Supplemental File

Left ventricular ejection fraction and global longitudinal strain calculated by artificial intelligence increases diagnostic accuracy of stress echocardiography

Jamie M. O'Driscoll^{1,2,3*}, William Hawkes^{1*}, Arian Beqiri¹, Angela Mumith¹, Andrew Parker¹, Ross Upton^{1,4}, Annabelle McCourt⁴, William Woodward⁴, Cameron Dockerill⁴, Nikant Sabharwal⁵, Attila Kardos⁶, Daniel X Augustine^{7,8}, Katrin Balkhausen⁹, Badrinathan Chandrasekaran¹⁰, Soroosh Firoozan¹¹, Anna Marciniak³, Stephen Heitner¹², Mrinal Yadava¹², Sanjiv Kaul¹², Rizwan Sarwar^{1,4,13,14}, Rajan Sharma³, Gary Woodward¹ and Paul Leeson⁴

¹Ultromics Ltd, 4630 Kingsgate, Cascade Way, Oxford Business Park South, Oxford, OX4 2SU.

²Canterbury Christ Church University, School of Psychology and Life Sciences, North Holmes Road, Kent, CT1 1QT.

³Department of Cardiology, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, Tooting, London, SW17 0QT.

⁴Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.

⁵Oxford Heart Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.

⁶Department of Cardiology, Milton Keynes University Hospital NHS Foundation Trust, Milton Keynes, UK.

⁷Department of Cardiology, Royal United Hospitals NHS Foundation Trust, Bath, UK.

⁸Department for Health, University of Bath, Bath, UK.

⁹Department of Cardiology, Royal Berkshire NHS Foundation Trust, Reading, UK.

¹⁰Department of Cardiology, Great Western Hospitals NHS Foundation Trust, Swindon, UK.

¹¹Department of Cardiology, Buckinghamshire Healthcare NHS Trust, High Wycombe, UK.

¹²Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA.

¹³Experimental Therapeutics, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.

¹⁴Cardiology Department, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.

Running title: AI-calculated LVEF and GLS in stress echocardiography

Correspondence to: Professor Paul Leeson, Oxford Cardiovascular Clinical Research Facility, RDM Division of Cardiovascular Medicine, John Radcliffe Hospital, Oxford. OX3 9DU. E-mail: <u>paul.leeson@cardiov.ox.ac.uk</u>

Contents

Supplementary Figure 1. Study flow diagram.

Supplementary Table 1. Wall motion score reproducibility.

Supplementary Table 2. Extent, significance and management of significant CAD in study population.

Supplementary Table 3. Haemodynamic response during SE.

Supplementary Table 4. Freedom from significant CAD between different participant groups over the 12 months.

Supplementary Figure 2. Comparing of the incremental benefit of incorporating AI-calculated LV systolic function at peak stress to standard clinical assessment using bootstrapping of logistic regression models.

Supplementary Figure 1. Study flow diagram.

Supplementary Table 1. Wall motion score reproducibility.

	All	Ischaemic only	
	(n = 20)	(n=12)	
	ICC (95% CI)	ICC (95% CI)	
Inter-operator variability	0.88 (72, 95)	0.76 (35,92)	
Intra-operator variability	0.94 (0.86, 0.98)	0.88 (0.64, 0.96)	

Supplementary Table 2. Extent, significance and management of significant CAD in study population. PCI, percutaneous coronary intervention. CABG, coronary artery bypass graft.

			Non-ischaemic (<i>n</i> =370)		Ischaemic (n=130)	
		All	Normal AI systolic function	Abnormal AI systolic function	Normal AI systolic function	Abnormal AI systolic function
n, (%age of participants)		500 (100%)	239 (48%)	131 (26%)	29 (48%)	101 (20%)
Angiography, n (%age)		118 (24%)	5 (3%)	6 (5%)	18 (62%)	89 (88%)
Significant CAD, n (%age of angiograms)		74 (63%)	2 (40%)	2 (33%)	6 (33%)	64 (63%)
Vessels with significant	1	34 (29%)	0 (0%)	1 (50%)	4 (67%)	29 (45%)
CAD, <i>n</i> (%age of significant CAD)	2	30 (25%)	2 (100%)	0 (0%)	1 (17%)	27 (42%)
significant CAD)	3	10 (8%)	0 (0%)	1 (50%)	1 (17%)	8 (13%)

Supplementary Table 3. Haemodynamic response during SE. HR, heart rate; APMHR, age-predicted maximum HR, sBP, systolic blood pressure; dBP, diastolic blood pressure; RPP, rate-pressure product

			No CAD (<i>n</i> =426)	Significant CAD (<i>n</i> =74)	<i>P</i> -value
All SEs		Baseline	76 ± 14	74 ± 13	0.238
	HR (beats/min)	Peak	140 ± 14	132 ± 17	<0.001
		%age APMHR	89 ± 8	87 ± 10	0.079
	sBP (mmHg)	Baseline	140 ± 21	142 ± 21	0.434
		Peak	150 ± 33	169 ± 30	<0.001
	dBP (mmHg)	Baseline	77 ± 13	78 ± 12	0.759
		Peak	74 ± 16	80 ± 16	0.004
	Peak RPP (beats·mmHg/min)		21101 ± 5258	22482 ± 5037	0.04
Dobutamine SEs	HR (beats/min)	Baseline	77 ± 14	73 ± 14	0.2
		Peak	138 ± 14	132 ± 12	0.009
		%age APMHR	89 ± 9	88 ± 9	0.574
	sBP (mmHg)	Baseline	141 ± 22	141 ± 27	0.065
		Peak	141 ± 27	158 ± 29	0.002
	dBP (mmHg)	Baseline	76 ± 13	78 ± 14	0.518
		Peak	70 ± 15	73 ± 11	0.384

	Peak RPP (beats.mmHg/min)		19458 ± 4033	20791 ± 4495	0.09
Exercise SEs	HR (beats/min)	Baseline	74 ± 14	75 ± 14	0.975
		Peak	146 ± 15	134 ± 21	<0.001
		%age APMHR	91 ± 8	87 ± 12	0.024
	sBP (mmHg)	Baseline	136 ± 16	137 ± 18	0.640
		Peak	180 ± 34	177 ± 28	0.716
	dBP (mmHg)	Baseline	80 ± 11	77 ± 10	0.236
		Peak	87 ± 14	86 ± 16	0.694
	Peak RPP (beats.mmHg/min)		26150 ± 5146	23679 ± 5108	0.024

Supplementary Table 4. Freedom from significant CAD between different participant groups over the 12 months. Participant groups are shown as graphed in the Kaplan-Meier curves shown in Figure 3. Normal AI systolic function at peak is defined as peak $\text{GLS} \le \text{or peak LVEF} \ge 64\%$; abnormal AI systolic function at peak is defined as peak GLS > -17.2% and peak LVEF < 64%. CI, confidence interval

Figure	Participant group	%age	95% CI	<i>P</i> -value	
3A _	Peak LVEF $\geq 64\%$	95%	92% - 97%	<0.001	
	Peak LVEF < 64%	58%	49% - 65%	0.001	
3B	Peak GLS $\leq 17.2\%$	95%	92% - 98%	0.007	
50	Peak GLS > 17.2%	67%	59% - 73%		
3C	Normal AI systolic function at peak	94%	91%-96%	<0.001	
	Abnormal AI systolic function at peak	54%	43%-62%		
3D	Non-ischaemic 99% 97%		97% – 100%	0.01	
	Ischaemic	32%	23% - 42%		
3E Non-isc 3E Isch	Non-ischaemic with normal AI systolic function at peak	99%	97% – 100%		
	Non-ischaemic with abnormal AI systolic function at peak	98%	94% - 100%	<0.001	
	Ischaemic with normal AI systolic function at peak68%42% - 84%				
	Ischaemic with abnormal AI systolic function at peak	23%	14% - 33%		

Supplementary Figure 2. Comparing of the incremental benefit of incorporating AI-calculated LV systolic function at peak stress to standard clinical assessment using bootstrapping of logistic regression models.

