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S1 Supplementary Notes1

S1.1 Effect of the number of selected source tasks2

To assess the effect of the number of selected source tasks (denoted by n) on our proposed transfer3

learning strategy, we plotted the prediction performance versus different values of n in Figure S9. We4

found that the prediction performance gradually improved with the increase of the value of n until the best5

performance that MoTSE can achieve (denoted by MoTSE*) was reached. To balance the accuracy and6

efficiency, we set n to three and five for the QM9 and PCBA datasets, respectively. We also introduced7

a baseline method that randomly selected source tasks for target tasks (denoted by Random) to make8

comparison with our proposed transfer learning strategy which exploited MoTSE to guide the source task9

selection.10

S1.2 Effect of the Value of λ11

We use λ to adjust the weights of the extracted local and global knowledge in the similarity estimation12

process. To evaluate the influence of the value of λ on the model performance, we plotted the prediction13

performance versus different values of λ in Figure S11a. We observed that MoTSE was robust to different14

values of λ ranging from 0.3 to 0.7. We set λ to 0.7 in our computational experiments.15

S1.3 Effect of the Randomness of the Probe Dataset16

The probe dataset is an important part of our MoTSE framework, which is shared across all tasks and17

acted as a proxy in the process of projecting each task into the unified latent task space, as described18

in the Method section of the main text. To evaluate the effect of different probe datasets, we first ran-19

domly sampled three probe datasets from the ZINC dataset and used MoTSE to estimate the similarity20

between tasks on the QM910k and PCBA10k datasets using the three probe datasets, respectively. Then21

we measured the Pearson’s and Spearman’s correlations between the similarity values estimated using22

three different probe datasets for individual tasks. The average of Pearson’s and Spearman’s correlations23

across all tasks on the QM9 dataset were 0.999 and 0.977, respectively. The average of Pearson’s and24

Spearman’s correlations across all tasks on the PCBA dataset were 0.996 and 0.886, respectively. Such25

high correlation results indicated that MoTSE was robust to different probe datasets.26

S1.4 Effect of the Size of Probe Dataset27

We also investigated the effect of the size of the probe dataset on the prediction performance of MoTSE.28

We plotted the prediction performance of MoTSE versus different sizes of the probe datasets (see Fig-29

ure S11b). From the results, the prediction performance kept relatively stable at high accuracy scores30

when the sizes of the probe dataset were larger than 300. We set the size of the probe dataset to 500 in31

our computational experiments.32

S1.5 Ablation study33

As we discussed in the main manuscript, MoTSE employed the attribution and MRSA methods to cap-34

ture the local and global knowledge of molecular property prediction method, respectively. We have con-35

ducted an ablation study on MoTSE to investigate the effect on the prediction performance if we only used36

the attribution method (denoted by MoTSElocal) or the MRSA method (denoted by MoTSEglobal) for the37
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task similarity estimation. As shown in Figure S10, MoTSE outperformed MoTSElocal and MoTSEglcoal38

on both QM9 and PCBA datasets, indicating that MoTSE provided more accurate similarity estimations39

in comparison with MoTSElocal and MoTSEglcoal. Thus, MoTSElocal and MoTSEglcoal are complementary40

to each other, and each of them contributes to the similarity estimation.41

S1.6 Generalize to multi-to-one transfer learning42

MoTSE performs transfer learning in a one-to-one fashion (i.e., transfer one source task to one target43

task). We also conducted new tests to evaluate whether a multi-to-one version of MoTSE (denoted44

by MTO) could provide better prediction performance. More specifically, for each target task, we first45

pre-trained a model by learning to predict the targets provided by its top-k (k > 1) similar tasks in a46

multitask learning fashion and then finetuned the pre-trained model on the dataset of the target task.47

We set k to 2 and 3, resulting in two variations of MTO, denoted by MTOk=2 and MTOk=3, respectively.48

In addition, we also introduced the ideal versions of MTOk=2 and MTOk=3, denoted by MTO∗
k=2 and49

MTO∗
k=3, respectively, which always selected the k tasks that can achieve the best finetuning results as50

the source tasks in the pre-training stage. As shown in Figure S12, MoTSE outperformed all the MTO-51

based methods on both QM9 and PCBA datasets. Such results may be attributed to that the knowledge52

contained in the model pre-trained on multiple tasks was potentially more abstract and entangled which53

made the target task hard to take advantage of such knowledge in the finetuning process with very limited54

data. How to effectively exploit the related knowledge from multiple source tasks should be an interesting55

direction in future studies.56
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S2 Supplementary Figures and Tables57
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Figure S1: Three types of feature representations of an example molecule, related to Section 2.1 and
STAR Methods. ECFP denotes the extended connectivity fingerprints, related to STAR Methods. SMILES
denotes the simplified molecular input line entry specification.
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Figure S2: An illustrative diagram of the model architecture employed in our experiments, related to
Section 2.1 and STAR Methods. N stands for the number of nodes in the input graph. The rectangles
stand for the feature vectors and the numbers above the them stand for their dimensions. GCN stands
for a graph convolutional network layer. Concat stands for the concatenation operation. Linear stands for
a linear layer.
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Figure S3: An illustrative diagram of the data generation process, related to Section 2.2. We sample
QM910k and QM9n from the QM9 dataset, where n<10K stands for the size of the dataset. QM910k and
QM9n share the same test set for a fair comparison of prediction performance.
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Figure S4: The prediction performance of seven transfer learning methods versus that of the Scratch
method on the (A) QM9filtered and (B) PCBAunbalanced datasets, related to Figure 3.
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Figure S5: The mean absolute error (MAE) scores of MoTSE and baseline methods on the QM9 dataset,
related to Figures 3 and 5. (A) The MAE scores on the QM9 dataset. (B) The MAE scores on the
QM9filtered dataset. (C-E) The MAE scores of MoTSE equipped with (C) GAT, (D) RNN and (E) ECFP
as backbones on the QM9 dataset.
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Figure S6: Impact of sizes of (A-B) target and (C-D) source datasets on the prediction performance of
MoTSE, related to Section 2.2. The prediction performance of MoTSE and Scratch on (A) QM9 and (B)
PCBA datasets, measured in terms of R2 and AUPRC, given different sizes of target datasets (i.e., 500,
1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000). The prediction performance of MoTSE
and Scratch on (C) QM9 and (D) PCBA datasets, measured in terms of R2 and AUPRC, given different
sizes of source datasets (i.e., 200, 300, 400, 500, 1000, 2000, 3000, 4000, 5000).
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Figure S7: The similarity between the source and target tasks versus the performance improvement on
the (A) QM9 and (B) PCBA datasets, related to Section 2.2.
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Figure S8: The similarity trees of tasks in the QM9 dataset constrcuted according to the task similarity
estimated based on (A) GCN and (B) GAT, respectively, related to Section 2.3.
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Figure S9: The prediction performance on the QM9 (A) and PCBA (B) datasets, measured in terms
of R2 and AUPRC versus different numbers of the selected source tasks (denoted by n), related to
Supplementary Notes. Random denotes the results from the randomly selecting source tasks. MoTSE*
denotes the best results that can be achieved by MoTSE.
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Figure S10: The prediction performance of MoTSE, MoTSElocal and MoTSEglobal on the (A) QM9 and
(B) PCBA datasets, measured in terms of R2 and AUPRC, respectively, related to Supplementary Notes.
MoTSElocal and MoTSEglobal stand for the variation of MoTSE that only used the attribution method and
MRSA method, respectively.
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Figure S11: The prediction performance on the QM9 and PCBA datasets, measured in terms of R2 and
AUPRC with different values of λ (A) and different sizes of the probe datasets (B), related to STAR
Methods and Supplementary Notes. The dashed line represents the final settings of λ and the size of
the probe dataset.
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Figure S12: The performance comparisons between MoTSE and different multi-to-one transfer learning
versions on the (A) QM9 and (B) PCBA datasets, measured in terms of R2 and AUPRC, respectively,
related to Supplementary Notes. MTO stands for the multi-to-one version of MoTSE, which selects the
top-k (k > 1) similar tasks according to the similarity derived from MoTSE in the pre-training stage. MTO∗

stands for the ideal version of MTO, which always selects the k tasks that can achieve the best finetuning
results as the source tasks.
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Dataset #Sample Task Description

QM910k

/
QM91k

10K/1K

mu dipole moment
alpha isotropic polarizability
homo energy of homo
lumo energy of lumo
gap gap between homo and lumo
r2 gap between homo and lumo
zpve zero point vibrational energy
u0 internal energy at 0 K
u298 internal energy at 298.15 K
h298 enthalpy at 298.15 K
g298 free energy at 298.15 K
cv heat capacity at 298.15 K

PCBA10k

/
PCBA1k

10K/1K

PCBA-1030 bio-activity against ALDH1A1
PCBA-1458 bio-activity against SMN2
PCBA-1460 bio-activity against K18
PCBA-2546 bio-activity against VP16
PCBA-2551 bio-activity against ROR
PCBA-485297 bio-activity against Rab9
PCBA-485313 bio-activity against NPC1
PCBA-485364 bio-activity against TGR
PCBA-504332 bio-activity against G9a
PCBA-504333 bio-activity against BAZ2B
PCBA-504339 bio-activity against JMJD2A
PCBA-504444 bio-activity against Nrf2
PCBA-504467 bio-activity against ELG1
PCBA-588342 bio-activity against luciferase
PCBA-624296 bio-activity against DNA re-replication
PCBA-624297 bio-activity against DNA re-replication
PCBA-624417 bio-activity against GLP-1
PCBA-651965 bio-activity against ClpP
PCBA-652104 bio-activity against TDP-43
PCBA-686970 bio-activity against HT-1080-NT
PCBA-686978 bio-activity against DT40-hTDP1
PCBA-686979 bio-activity against DT40-hTDP1
PCBA-720504 bio-activity against Plk1 PBD

HOPV 350

HOMO energy of HOMO
LUMO energy of LUMO
electrochemical gap minimal energy to create an electron hole pair in a semiconductor
optical gap exciton energy which determines onset of vertical interband transitions
PCE power conversion efficiency
V OC open-circuit voltage
J SC short-circuit current density
fill factor maximum power from a solar cell

BACE 1513 BACE inhibitors of human β-secretase 1 (BACE-1)
FreeSolv 642 FreeSolv hydration free energy in water
Table S1: Tasks and descriptions in the preprocessed QM9 and PCBA datasets, HOPV dataset, BACE
dataset and FreeSolv dataset, related to Section 2 and STAR Methods. #Sample stands for the number
of data samples for each tasks in the dataset.
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Dataset QM9 PCBA
Metric R2 AUPRC

Method

Scratch 0.608(0.006) 0.683(0.001)
MT 0.645(0.005) 0.719(0.001)
DGI 0.455(0.002) 0.699(0.002)

EdgePred 0.469(0.005) 0.708(0.001)
Masking 0.443(0.016) 0.687(0.002)

ContextPred 0.435(0.012) 0.701(0.001)
DGIsup 0.268(0.012) 0.725(0.002)

EdgePredsup 0.400(0.010) 0.723(0.001)
Maskingsup 0.423(0.020) 0.725(0.001)

ContextPredsup 0.399(0.016) 0.725(0.001)
MoTSE 0.711(0.002) 0.751(0.0)

Table S3: The prediction performance of MoTSE and baseline methods equipped with graph attention
network (GAT) on the QM9 and PCBA datasets, related to Figure 5A.

Dataset QM9 PCBA
Metric R2 AUPRC

Method
Scratch 0.543(0.003) 0.733(0.001)

MT 0.369(0.010) 0.763(0.001)
MoTSE 0.639(0.000) 0.782(0.000)

Table S4: The prediction performance of MoTSE and baseline methods equipped with fully-connected
network (FCN) on the QM9 and PCBA datasets, related to Figure 5B.

Dataset QM9 PCBA
Metric R2 AUPRC

Method
Scratch 0.751(0.003) 0.665(0.005)

MT 0.758(0.003) 0.707(0.004)
MoTSE 0.815(0.001) 0.735(0.001)

Table S5: The prediction performance of MoTSE and baseline methods equipped with recurrent neural
network (RNN) on the QM9 and PCBA datasets, related to Figure 5C.




