

Supplementary Material

1 SUPPLEMENTARY TABLES AND FIGURES

1.1 Tables

Q1: Conceptually, what information/knowledge can we gain or would we like to obtain from doing microbiome research?

- * Influence of food on obesity
- * How drugs change the gut microbiome
- * Effect of past diseases (how gut microbiome changes after having had certain disease e.g. salmonella)
- * Effects on plant growth/production
- * Role in diseases
- * Define and find differences in different health and disease statuses.
- * Effect on health
- * Influence of food and other factors on microbiome
- * Microbiome effects on plants (yield more, more productive agriculture)
- * Impact of bacteria metabolites on treatment efficiency
- * Role of gut microbiome in autoimmunity (e.g. how microbiome can influence t-cells)
- * Effect on immune response
- * Precision medicine
- * Influence on psychology (mood, depression, ...)
- * Who has a dog? (based on skin microbiome)
- * Changes during day or different seasons
- * Who lives with whom? (instead of dna, use microbiome to see who was in contact with whom)
- * Composition of microbiome with varying diet
- * Microbiome and survival
- * Composition of microbiome with respect to body combacting diseases
- * How "quickly" does diet have effect on microbiome?
- * Link between diet and longevity?
- * Use of fecal therapy
- * Relation between microbiome and MS
- * How do drugs change the microbiome, and at the same time affect other clinical variables
- * Diversity and richness

Table S1. Answers provided by the workshop participants to question 1.

Q2: Which data is required or relevant to obtain this knowledge?

* Time

- * Location
- * Gender
- * Age
- * Exposure data (what did you eat, did you use drugs)
- * Species (mice, human, other animal)
- * Disease status (after treatment, before treatment)
- * Time series (longitudinal sequencing, how dynamic, how quickly does it change)
- * Which bacteria? + count (absolute)
- * Diet
- * Genome
- * Timestamps
- * Location of microbiome sample in the body/plant)
- * Baseline characteristics (e.g. age, gender)
- * Environmental information
- * Epidemiological information
- * Diet
- * Clinical trial data
- * Sequencing (amplicon, whole gen.)
- * Longitudinal information
- * Treatment and other clinical variables
- * Disease status/clinical outcome
- * Metabolic information
- * Hormonal changes
- * Microbiomes of contacts
- * Lifestyle
- * Health status
- * Gender
- * Time and age
- * Immune response over time

Table S2. Answers provided by the workshop participants to question 2.

Q3: To answer questions of Q1: which specific aspects can be retrieved from the OTU/ASV abundance table? * Most present taxonomies in collected samples * Taxonomic abundance * Variability of abundances * p-values * Effect sizes (e.g. diff. in relative or absolute abundance between two conditions) * Co-abundance (association measures) * Diversity indices * Absolute/relative abundance (important difference) * Metabolites * Pro/anti-inflammatory profile * Integrated exploration of raw data (of all data listed before) * Variance between different environments/treatments (how different are they) * Variance after re-sampling/removing noisiness, duplicates * Effects of baseline characteristics * Alpha and Beta diversity * Correlation between taxa * Alpha diversity * Biomarker discovery * Relative abundance * Interaction network * Identify pathogens * Metabolite classification * Phylogenetic level * Fat content * Metabolism

 Table S3. Answers provided by the workshop participants to question 3.

Q4: Given the aspects you wrote down before, can you think about methods needed and or used (statistically, visually) to obtain this information.

* PCoA (and related ordination methods)

* Statistical modeling + differential abundance analysis (DESeq2, EdgeR, ANCOM2)

* Venn diagrams (to display; most present taxonomies, compare taxonomic ranks between different samples)

* Differential abundance methods (parametric/ non-parametric/ semi-parametric)

- * (stacked) Bar charts (used to display metabolites)
- * Dendrograms
- * Custom visual designs
- * Parallel coordinates (to display different types of information)
- * Sample clustering (tsne, UMAP, STAD) \rightarrow scatterplot, node link
- * Heatmaps (OTU abundance vs timepoints)

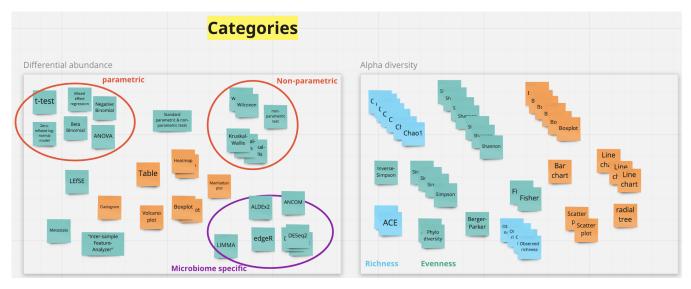

* Upset (replacement for venn diagram if more than three categories)

Table S4. Answers provided by the workshop participants to question 4.

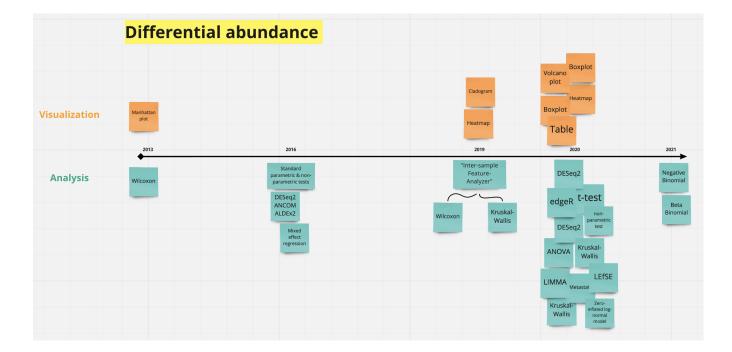

Q5: When you think about your own research, I'm interested in the platforms, tools, packages you have used, or are using currently to analyze the microbiome. Can you list these up? * Phyloseq * Microbiome * DESeq2 (diff abundance) * Limma (diff abundance) * EdgeR (diff abundance) * Piur (probabilistic index models) * HMP (Human microbiome project) (data) * phyloseq (R-package) * MicrobiomeHD (datasets + methods) * PICRUST * ggplot2 (for plotting) * D3 * HTML/CSS/JS Svelte * Databases (SQL, graph, document store) * Webserver * Pen + paper

Table S5. Answers provided by the workshop participants to question 5.

1.2 Figures

Figure S1. A reproduction of the initial card sort game, displaying how cards are sorted within 2 categories based on frequency of occurrence. The actual exercise were carried out using post its and markers.

Figure S2. A reproduction of a history map exercise conducted to answer question 2 (i.e. How did the methods used to capture these microbiome aspects develop or change over time?) on differential abundance. The actual exercises were carried out using pen and paper.