ1B1(t)e−iω1t − 2iω1Ḃ1(t)e−iω1t

=
Λ1

2m1

(B1(t)e−i(ω1+ωmod1)t −B2(t)e−i(ω2−ωmod1)t),

−iω2γ2B2(t)e−iω2t − 2iω2Ḃ2(t)e−iω2t

=
Λ1

2m2

(B2(t)e−i(ω2−ωmod1)t −B1(t)e−i(ω1+ωmod1)t)

+
Λ2

2m2

(B2(t)e−i(ω2−ωmod2)t −B3(t)e−i(ω3+ωmod2)t),

−iω3γ3B3(t)e−iω3t − 2iω3Ḃ3(t)e−iω3t

=
Λ2

2m3

(B3(t)e−i(ω3+ωmod2)t −B2(t)e−i(ω2−ωmod2)t), (19)

where the rotating-frame approximation is taken and the fast-rotating terms are neglected.

Now we apply the transformation such that B′1(t) = B1(t), B′2(t) = B2(t)eiδ2t, and B′3(t) =

B3(t)eiδ3t, where δ2 = ω1 +ωmod1−ω2 and δ3 = ω1 +ωmod1−ωmod2−ω3. Then, the equation

13



of motion becomes

i


Ḃ′1(t)

Ḃ′2(t)

Ḃ′3(t)

 =


−iγ1

2
Λ1

4m1ω1
0

Λ1

4m2ω2
−iγ2

2
− δ2

Λ2

4m2ω2

0 Λ2

4m3ω3
−iγ3

2
− δ3



B′1(t)

B′2(t)

B′3(t)

 , (20)

where we have neglected the fast-rotating terms. Under the steady condition, Ḃ1, Ḃ2, and

Ḃ3 all equal to zero. The vibration amplitude of three cantilevers is the absolute value of

the slow-varying component such that A1,2,3(t) = |B1,2,3(t)|. When cantilever 1 is driven

resonantly at ω1 and the parametric modulation is on resonance such that δ2 = δ3 = 0, the

ratio of A3/A1 is
A3

A1

= |B3

B1

| = | Λ1Λ2

4m2m3ω2ω3γ2γ3 + Λ2
2

|. (21)

In the strong coupling regime that |g23| = | Λ2

2
√
m2m3ω2ω3

| � |γ2,3|, the transduction amplitude

is approximated to be
A3

A1

= |Λ1

Λ2

|. (22)

Under the weak coupling limit that |g23| = | Λ2

2
√
m2m3ω2ω3

| � |γ2,3|, the transduction amplitude

is approximated to be
A3

A1

= | Λ1Λ2

4m2m3ω2ω3γ2γ3

|. (23)

We can quantize the oscillations of the three cantilevers as phonons. By introducing normal-

ized amplitudes c1 =
√

m1ω1

h̄
B′1, c2 =

√
m2ω2

h̄
B′2, and c3 =

√
m3ω3

h̄
B′3, we obtain the equation

of motion for the phonon modes as

i


ċ1

ċ2

ċ3

 =


−iγ1

2
g12
2

0

g12
2
−iγ2

2
− δ2

g23
2

0 g23
2

−iγ3
2
− δ3



c1

c2

c3

 , (24)

where g12 = Λ1

2
√
m1m2ω1ω2

= d2FC

dx2
|d10δd1

1
2
√
m1m2ω1ω2

, and g23 = Λ2

2
√
m2m3ω2ω3

= d2FC

dx2
|d20δd2

1
2
√
m2m3ω2ω3

.

Therefore, the effective Hamiltonian of the system can be rewritten as

H =


−iγ1

2
g12
2

0

g12
2
−iγ2

2
− δ2

g23
2

0 g23
2

−iγ3
2
− δ3

 . (25)
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Now we consider a special case that g12 = g23, γ1 = γ3, and δ2,3 = 0. The eigenvalues of the

Hamiltonian are

λ1 = −iγ1

2
,

λ2 = −iγ1 + γ2

4
+

√
8g2

12 − (γ1 − γ2)2

4
,

λ3 = −iγ1 + γ2

4
−

√
8g2

12 − (γ1 − γ2)2

4
. (26)

When the coupling strength is large compared to the damping difference such that |g12| >
|γ1−γ2|

2
√

2
, we have Im(λ2) = −γ1+γ2

4
and hence the steady state requires that

γ1 + γ2 ≥ 0. (27)

When the coupling strength is small compared to damping difference such that |g12| < |γ1−γ2|
2
√

2
,

we have Im(λ2) = −γ1+γ2
4

+

√
(γ1−γ2)2−8g212

4
. The steady state requires that

γ1 + γ2 −
√

(γ1 − γ2)2 − 8g2
12 ≥ 0. (28)

In a special case that γ1 = γ2 = γ3 = 0, g12 = g23 = g, and δ2,3 = 0, the eigenvalues of the

Hamiltonian are λ1 = 0, λ2 = g/
√

2, λ3 = −g/
√

2. The corresponding eigenvectors are:

|e1〉 =
1√
2


1

0

−1

 , |e2〉 =
1

2


1
√

2

1

 , |e3〉 =
1

2


1

−
√

2

1

 . (29)

Interestingly, |e1〉 corresponds to the case when cantilever 1 and cantilever 3 oscillate with

the same amplitude, but cantilever 2 does not oscillate at all. Thus only two modes will

show up in the motion of cantilever 2 under these special conditions, as expected in FIG.

3.(c) and (d) in the main text.
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