
ARTICLE

Large 22q13.3 deletions perturb peripheral
transcriptomic and metabolomic profiles
in Phelan-McDermid syndrome

Michael S. Breen,1,2,3,4,18,* Xuanjia Fan,1,2 Tess Levy,1,2 Rebecca M. Pollak,1,2 Brett Collins,1,2

Aya Osman,1,2 Anna S. Tocheva,3,5 Mustafa Sahin,6,7 Elizabeth Berry-Kravis,8,9 Latha Soorya,10

Audrey Thurm,11 Craig M. Powell,12,13 Jonathan A. Bernstein,14 Alexander Kolevzon,1,2,15

Joseph D. Buxbaum,1,2,3,4,16,17,* and on behalf of the Developmental Synaptopathies Consortium
Summary
Phelan-McDermid syndrome (PMS) is a rare neurodevelopmental disorder caused at least in part by haploinsufficiency of the SHANK3

gene, due to sequence variants in SHANK3 or subtelomeric 22q13.3 deletions. Phenotypic differences have been reported between PMS

participants carrying small ‘‘class I’’ mutations and large ‘‘class II’’ mutations; however, the molecular perturbations underlying these

divergent phenotypes remain obscure. Using peripheral blood transcriptome and serummetabolome profiling, we examined the molec-

ular perturbations in the peripheral circulation associated with a full spectrum of PMS genotypes spanning class I (n ¼ 37) and class II

mutations (n ¼ 39). Transcriptomic data revealed 52 genes with blood expression profiles that tightly scale with 22q.13.3 deletion size.

Furthermore, we uncover 208 underexpressed genes in PMS participants with class II mutations, which were unchanged in class I mu-

tations. These genes were not linked to 22q13.3 andwere strongly enriched for glycosphingolipidmetabolism, NCAM1 interactions, and

cytotoxic natural killer (NK) immune cell signatures. In silico predictions estimated a reduction in CD56þ CD16– NK cell proportions in

class II mutations, which was validated by mass cytometry time of flight. Global metabolomics profiling identified 24 metabolites that

were significantly altered in PMS participants with class II mutations and confirmed a general reduction in sphingolipid metabolism.

Collectively, these results provide new evidence linking PMS participants carrying class II mutations with decreased expression of cyto-

toxic cell signatures, reduced relative proportions of NK cells, and lower sphingolipid metabolism. These findings highlight alternative

avenues for therapeutic development and offer new mechanistic insights supporting genotype-to-phenotype associations in PMS.
Introduction

Phelan-McDermid syndrome (PMS) is one of the most

penetrant and common single-locus causes of autism spec-

trum disorder (ASD) and accounts for approximately 1% of

ASD diagnoses.1–3 PMS is caused by heterozygous 22q13.3

deletions or SHANK3 sequence variants leading to haploin-

sufficiency of the SHANK3 gene.2–6 Participants with PMS

present with a constellation of clinical and neurobehavio-

ral phenotypes, including neonatal hypotonia, global

developmental delay, intellectual disability, severely de-

layed or absent speech, and/or frequent ASD.6–8 Additional

features can also include seizures, motor skill deficits, and

structural brain abnormalities.8 Heterogeneity in the clin-

ical presentation of PMS is not fully explained by sequence

variants or deletions limited to the SHANK3 locus, empha-
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sizing the importance of understanding the broader ge-

netic landscape of PMS.

Themajority of reported cases of PMS are caused by large

22q13.3 deletions, which encompass additional genes and

can extend up to 9.2 Mb.6–9 Given the variable nature of

the deletions, it is useful to classify PMS genotypes as either

class I mutations (including SHANK3 sequence variants or

deletions in SHANK3 only or SHANK3 with ARSA and/or

ACR and RABL2B), or class II mutations (all other dele-

tions).8 The largest genotype-phenotype association anal-

ysis indicates that PMS participants with class II mutations

display increased rates of early developmental delays, intel-

lectual disability, minimally verbal status, and various

medical features.8 Notably, individuals with class I muta-

tions attained more advanced developmental milestones,

which were reached at a younger age compared with those
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with class II mutations, and were more likely to exhibit

higher language and communication skills.8 These results

are largely consistent with smaller independent re-

ports,6,7,10 and together emphasize that the frequency

and severity of PMS phenotypes is likely caused by hap-

loinsufficiency of multiple additional candidate genes. A

next practical step would be to identify consistent molecu-

lar changes resulting from these specific genetic alterations

in individuals with PMS.

SHANK3 is a scaffolding protein of the postsynaptic den-

sity of glutamatergic synapses11–13; additional disrupted

genes within larger class II mutations have been implicated

in processes related to stress and inflammation, mitochon-

drial function, neuronal differentiation, and cellular meta-

bolism.5,14–16 Molecular profiling of tissues derived from

PMS participants, albeit scarce, confirm these functional

categories and support the notion of unique molecular

programs underlying distinct clinical subtypes. For

example, increased severity of PMS phenotypes and larger

22q13.3 deletions have been associated with alterations in

mitochondrial complex I and IV activity,14 changes in pe-

ripheral blood epi-signatures enriched for neuronal devel-

opment and intracellular signaling,15 and metabolomic

changes implicated in metabolic stress and response to cy-

tokines regulating inflammation,15,16 all poised to influ-

ence neurodevelopment. Notably, even transcriptomics

of peripheral blood and postmortem brain tissue from par-

ticipants with idiopathic ASD implicate changes related to

inflammation, cellular proliferation/metabolism and im-

mune dysfunction,17–19 supporting the notion that

ongoing dysregulation of the immune system echoes alter-

ations in the central nervous system (CNS). Despite these

advances, studies examining themolecular changes under-

lying specific genetic alterations in PMS commonly

employ modest sample sizes, implement variable assess-

ment methods for measuring clinical phenotypes, and

apply differing thresholds for defining large and small de-

letions, making it challenging to elucidate the full spec-

trum of genes and pathways associated with genes disrup-

ted on 22q13.3.

Given the success of blood transcriptome profiling to

identify novel mechanisms and high-confidence targets

for several rare CNS disorders,20–23 including idiopathic

ASD19 more broadly, we hypothesized that unbiased pe-

ripheral blood transcriptomic and metabolomic profiling

across a large spectrum of genotypes would shed light on

the molecular changes underlying specific genetic alter-

ations in PMS.

The objective of this study was to examine the molecular

perturbations in the peripheral circulation associated with a

full spectrum of PMS genotypes. A total of 76 PMS probands

were included in this study. Peripheral blood transcriptomic

data were generated across 68 PMS participants, including

class I mutations (n ¼ 33) and class II mutations (n ¼ 35),

as well as an age- and sex-matched control group (n ¼
24). In addition, global metabolomic data were generated

across a partially overlapping subset of 25 PMS participants,
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comprised of class I mutations (n ¼ 11), class II mutations

(n ¼ 14), and an age- and sex-matched control group (n ¼
29). Using a combination of genotypic, transcriptomic,

and metabolomics data, we sought to: (1) elucidate key

genes, pathways and cell types altered in PMS participants

with class I and class II mutations; (2) explore molecular re-

lationships between gene expression patterns and clinical

features of PMS; and (3) identify core sets of differentially

abundant metabolites in PMS participants with class I and

class II mutations.We identify a molecular footprint of class

II mutations, which informs pathobiological mechanisms

in PMS and suggests approaches for interventions.
Material and methods

Ascertainment of PMS participants and collection of

clinical phenotypes
Informed consent was obtained from participants’ caregivers for

study participation, as described previously.8 The cohort included

76 PMS participants (38 females, 38 males) between the ages of 1

and 42 years (8.9 5 6.5). Forty-six participants were enrolled in

studies at the Seaver Autism Center for Research and Treatment

at the Icahn School of Medicine at Mount Sinai. An additional

30 participants were enrolled by partner sites through the Rare

Disease Clinical Research Network Developmental Synaptopathies

Consortium (DSC), as part of a PMS phenotyping and natural his-

tory study. For each participant, a comprehensive battery of stan-

dardized assessments, semi-structured interviews, and caregiver

report questionnaires was used to examine medical comorbidities,

intellectual and adaptive functioning, expressive and receptive

language, ASD symptomatology, and behavioral comorbidities,

as described previously.8 Studies were approved by the Institu-

tional Review Board (IRB) for the protection of human subjects

at Mount Sinai (study IDs: 98-0436, 10-0527, 12-1718) and Boston

Children’s Hospital (study ID: P00013300), which serves as the

central IRB for the DSC.
Peripheral blood RNA isolation, library preparation, and

quantification of gene expression
Peripheral blood was collected in PAXgene Blood RNA tubes

(QIAGEN, Valencia, CA) for 68 PMS participants. Peripheral blood

was also collected from 24 unaffected control subjects (12 females,

12 males) between the ages of 1 and 24 years (9.5 5 4.9), 21 of

whom were unaffected familial siblings. Total RNA was extracted

and purified in accordance with the PAXgene Blood RNA Kit in-

structions (QIAGEN). Globin mRNA was depleted from samples

using the GLOBINclear Human Kit (Life Technologies, Carlsbad,

CA). The quantity of purified RNA was measured on a NanoDrop

2000 Spectrophotomerter (Thermo Scientific; 61.4 5 24.1 ng

mL�1) and RNA integrity numbers measured with the Agilent

2100 Bioanalyzer (Agilent, Santa Clara, CA; 8.0 5 0.3). The Illu-

mina TruSeq Total RNA kit (Illumina, San Diego, CA) was used

for library preparation according to manufacturer’s instructions

without any modifications. Indexed RNA libraries were pooled

and sequenced using long paired-end chemistry (2 3 150 bp) at

an average read depth of �11M reads per sample using the Illu-

mina HiSeq2500. All high-quality trimmed reads were mapped

to UCSC Homo sapiens reference genome (build hg37) using

default STAR v.2.5.3 parameters.23 Samtools was used to convert
023



bamfiles to samfiles, and featureCounts24 was used to quantify

gene expression levels for each individual sample using default

paired-end parameters.

RNA sequencing data quality control
Raw count data measured 56,632 genes across 92 participants. Un-

specific filtering removed lowly expressed genes that did not meet

the requirement of aminimumof 1 count permillion in at least 15

subjects (�16% of subjects). A total of 16,285 genes were retained

and defined as stably expressed in peripheral blood. These genes

were subjected to limma VOOM normalization25 and inspected

for outlying samples using unsupervised hierarchical clustering

of subjects (based on Pearson coefficient and average distance

metric) and principal-component analysis to identify potential

outliers outside two standard deviations from these averages. No

such outliers were identified in the current dataset.

Gene-based annotations for loss-of-function intolerance
We collected probability of loss-of-function (LoF) intolerance (pLI)

scores from the gnomAD project. pLI scores indicate whether a

gene is intolerant for either heterozygous or homozygous LoF var-

iants, andwas used to classify disrupted genes on 22q13.3 as either

definitely LoF intolerant (pLI R 0.9), possible LoF intolerant

(0.5 R pLI < 0.9) or definitely LoF tolerant (pLI % 0.1).

Differential gene expression and association testing
Amoderated t test implemented through the limma package25 was

used to assess differential gene expression between unaffected

controls and three different groupings of PMS participants: (1)

all PMS participants; (2) class I mutations only; and (3) class II mu-

tations only. We also (4) tested for differences between partici-

pants with class II mutations and class I mutations. These analyses

tested PMS genotypes as the primary main outcome. Subse-

quently, we performed a secondary exploratory analysis exam-

ining relationships between gene expression and 19 clinical phe-

notypes within PMS participants only. Each clinical phenotype

was tested separately and any participant with missing data would

be dropped from the analysis, respectively. All analysis described

here covaried for the possible influence of sex and age on gene

expression differences. Significance threshold was set to a

Benjamini-Hochberg (BH) multiple test corrected p < 0.05 to con-

trol the false discovery rate (FDR), unless specified otherwise.

Functional annotation of differentially expressed genes
Correlation adjusted mean rank (CAMERA) gene set enrichment

was performed using the resulting sets of summary statistics.25,26

CAMERA performs a competitive gene set rank test to assess

whether the genes in a given gene set are highly ranked in terms

of differential expression relative to genes that are not in the

gene set. For example, the test ranks gene expression differences

in PMS participants with class II mutations relative to unaffected

controls to test whether gene sets are over-represented toward

the extreme ends of this ranked list. After adjusting the variance

of the resulting gene set test statistic by a variance inflation factor

that depends on the gene-wise correlation (which we set to default

parameters, 0.01) and the size of the set, a p value is returned and

adjusted for multiple testing. We used this function to test two

aims: we examined each resulting set of PMS-associated changes

in gene expression for enrichment of biological processes and

pathways using a well-curated collection of REACTOME pathways

and gene ontology molecular factors. We specifically focused on
Human
functional annotation of differentially expressed genes (1) across

all PMS participants, (2) participants with class I mutations only;

(3) participants with class II mutations only; and (4) changes be-

tween class I and class II mutations.

Cell type-specific gene set enrichment analysis using

single-cell RNA sequencing data
Three single-cell RNA sequencing (scRNA-seq) experiments were

downloaded and incorporated in this study: the first dataset

comprised 10,975 peripheral blood mononuclear cells (PBMCs)

(v.2 Chemistry) and the second dataset comprised 33,227 PBMCs

(v.2 Chemistry), both were downloaded from the list of publicly

available 10X Genomic datasets; the third data set comprised

67,272 PBMCs and was obtained from Zheng et al.27 These three

scRNA-seq PBMC datasets were leveraged due to their differences

in the total number of sequenced cells, chemistries, batches, and

laboratories, thus ensuring robustness and reproducibility of our

enrichment results. For each dataset, we used pre-computed filtered,

normalized, and scaled data together with pre-existing cell-type

classifications as originally described and deposited for each dataset.

Thus, no additional data processing was performed as each experi-

ment was pre-processed and quality controlled. Next, cell-type

marker genes were curated across all three experiments using the

FindAllMarkers function in the Seruat R package28 with the

following specifications: min.pct ¼ 0.25, logfc threshold ¼ 0.01,

FDR p < 0.05. These resulting lists of cell-type markers were

compiled into cell-type-specific gene sets and used as input to

performCAMERAgene set enrichment analysis (as described above)

to determine if a rank ordered list of PMS-related differentially ex-

pressed genes contained an over-representation of cell-type-specific

genes toward either extreme end. A separate independent cell-type

enrichment analysis was performed using the three datasets. Rather

than testing for the distribution of cell-specificmarker genes along a

ranked list of PMS-related genes, we directly queried the expression

of a given list of PMS-related genes within and across all individual

single cells using singular value decomposition. Thus, the expres-

sion of each PMS-related gene set was aggregated into one singular

eigengene value, whichwas plottedwithin and across all single cells

as a global representative of gene expression for a given gene set of

interest.

In silico cytometry estimates the proportions of

peripheral blood immune cells
The frequencies of circulating blood immune cells were estimated

for each individual with transcriptomic data using CIBERSORTx

cell-type de-convolution.29 CIBERSORTx relies on known cell-sub-

set-specific marker genes and applies linear support vector regres-

sion, a machine learning approach highly robust compared with

other methods with respect to noise, unknown mixture content

and closely related cell types. As input, we used the LM22 signa-

ture matrix to distinguish nine main leukocytes subtypes: B cells

(CD19þ), T cells (CD3þ), natural killer (NK) cells (CD56þ), mono-

cytes (CD14þ), dendritic cells, mast cells, macrophages, eosino-

phils, and neutrophils. The means of the resulting estimates

were compared between PMS participants and unaffected controls

and tested for significance using a Student’s t test.

Cytometry by time of flight: Data acquisition, pre-

processing, and analysis
High-dimensional immuno-phenotyping using cytometry by

time of flight (CyTOF) was performed on frozen stabilized
Genetics and Genomics Advances 4, 100145, January 12, 2023 3



PBMCs from five PMS participants with class II mutations and four

age-matched pediatric control participants. Thawed PBMCs were

delivered to the Human Immune Monitoring Core at the Icahn

School of Medicine at Mount Sinai in fresh RPMI medium. Sam-

ples were washed in cell staining buffer (CSB; Fluidigm, San Fran-

cisco, CA) and re-suspended in fresh CSB. Fc Receptor blocking

(BioLegend, San Diego, CA), Rh103 viability staining (Fluidigm),

and live-cell barcoding were all performed simultaneously at

room temperature. After a 30-min incubation at room tempera-

ture, samples were washed twice in CSB, pooled, and stained

with surface markers for 30 min at room temperature. Two CSB

washes were performed. Samples were then fixed with 2.4% PFA

and subsequently labeled with iridium and osmium for 30 min

at room temperature. Samples were washed twice in CSB and

stored in CSB until acquisition.

Prior to data acquisition, samples were washed in cell acquisi-

tion solution (Fluidigm) and resuspended at a concentration of 1

million cells per mL in cell acquisition solution containing a

1:20 dilution of EQ normalization beads (Fluidigm). The samples

were then acquired on a Helios mass cytometer equipped with a

wide-bore sample injector at an event rate of <400 events per sec-

ond. After acquisition, repeat acquisitions of the same sample were

concatenated and normalized using Fluidigm software and up-

loaded to Cytobank for data analysis.

Cells were first identified based on Ir-193 DNA intensity and

CD45 expression; Ce140þ normalization beads, CD45-low/Ir-

193-low debris and cross-sample, and Gaussian ion-cloud multi-

plets were excluded from downstream analysis. After this data

cleanup, manual gating was utilized to debarcode the multiplexed

live-cell barcoded sample. The FCS files were split by debarcoded

population to complete debarcoding and data cleanup. The cell

counts and frequencies of the annotated cell subsets, excluding

debris and known cell-cell multiplets, were exported for down-

stream statistical analyses. To identify changes in cellular popula-

tions we performed differential abundance analysis using amoder-

ated t test implemented through limma.25 The annotated cell

frequencies were used as input into a model fit using class II muta-

tions as the outcome variable.
Global plasma metabolomics profiling and data pre-

processing
Plasma was isolated from 54 participants (n ¼ 29 unaffected con-

trols; n¼ 11 class I mutations; n ¼ 14 class II mutations) by centri-

fugation of blood samples in EDTA tubes for 30 min at 1,500 3 g.

Notably, 17 PMS participants and 12 unaffected controls had

paired peripheral blood transcriptomic data. Separated plasma al-

iquots of 0.5 mL were stored immediately at�80�C until transport

in dry ice for global metabolomic profiling using the analytical

DiscoveryHD4 platform by Metabolon, as described previ-

ously.30,31 Raw data were extracted and signature chromato-

graphic peaks and relative ion concentrations for metabolites de-

tected were identified for each sample. Spectrometry data were

analyzed using the quantify individual components in a sample

method.31 Metabolite identification was performed by matching

each metabolite aggregate to an annotated reference chemical li-

brary containing >4,000 metabolites with well-defined chemical

profiles. Peaks were quantified using the area under the curve.

Metabolite data were then normalized in terms of raw peak area

counts and re-scaled to set the median equal to one. Subsequently,

any missing values, which constituted �8% of the entire data

frame, were imputed with the minimum. Finally, we removed me-
4 Human Genetics and Genomics Advances 4, 100145, January 12, 2
tabolites with low standard deviation (SD < 0.01) across the entire

cohort, yielding 1,045 metabolites.

Metabolomics statistical analyses
A moderated t test from limma25 was used to assess differential

abundance of metabolites between unaffected controls and three

different groupings of PMS participants: (1) all PMS participants;

(2) class I mutations only; and (3) class II mutations only. We

also (4) tested for differences between participants with class II

mutations and class I mutations. These analyses adjusted for the

possible influence of sex and age on metabolite profiles and a sig-

nificance threshold was set to a BH multiple test corrected p < 0.1

to control the FDR. Differentially abundant metabolites were sub-

jected to pathway annotation using MetaboAnalyst5.0.32 We

applied a joint pathway analysis to integrate our transcriptomic

and metabolomic data and interpret them at a pathway level. To

do so, the mass of each metabolite detected was queried against

the Human Metabolome Database (HMDB).33 Once identified, a

list of differentially expressed genes and differentially abundant

metabolites identified by the HMDB was imported into MetaboA-

nalyst5.0 along with their direction of effect (log2 fold changes).

These results mapped to well-curated molecular pathways for

over-representation analysis using hypergeometric tests, and p

values were adjusted using Holm-Bonferroni correction.
Results

Clinical features of PMS participants with class I and

class II mutations

A total of 76 PMS probands were included in this study (Ta-

ble 1). Across the full cohort, 17 participants had sequence

variants in SHANK3, including 13 frameshift, 2 nonsense,

1 splice site, and 1 de novomissense variant (Figure S1). Par-

ticipants were parsed into two groups: (1) class I mutations:

sequence variants or small deletions including only

SHANK3 or SHANK3 in combination with ARSA and/or

ACR and RABL2B; and (2) class II mutations: all larger dele-

tions that did not qualify as class I mutations. Participants

with class II mutations exhibit significantly lower full-

scale, verbal and nonverbal IQ/DQ relative to class I

mutations (p ¼ 0.045, p ¼ 0.023, p ¼ 0.019, respectively),

consistent with existing evidence for genotype-

phenotype associations in PMS.8 Notably, class II muta-

tions also display significantly reduced motor skills on

the Vineland-2 Adaptive Behavior Scale (VABS Motor) but

were also younger when compared with participants

with class I mutations (p ¼ 0.006, p ¼ 0.02, respectively).

A subset of PMS participants in this study underwent pe-

ripheral blood transcriptome profiling (n ¼ 68) and/or

serum metabolomic profiling (n ¼ 25) (Table S1), which

were the focus of the subsequent analyses.

Class II mutations, but not class I mutations, alter

transcriptional profiles in peripheral blood

Peripheral blood transcriptomic data were generated

across 68 PMS participants, including class I sequence var-

iants and mutations (n ¼ 33) and class II mutations (n ¼
35), as well as an age- and sex-matched control group
023



Table 1. Clinical features of PMS participants harboring class II and class I mutations in this study

Entire cohort of 76 PMS probands Transcriptome subset (68 probands) Metabolome subset (25 probands)

Class II (n ¼ 39) Class I (n ¼ 37) p value Effect size p value Effect size p value Effect size

Sex, M/F 16/23 22/15 0.169 �0.180 1.000 0.010 0.877 �0.120

Caucasian/other 33/6 (84%) 33/4 (89%) 0.802 �0.070 1.000 �0.010 0.565 0.250

Hispanic/other 4/35 (11%) 4/33 (12%) 1.000 �0.010 0.215 �0.180 0.363 �0.250

Age (months) 85.821 5 47.781 129.432 5 97.734 0.026 �0.579 0.039 �0.564 0.317 �0.180

Verbal IQ/DQ 22.354 5 17.494 33.617 5 24.181 0.045 �0.546 0.034 �0.645 0.305 �0.490

Nonverbal IQ/DQ 28.688 5 17.237 39.973 5 21.916 0.023 �0.583 0.017 �0.699 0.222 �0.383

Full scale IQ/DQ 24.739 5 16.003 34.218 5 19.943 0.019 �0.535 0.016 �0.623 0.272 �0.437

ADOS total 15.912 5 6.122 15.821 5 8.094 0.854 0.013 0.891 0.085 0.717 0.745

ADOS SA 12.941 5 5.116 11.882 5 6.741 0.676 0.180 0.464 0.276 0.802 0.880

ADOS RRB 3 5 1.969 3.939 5 2.318 0.066 �0.444 0.063 �0.463 0.431 �0.475

ADI communication 12.697 5 4.355 12.065 5 4.761 0.425 0.141 0.425 0.070 0.410 1.401

ADI social 19.529 5 6.872 17.031 5 8.656 0.313 0.326 0.359 0.308 0.094 1.880

ADI RRB 4.771 5 2.426 4.594 5 3.12 0.743 0.065 0.822 0.050 0.451 1.241

VABS communication 50.564 5 15.441 52.722 5 19.823 0.531 �0.124 0.268 �0.333 0.795 �0.949

VABS DLS 51.821 5 13.483 53.278 5 16.77 0.702 �0.098 0.505 �0.154 0.897 �0.725

VABS social 56.513 5 12.941 60.75 5 17.977 0.313 �0.276 0.230 �0.361 0.938 �0.756

VABS motor 55.324 5 11.954 63.188 5 10.187 0.006 �0.714 0.004 �0.774 0.051 �0.117

VABS comp 51.308 5 12.404 55.306 5 16.603 0.190 �0.278 0.171 �0.327 0.203 �0.503

ABC irritability 10.114 5 9.536 8.286 5 11.184 0.158 0.179 0.117 0.312 0.560 0.707

ABC social withdrawal 10.943 5 9.142 9.029 5 7.86 0.485 0.228 0.328 0.270 0.950 0.992

ABC stereotypic behavior 4.857 5 4.846 5.371 5 6.193 0.887 �0.094 0.714 0.096 0.269 0.239

ABC hyperactivity 19.265 5 12.425 19 5 13.083 0.876 0.021 0.979 �0.027 0.829 �0.741

ABC inappropriate speech 1.457 5 2.091 3.371 5 5.719 0.113 �0.451 0.259 �0.343 0.055 �0.071

Recurrent infections, Y/N 13/24 (54%) 11/22 (50%) 1.000 0.012 1.000 0.010 1.000 0.010

Continuous measures were analyzed using aMann-Whitney U test and effect sizes computed using Cohen’s D. Discrete measures were analyzed using a chi-square test and effect sizes computed using the phi coefficient. ABC,
Aberrant Behavior Checklist; ADI, Autism Diagnostic Interview; ADOS, Autism Diagnostic Observation Schedule; DLS, daily living skills; DQ, developmental quotient; IQ, intellectual quotient; RRB, restrictive and repetitive
behavior; SA, Social Affect; VABS, Vineland Adaptive Behavior Scales.
Recurrent infections were clinician graded and defined as more than two pneumonia or sinus infections per year.
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Figure 1. The landscape of class I and class II mutations in PMS
(A) Lollipop plot of genes affected by class I mutations and class II mutations across the terminal end of the long arm of chromosome 22
(22q13.3) in the 68 PMS probands included in the study. Genes are displayed as either expressed (blue; n¼ 52 genes) in peripheral blood
or not (orange; n¼ 76 genes) and ranked by the number of probands harboring the affected gene (y axis). SHANK3 is highlighted in pink.
(B)Unsupervisedhierarchal clustering andheatmap (blue, low; red, high) depiction of the 52 genes on 22q13.3 that are expressed inperiph-
eral blood affected by class I and class IImutations. Note that class Imutations are parsed into two groups: sequence variants (n¼ 16; green)
anddeletions (n¼17; lightblue).Clusteringdistinguishesprobandswithclass IImutations fromthosewithclass Imutations andunaffected
controls. Genes were rank ordered by the number of PMS participants with the affected gene (y axis; rare to more frequent).
(n ¼ 24), which largely consisted of unaffected siblings

(�91%). Given the breadth of genes affected by large class

II mutations on the terminal end of the long arm of chro-

mosome 22 (22q13.3) (Figure S2A), we queried which of

these genes are stably expressed in peripheral blood. Of

128 genes affected by large class II mutations, 52 genes

were stably expressed and detected in peripheral blood

(�40%), including genes ARSA, RABL2B, and BRD1, which

were affected by the majority of class II mutations

(Figure 1A). Unsupervised hierarchical clustering applied

to these 52 blood-expressed genes on 22q13.3 accurately

distinguished 85% of class II mutations (30/35) from all

other participants, based on reduced expression levels of

these genes (Figure 1B). Participants with class I mutations

and unaffected controls clustered together and displayed
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higher expression levels on average for this subset of

22q13.3 genes. To determine which of the disrupted genes

on 22q13.3 are intolerant to heterozygous and homozy-

gous LoF, we computed pLI scores. Using this metric, we

classified eight of the 52 blood-expressed genes as

‘‘possibly LoF intolerant’’ (0.5 R pLI < 0.9) and eight

additional genes as ‘‘definitely LoF intolerant’’ (pLI R

0.9), including genes TRABD, PIM3, TBC1D22A, ZBED4,

PLXNB2, BRD1, GRAMD4, and CELSR1 (Figure S2B).

Notably, all 52 genes are broadly expressed across 30

distinct human tissues from the GTEx project

(Figure S2C), suggesting that their disruption may affect

diverse biological systems across a range of tissues.

Transcriptome-wide differences in gene expression were

modelled for (1) all PMS participants, (2) class I mutations,
023



Figure 2. Altered peripheral blood gene expression profiles in class II mutations
(A) The total number of differentially expressed genes (DEGs) (y axis) for each comparison (x axis). Each analysis adjusted for sex and age
as covariates.
(B) Volcano plot of class II DEGs relative to unaffected controls depicting log2 fold change (log2FC; x axis) and –log10 FDR adjusted p
value (y axis). The horizontal line indicates FDR < 5%. Genes in yellow are the 52 genes expressed in blood that are affected by large
class II mutations in PMS. Genes in blue are all other downregulated genes and those in pink are all other upregulated genes.
(C) Four representative pathway enrichment scores (y axis) of class II DEGs according to ranked t statistics, high (pink) to low (blue) (x
axis). All enrichment results can be found in Table S2.
(D) The resulting FDR adjusted p value enrichment for all differential comparisons reveals shared and unique gene set enrichment
among class II and class I mutations.
(E) qRT-PCR validation of three target genes across four technical replicates (used to generate standard error bars) per group: BRD1 (a
downregulated gene on chr 22); RIC3 (an upregulated gene on chr 11); and CLIC5 (a downregulated gene on chr 6). A Student’s t test
was used to test delta CT values significant differences.
(F) CAMERA cell-type enrichment of underexpressed DEGs (x axis) according to seven immune cell types (y axis) reveals strong enrich-
ment of CD56þ genes.
(G) CIBERSORTx cell-type predictions reveal a significant reduction in the frequency CD56þ cells among class II mutations. Standard
error bars summarize variability across each respective group.
(H) CyTOF validates estimated cell-type proportions on a subset of controls and participants with class II mutations. Scaled frequencies
across all participants for major andminor immune cell populations are presented in heatmap form (right). Boxplots of the two immune
populations with significant differences (p < 0.05, linear model) associated with class II mutations (left).
and (3) class II mutations, each relative to unaffected con-

trols. We also modelled for (4) differences between class II

mutations and class I mutations. Overall, the largest effect

was observed between participants with class II mutations

and unaffected controls, uncovering 208 underexpressed

genes and 42 overexpressed genes associated with class II

mutations (FDR < 5%) (Figure 2A; Table S2). Similarly, dif-

ferences between class II and class I mutations revealed 89

underexpressed genes and 2 overexpressed associated with

class II mutations; �84% of these genes were also differen-

tially expressed in class II mutations compared with unaf-

fected controls (Figure S3). There were no significant
Human
changes observed between class I mutations compared

with unaffected controls. Likewise, few genes were signifi-

cantly differentially expressed when comparing all PMS

participants (class I and class II mutations) to unaffected

controls (n ¼ 23 genes). These results indicate that gene

expression profiles are similar between participants with

class I mutations and unaffected controls, whereas partici-

pants with class II mutations are associated with unique

peripheral blood transcriptional signatures.

Of the significantly underexpressed genes associated

with class II mutations, 31 genes were located on

22q13.3 while the remaining (�82%) were not linked to
Genetics and Genomics Advances 4, 100145, January 12, 2023 7



this genomic region (Figure 2B). We identified genes chlo-

ride intracellular channel 5 (CLIC5) and keratin type I cyto-

skeletal 23 (KRT23) to be among the most significant

underexpressed genes in class II mutations not located

on 22q13.3. We also identified RIC3 acetylcholine receptor

chaperone (RIC3) and paternally expressed 3 (PEG3) to be

among the most significant overexpressed genes in class

II mutations. A competitive gene set ranking approach

was used to functionally annotate class II-related

genes, revealing overexpressed genes enriched for pro-

cesses related to nonsense-mediated decay (FDR p ¼
9.3 3 10�16), protein translation (FDR p ¼ 4.0 3 10�14),

and cell-cycle check points (FDR p ¼ 0.003), while under-

expressed genes enriched for extracellular matrix organiza-

tion (FDR p ¼ 0.0001), NCAM1 (also known as CD56)

interactions (FDR p ¼ 0.004), voltage-gated calcium chan-

nel activity (FDR p ¼ 0.006), and glycosphingolipid meta-

bolism (FDR p ¼ 0.03) (Figures 2C and 2D), among other

processes (Table S2). To ensure confidence of our results,

we performed technical validation of three genes of inter-

est by qRT-PCR, which confirmed significant under expres-

sion of BRD1 and CLIC4, as well as significant overexpres-

sion of RIC3 in class II participants relative to class I

mutations and unaffected controls (Figure 2E).

To support these functional enrichment observations,

we tested whether the candidate dysregulated genes

indeed interact with each other at the protein level. A sig-

nificant overrepresentation of direct protein-protein inter-

actions (PPIs) was identified among differentially ex-

pressed genes in PMS participants with class II mutations

(p < 1.0e–16, observed edges ¼ 228, expected edges ¼
112) (Figure S4). As expected, disrupted genes on 22q13.3

displayed a higher average number of interactions (average

node degree ¼ 2.32) relative to under- and overexpressed

genes in PMS participants with class II mutations (average

node degree ¼ 1.77 and 0.50, respectively). The peripheral

blood PPI network derived from participants class II muta-

tions was again enriched for components related to

NCAM1 signaling and cytotoxic immune cell signatures,

and featured several underexpressed hub genes, including

NCAM1, perforin 1 (PRF1), and interleukin-2 receptor sub-

unit beta (IL2RB), as well as genes T-box transcription fac-

tor 21 (TBX21) and sphingosine-1-phosphate receptor 5

(S1PR5), which are critical for the maturation and recruit-

ment of CD56þ NK cells into the periphery.34,35

Predicting reduced NK cell-specific expression and

cellular proportions in class II mutations

A multi-step approach explored the cellular origins of the

differentially expressed genes in class II mutations. First,

we collected genes that are significantly and highly ex-

pressed across seven main immune cell types leveraging

an existing scRNA-seq experiment (see Material and

methods). Using the same gene set ranking approach as

above, we performed cell-type enrichment analysis and

identified a significant enrichment of CD56þ NK cell

genes among underexpressed genes in class II mutations
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(FDR p ¼ 6.8 3 10�10) (Figure 2F). Notably, we also

observed an enrichment for CD56þ NK cell genes among

nominally significant underexpressed genes in partici-

pants’ class I mutations (FDR p ¼ 1.5 3 10�5)

(Figures S5A and S5B). Second, we performed the reverse

approach by querying the expression of the 208 underex-

pressed genes in class II mutations within thousands of sin-

gle peripheral blood mononuclear cells across three inde-

pendent experiments (see Material and methods). These

analyses confirm that underexpressed genes associated

class II mutations are consistently and highly expressed

in CD56þ NK cells (Figure S6). Third, we performed cell-

type deconvolution analysis of the bulk peripheral blood

transcriptome data using an independent cell-type-specific

reference marker list and confirmed a significant reduction

in the proportion of estimated CD56þ NK cells in

class II mutations compared with unaffected controls

(p ¼ 0.007) (Figure 2G). Notably, a general reduction in

the proportion of CD56þ NK cells was also observed

among class I mutations, albeit non-significant (p ¼
0.104). Fourth, we re-computed our differential gene

expression analyses for (1) all PMS participants and (2)

class II mutations relative to unaffected controls covarying

for CD56þ NK cellular proportions. Adjusting for CD56þ
NK cells had the largest effect on differential gene expres-

sion, and removed �69% of differentially expressed genes

in class II mutations relative to unaffected controls

(Figure S5C). Fifth, we identified 25 genes, including

S1PR5, that were highly expressed in CD56þ NK cells via

scRNA-seq that were also significantly underexpressed

among class II mutations and performed unsupervised hi-

erarchical clustering, which accurately classified 82% (29/

35) of participants with class II deletion from remaining

samples (Figure S5D). Finally, given the critical role of

S1PR5 to recruit NK cells into the peripheral circulation

and to bind lipid signaling molecule sphingosine-1-phos-

phate (S1P),34,35 we asked which of the disrupted genes

on 22q13.3 might play a role in regulating S1PR5 expres-

sion and/or sphingolipid metabolism. While the vast ma-

jority the 52 blood-expressed genes on 22q13.3 were high-

ly correlated with S1PR5, we found that the expression of

ceramide kinase (CERK), and parsing class II mutations ac-

cording to those with the disruption of CERK relative to

the remainder of class II mutations, was moderately predic-

tive of S1PR5 expression levels (Figure S7). This observa-

tion was strengthened by the direct PPIs observed between

CERK and SIPR5 (Figure S4).

Mass cytometry validates reduced peripheral CD56þNK

cells and egress to the periphery in class II mutations

To validate these predictions, we performed CyTOF-based

immunophenotyping on a subset of PMS participants

with class II mutations (n ¼ 5) and an age- and sex-

matched control group (n ¼ 4). While both controls and

class II mutations had similar distributions of major im-

mune cell subsets in peripheral blood, the frequencies of

finer immune cell types were significantly altered
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(Figure 2H). Specifically, we observed a significant increase

in the proportions of CD3þ CD4– CD8– (double-negative)

T cells and a significant reduction in the proportions of

CD56þ CD16– NK cells in class II mutations (p ¼ 0.001,

p ¼ 0.03, respectively) (Figure 2H), validating our in silico

predictions. Collectively, these results indicate that class

II mutations are associated with unique peripheral blood

transcriptional changes, which might be explained by al-

terations in the underlying cellular composition of

CD56þ NK cells and/or related cell-specific gene expres-

sion programs.

Secondary exploratory analysis reveals transcriptomic

predictors of ABC-SW

A secondary exploratory analysis examined relationships

between collected clinical phenotypes and peripheral

blood gene expression across all 68 PMS participants.

While few significant gene-trait associations (n ¼ 3) were

observed at FDR < 5%, relaxing the statistical assumption

of significance to FDR < 10% uncovered 534 genes posi-

tively associated with differences in the Aberrant Behavior

Checklist Social Withdrawal (ABC-SW) subscale36 and 479

genes negatively associated with ABC-SW (Figures S8A and

S8B; Table S3). No other clinical phenotype was strongly

associated with gene expression profiles. Genes positively

associated with ABC-SW were significantly enriched for

RNA binding, splicing, and protein translation, while

negatively associated genes were implicated in transcrip-

tion coregulatory activity, chromatin organization, and

histone modifications (Figure S8C; Table S3). Genes nega-

tively associated with ABC-SW were also significantly en-

riched for genes that implicate genetic risk for intellectual

disability, ASD, developmental delay, and educational

attainment, as well as differentially expressed genes in

postmortem brain tissue from individuals with ASD

(Figures S8D and S8E). Notably, ABC-SW-related genes

were not enriched for an immune cell-type signature nor

were associated with differences in estimated cell-type pro-

portions (Figure S8A).

Class II mutations, but not class I mutations, reduce

sphingolipid metabolism

Global metabolomic data were generated across a subset of

54 participants, comprised of class I mutations (n ¼ 11),

class II mutations (n ¼ 14), and an age- and sex-matched

control group (n ¼ 29), half of which were familial related

unaffected siblings (�51%). Global metabolomic profiling

identified 1,045 high confidence metabolites across all 54

participants, which were largely made of lipids (37%),

amino acids (19%), xenobiotics (13%), an unknown cate-

gory (15%), and six other less-frequent super pathways

(Figure 3A).Wemodelled for differential changes inmetab-

olite abundance in PMS participants as described above,

and identified 10 metabolites significantly associated

with all PMS participants, 9 metabolites associated with

class I mutations, and 24 metabolites associated with class

II mutations relative to unaffected controls (Figure 3A;
Human
Table S4). Notably, the pattern of metabolomic effect sizes

observed for class II mutations was consistent with tran-

scriptome-wide effect sizes (Figures 3B and 2B), in that

the majority of metabolites were less abundant in partici-

pants with class II mutations. Of the 24 altered metabolites

associated with class II mutations, 21 were less abundant

relative to unaffected controls, including 10 metabolites

catalogued as part the of the sphingomyelin lipid family

(Figure S9). These findings also provide validation the

observed transcriptomic alterations of reduced expression

of genes enriched for glycosphingolipid metabolism

(Figure 2). Unsupervised hierarchical clustering of these

24 metabolites distinguished 85% (12/14) of participants

with class II mutations from the remaining samples

(Figure 3C). Finally, we performed an integrated analysis

of differentially expressed genes and differentially abun-

dant metabolites to elucidate their combined effect on

key metabolomic pathways in participants with class II

mutations. This analysis confirmed significant changes in

sphingolipid metabolism followed by alterations in argi-

nine and proline metabolism and linoleic acid metabolism

(Figure 3D; Table S4).
Discussion

While increased frequency and severity of PMS pheno-

types are associated with larger deletions, the molecular

perturbations that result from specific genetic alteration

remain poorly understood. This study presents the largest

set of PMS genotypes associated with peripheral blood

gene expression and global serum metabolites conducted

to date, and highlights several candidate genes, pathways,

metabolites, and cell types uniquely linked to PMS cases

with class II mutations, despite the disruption of SHANK3

in all participants. This suggests that SHANK3 alone is

not responsible for the molecular alterations observed in

the peripheral circulation. Specifically, these findings

reveal that PMS participants with class II mutations display

decreased expression of key cytotoxic immune cell signa-

tures and related processes, reductions in the proportions

of cytotoxic cell types, and reduced sphingolipid meta-

bolism. Below we discuss the biological and clinical impli-

cations of our results.

Of the disrupted genes in the 22q13.3 region, 52 genes

(�40%) were detected in peripheral blood, reduced in

expression patterns, and largely predictive of deletion

size, classifying 30/35 PMS participants with class II muta-

tions from all other participants by unsupervised hierarchi-

cal clustering (Figure 1). Many of these disrupted, underex-

pressed genes are individually linked to independent rare

disorders and are known to partake in diverse cellular

signaling systems, including inflammatory responses

(e.g.,MAPK11),37 glycosylation (e.g., ALG12),38 mitochon-

drial translation (e.g., TRMU),39 kinase activity (e.g.,

PARVB, PARVG, CERK, PIM3),40–42 tubulin ligase activity

(e.g., TTLL12, TTL1),43 histone acetyltransferase activity
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Figure 3. Plasma metabolomic profiling and alterations in participants with class II mutations
(A) Top inset: plasma was collected from 54 participants and subjected to unbiased metabolomic profiling, which generated 1,045 high-
confidence metabolites for subsequent analysis. The majority of detected metabolites classified as lipids (37%), amino acids (19%), xe-
nobiotics (13%), unknown (15%), or six other less frequent categories. Bottom inset: differential abundance of metabolites was tested
and the number of significant metabolites for each comparison are displayed.
(B) Volcano plot of class II differentially abundant metabolites (DAMs) relative to unaffected controls depicting log fold change (logFC)
(x axis) and –log10 FDR adjusted p value. The dotted horizontal line indicates a cut-off of FDR < 0.1. Metabolites are uniquely shaped
according to ten super pathway categories and colored by more (red) or less (blue) abundant in participants with class II mutations.
Ten sphingomyelin metabolites are outlined in pink borders.
(C) Unsupervised clustering of 24 metabolites significantly altered by class II mutations correctly classify 85% (n ¼ 12) of class II muta-
tions from the remaining samples. Heatmap depicts high (red) and low (blue) relative scaled abundance for each metabolite.
(D) Pathway analysis of metabolites altered in class II mutations reveals significant pathway enrichment (y axis; –log10 p value) for spin-
golipid metabolism and three other metabolism pathways relative to pathway impact (x axis). Pathway impact is a combination of the
centrality and pathway enrichment results computed by adding the importance measures of each of matched metabolite and dividing
by the sum of the importance measures of all metabolites in each pathway.
(e.g., BRD1),44,45 and sphingolipid metabolism (e.g., ARSA,

CERK),46,47 among others. For example, underexpression

of modulator of VRAC current 1 (MLC1) and peroxisome

proliferator activated receptor alpha (PPARA) were also

observed in class II mutations, and these genes are linked

to megalencephalic leukoencephalopathy with subcortical

cysts disease and are known to interact with several ion

channels/transporters and accessory proteins.48,49 While

these genes were also expressed across a broad collection

of other human tissues (Figure S2), our results highlight

the utility of peripheral blood transcriptome profiling as

an accessible, alternative diagnostic read out to validate

genotypic variation on 22q13.3 for PMS and several other

monogenic disorders with a locus on 22q13.3.

Beyond alterations of disrupted genes on 22q13.3,

the most significant transcriptomic changes were for

those underexpressed genes in PMS participants with

class II mutations, related to CD56þ NK cell signatures.

Analysis by CyTOF confirmed a reduction in CD56þ
CD16– cells in class II mutations, which are less cyto-

toxic than CD56þ CD16þ cells but produce greater

amounts of cytokines in response to environmental

cues. Underexpression of S1PR5 was among one of

many NK cell-related genes that was underexpressed

in class II mutations (Figures 2, S4, and S5), and this

gene is well known to promote recirculation and

recruitment of CD56þ NK cells into the periph-
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ery.34,35,50 NK cells express S1PR5 and, in mice defi-

cient in this receptor, NK cell distribution was altered,

with reduced NK cell numbers in blood and spleen

and increased numbers in the lymph node and bone

marrow.50,51 We also observed decreased expression of

TBX21 in PMS participants with class II mutations,

which is required for the final maturation of NK cells52

and is also known to induce S1PR5,34,35 supporting a

mechanism whereby reduced TBX21 lends to lower

expression of S1PR5 and ultimately reduced CD56þ
NK cell proportions (Figure 2G), which may increase

susceptibility to viral infections in these individuals.

While the rate of viral infections has not been deeply

studied in PMS, the largest PMS phenotypic study to

date describes that 38% of PMS participants with class

I mutations (29/76) and 51% of those with class II mu-

tations (44/87) report recurrent infections,8 supportive

of a smaller independent study where larger deletion

sizes were associated with increased frequency of recur-

rent infections.10 Notably, there are at least 46 single

gene primary immunodeficiencies that feature NK cell

deficiencies,53 defined as either the absence of NK cells

and their functions or the presences of defective NK

cells within peripheral blood lymphocytes. While

various therapeutics have been applied to treat individ-

uals with NK cell deficiencies, most approaches have

focused on treating susceptibility to viral infections
2023



via the application of prophylactic antiviral drugs.

Nevertheless, anecdotal cases have described apparent

success using acyclovir, ganciclovir, and cytokine thera-

pies,54–57 such as IFN-a, to induce NK cell cytotoxic

functions. However, these approaches require further

investigation and consideration is currently done on a

case-by-case basis.

Importantly, SHANK3 is not expressed in peripheral

blood cells nor does it appear to contribute to the profound

peripheral changes in PMS participants with class II muta-

tions. Indeed, larger 22q13.3 deletions have been linked to

increased rates of developmental delay and intellectual

disability and moderately increased rates of recurrent

infection, whereas individuals with class I mutations attain

more advanced developmental milestones.6–8,10 These

clinical reports, together with the current set of findings,

indicate that the frequency and severity of PMS pheno-

types is indeed driven by haploinsufficiency of other

candidate genes.

In an effort to resolve which of the disrupted genes in

the extended 22q13.3 region might have the most direct

effect on cytotoxic cell recruitment and/or sphingolipid

metabolism, we predicted that the disrupted gene cer-

amide kinase (CERK), may also play a role (Figure S6).

CERK is required for the phosphorylation of ceramide,

which is the centerpiece of the sphingolipid metabolism

and generates ceramide-1-phosphate (C1P).47,58 Both

CERK and C1P have been implicated in cellular prolifer-

ation, apoptosis, and inflammation.59,60 Our findings

from serum metabolomic profiling support these results

by directly implicating reductions of sphingolipid meta-

bolism in PMS participants with class II mutations

(Figure 3). In addition to phosphorylation by CERK, cer-

amide can be hydrolyzed to sphingosine, which is phos-

phorylated to S1P by sphingosine kinases.46,47,58 Both

C1P and S1P are bioactive molecules critical for immune

function and inflammation,46,47,58–60 but also play an

important role in neurotransmitter release and synaptic

transmission in the brain.61 Whereas ceramide and

sphingosine are associated with cellular growth arrest

and apoptosis, S1P is associated with cellular survival

and suppression of apoptosis.58–61 To this end, we antic-

ipate that reduced sphingolipid metabolism in PMS par-

ticipants with class II mutations is associated with down-

regulation of ceramide biosynthesis and/or S1P

synthesis. Notably, S1P signaling via S1PR5 is particu-

larly important for regulating NK cell migration and

cytotoxicity and gradients of S1P drive NK cell chemo-

taxis,34,35,62,63 essential for the mobilization of NK cells

to inflamed organs, supporting our transcriptomic re-

sults. Taken together, our data provide preliminary evi-

dence for a mechanistic model linking large 22q13.3 de-

letions to reductions in NK cell-related gene expression

signatures (TBX21, S1PR5, NCAM1, and partners) and

CD56þ cellular proportions in the periphery, as well as

reductions in sphingolipid metabolism, which would

otherwise lend to the recruitment and survival of these
Human
cells in the peripheral circulation. Notably, alterations

of lipid metabolism, including S1P, have been reported

in serum and postmortem brain tissues from individuals

with ASD,64,65 suggesting that impairment of lipid meta-

bolism pathways may contribute to the pathology of

ASD more broadly. Several therapeutic agents have

been developed to modulate sphingolipid metabolism,

including stress-signaling molecule tumor necrosis factor

alpha and interleukin-1b, to induce activation of sphin-

gomyelinases,66,67 which can also increase ceramide

and subsequent ceramide-dependent responses (i.e., cell

death and/or arrest).

The largest genotype-phenotype association analysis

indicates that PMS participants with class II mutations

display increased rates of early developmental delays, in-

tellectual disability, minimally verbal status, and various

medical features.8 Notably, individuals with class I muta-

tions attained more advanced developmental milestones,

which were reached at a younger age compared with

those with class II mutations and were more likely to

exhibit higher language and communication skills.8

These results are largely consistent with smaller indepen-

dent reports,6,7,10 and together emphasize that the fre-

quency and severity of PMS phenotypes is likely caused

by haploinsufficiency of multiple additional candidate

genes.

Our secondary exploratory analysis also identified

several genes that are both positively and negatively asso-

ciated with variations in ABC-SW across all PMS cases

(FDR < 10%) (Figure S7). Notably, genes negatively associ-

ated with ABC-SW were implicated in transcription core-

gulatory activity, chromatin organization, and histone

modifications, and were significantly enriched for genes

that implicate genetic risk for neurodevelopmental disor-

ders. Thus, individuals with high ABC-SW scores display

reduced levels of expression for these genes. Given the in-

terest in the ABC-SW as a clinical outcome assessment of

treatment efficacy in clinical trials of PMS,68,69 peripheral

biomarkers that scale ABC-SW severity may serve as a valu-

able resource to monitor treatment responses and out-

comes in PMS and other disorders that present with social

withdrawal phenotypes. However, further follow-up of

these genes and their dynamic expression profiles

following administration of such therapeutic agents is

warranted.

Our study does present some limitations. First, in this

report, a clinician-made assessment was used to charac-

terize ‘‘recurrent infections’’ in PMS participants, defined

as more than two pneumonia or sinus infections per

year. Under this measure, �54% of PMS participants

with class II mutations (13/25) and �50% of those

with class I mutations (11/22) report recurrent infections

(Table 1). This broad definition does not encompass viral

infections, nor specifically delineate the types of

observed infections, severities, annual frequencies, or

medication(s) described; thus limiting our ability to caus-

ally link 22q13.3 deletion sizes and the reported
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transcriptomic and metabolomic alterations with specific

immune phenotypes. Nevertheless, in addition to im-

mune function, NK cells and NCAM1 are also present

in the human brain and are implicated in several brain-

related mechanisms, including neuronal migration, syn-

aptic plasticity, and clearance of a-syn aggregates

through the lysosomal pathway.70–72 Thus, more work

is needed to fully dissect the relationship between the

molecular and clinical expressivity observed in PMS. Sec-

ond, the subset of individuals with serum metabolomics

profiling (ntotal ¼ 54) was predominately independent

from those with peripheral blood transcriptomic data

(ntotal ¼ 92), with 29 overlapping individuals. While

this variation can increase synergy and confidence of

the reported alterations across transcriptomic and metab-

olomics datasets, increasing the availability of paired

data will better power discovery and interpretation of

the reported cytotoxic cell signatures and sphingolipid

metabolomics changes in PMS. Third, while we were

able to validate the estimated reductions in NK cells in

class II mutations using CyTOF-based immunopheno-

typing, our sample size was indeed restricted to a subset

of class II mutations (n ¼ 5) and a matched control group

(n ¼ 4) due to the prevalence of PMS.1 Future work

would benefit from a larger collection of PMS genotypes

for validation. Finally, while sphingolipids are well-

known mediators of cell fate, they may also change in

response to drug treatment, and such alterations might

also reflect differential responses to existing treatment

regimens.

In conclusion, we show that participants with class II

mutations present significant peripheral transcriptomic

and metabolomics alterations implicating reductions in

cytotoxic immune cell signatures, CD56þ CD16– cell pro-

portions, and sphingolipid metabolism, which may

contribute to a more severe and variable phenotype in

PMS. More broadly, this work demonstrates the utility of

studying molecules in the peripheral blood of individuals

with PMS, which is a readily available specimen type in

clinical practice. It is worth noting that this combination

of data is not expected to successfully shed light on disrup-

ted genes and pathways if the affected region(s) is not ex-

pressed in the analyzed tissue or if the effects of the causal

variants do not affect the expression of the gene. There-

fore, expert evaluation is required when prioritizing candi-

date genes using RNA-seq data. We can expect that

combining information from multiple ‘‘omics’’ sources

will only further improve diagnosis and define molecular

subtypes of PMS and other rare disease cases in the future.
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Figure S1. Landscape of SHANK3 sequence variants in the current study. Recurrent mutations are 
indicated in black, missense in red and splice site variants in blue. Protein domains are from UniProt; the 
homer and cortactin binding sites are indicated as previously reported. 



Figure S2. Characterization of 22q13.3 breakpoints and disrupted genes. (A) 22q13.3 deletion sizes (left; 
x-axis) and the total number of disrupted genes (right; x-axis) for each PMS participant (y-axis) designated 
as Class I mutations (without sequence variants) and Class II mutations.  (B) Probability of loss of function 
intolerance (pLI) scores computed for each of the disrupted genes (y-axis) relative to the frequency of a gene to 
be disrupted across all PMS participants with transcriptome data (x-axis, max value=68 probands). pLI scores 
close to 1 indicate gene intolerance to heterozygous and homozygous loss of function. A total of 16 blood 
expressed displayed pLI > 0.5 and 8 genes had a pLI > 0.9. (C) We identified 52 blood expressed genes 
spanning the single largest 22q13.3 deletion in the current study. The average expression values (TPM) of these 
52 genes were plotted across 30 distinct tissues from the Geneotype-Tissue Expression (GTEx) consortium, and 
in some instances, covering multiple regions per tissue. White indicates low expression and dark blue 
indicates high expression. This plot was generated using the multi-gene query function in the GTEx browser. 



Figure S3. Overlap of differentially expressed genes at FDR < 5%. The overlap of (A) under-expressed and 
(B) over-expressed genes for i) all PMS participants relative to controls, ii) Class II mutations relative to 
controls, and iii) Class II mutations relative to Class I mutations. We also examined the overlap of the 52 
peripheral blood expressed genes on 22q13 encompassed within large Class II mutations in the current study. 



Figure S4. Direct protein-protein interaction (PPI) network. All 52 genes on 22q13.3 and differentially 
expressed genes (FDR < 5%) associated with PMS participants with Class II mutations were tested for 
enrichment of direct PPIs. The network contained significantly higher connectivity than expected by chance (p 
<1.0e-16). Nodes are colored by under-expressed genes (red), over-expressed genes (blue), and disrupted genes 
on 22q13.3 (pink). Yellow background is given to genes on 22q13.3 found to interact with differentially 
expressed genes.  



Figure S5. CD56+ NK cell enrichment gene set enrichment. CAMERA gene-set enrichment results for 
differentially expressed genes associated with (A) Class II mutations and (B) Class I mutations. Enrichment was 
tested for 190 genes that are differentially expressed CD56+ NK cells compared to all other cell types in the 
scRNA-seq experiment. (C) Unsupervised clustering of 25 CD56+ NK cell-specific genes distinguishes 82% 
(n=29) of Class II mutations from remaining samples. (D) The total number of significant differentially 
expressed genes in participants with Class II mutations (FDR < 5%) after adjusting for different covariates, 
reveals adjusting for CD56+ NK cell frequencies results in loss of ~69% of Class II-related DEGs. 



Figure S6. CD56+ NK cell-specific expression via scRNA-seq. TSNE clustering and cell type identification 
of eight main immune cell types across three independent studies: (A) the first dataset comprised of 10,975 
PBMCs (v2 Chemistry); (D) the second dataset comprised of 33,227 PBMCs (v2 Chemistry), both were 
downloaded from the list of publically available 10X Genomic Inc. datasets; (F) third data set was comprised of 
67,272 PBMCs and was obtained from Zheng et al., 201728. Next, the normalized and scaled scRNA-seq 
expression data was used to create an eigenvalue (per cell) of 208 significantly under-expressed genes in 
participants with Class II mutations, which was projected onto each TSNE and color coded to illustrate high 
expression of these genes in CD56+ NK cells (blue=low, red=high) (B, E, G, respectively).(C) For clarity, 
eigenvalues (x-axis) were plotted as a violin plot for each cell type (y-axis) to illustrate strength of enrichment 
(merging CD14+ and CD16+ monocytes). 



Figure S7. Gene expression on 22q13.3 that predicts S1PR5 expression. (A) Barplots depicting the 
Pearson’s correlation coefficient (y-axis) between gene expression of the 52 blood expressed genes on 22q13.3 
number relative to S1PR5 expression. CERK is denoted with an arrow. (B) The top three genes on 22q13.3 with 
the highest associations (y-axis) with S1PR5 expression (x-axis) are depicted. (C) We anticipated that by 
parsing PMS participants with Class II mutations spanning MLC1, TTC38, and CERK, respectively, that those 
individuals would display lower expression of S1PR5 relative to the remaining of individuals with Class II 
mutations. We found that only participants with Class II mutations spanning CERK were predictive of S1PR5 
expression, in that reduced expression of this gene was evident when compared with the remaining Class II 
mutations. An analysis of variance (AOV) was used to test for significance.  



Figure S8. Exploratory analysis of phenotype-transcriptome associations. Barplots depicting the total 
number of genes positively (red) and negatively (blue) associated with each clinical measure presented in Table 
1 according to (A) a FDR < 10% and (Bi) a nominal p-value < 0.05. (Bii) Pearson’s correlation matrix among 
all clinical traits in the current study (red=high; blue=low; *=significant association). (C) Functional 
annotation of genes positively and negatively associated with ABC-lethargy (social withdrawal). (D) To 
conceptualize these associations, all positively and negatively associated genes were summarized into one 
singular value using singular value decomposition, respectively. Probands were partitioned into tertiles 
according to ABC-lethargy scores and the resulting eigenvalues were plotted across low (1st tertile) to high (3rd 
tertile) scores confirming significant positive and negative associations. (E) Gene set enrichment analysis shows a 
significant enrichment of disease risk genes for intellectual disability (ID), schizophrenia (SCZ), autism 
spectrum disorder (ASD) and educational attainment (EA) among genes negatively associated with ABC-
lethargy. Significance was calculated using a Fisher’s exact test relative to a genome background of genes 
expressed in the current study.  



Figure S9. Metabolites associated with Class II mutations. Twenty-four differentially abundant metabolites 
significantly associated with Class II mutations relative to controls (FDR < 10%) are displayed. Scaled 
metabolite abundance (y-axes) was partitioned by deletion group (x-axes). The y-axis labels indicate 
compound identifiers and the main titles indicate the biochemical identifiers.  
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