Supplementary Material for

Interplay between transition metal K-edge XMCD and magnetism in Prussian blue analogs.

Adama N'Diaye,¹ Amélie Bordage,¹ Lucie Nataf,² François Baudelet,² Eric Rivière,¹ Anne Bleuzen¹*

¹Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, 15 rue Georges Clémenceau, 91405 Orsay, France

²Synchrotron SOLEIL, L'Orme des Merisiers, St Aubin, BP 48, 91192 Gif sur Yvette, France.

Corresponding author email address : anne.bleuzen@universite-paris-saclay.fr

Electronic Supplementary Information

Table S1. Normalized absolute value of the intensity of the pre-edge XMCD feature at the A and B K-edges.

S1. Cr K-edge XANES spectra of the **ACr** series.

S2. Fe K-edge XANES spectra of the **AFe** series.

S3. Intensities of the XMCD α and γ peaks as a function of the intensity of the δ peak.

S4. A K-edge XMCD signal compared to the adapted enlargement of the XANES spectrum over the pre-edge/rising edge and edge regions.

S5. Area under curve versus intensity for the main δ peak of the XMCD signal at the Fe K-edge for the **AFe** series.

S6. Area under curve versus intensity for the main δ peak of the XMCD signal at the Cr K-edge for the **ACr** series.

S7. Magnetic field dependence of the magnetization at 4K for the AFe and ACr series.
S8. Powder X-ray diffraction of CuFe PBAs containing an increasing amount of Cs⁺ cations inserted in interstitial sites.

S9. Ni K-edge XANES spectra of NiFe and NiCr.

Table S1. Normalized absolute value of the intensity of the pre-edge XMCD feature at the A and B K-edges of **MnFe**, **CoFe**, **NiFe**, **CuFe**, **MnCr**, **FeCr**, **CoCr** and **NiCr**.

	A K-edge		B K-edge	
Sample	I pre-edge	I pre-edge / I edge	I pre-edge	I pre-edge / I edge
		%	a ₁ /a ₂ (Fe)	%
MnFe	0.0001	2.5	0.0013/0	35/0
CoFe	0.0008	7	0.0004/0	20/0
NiFe	0.0005	9	0.003/0	35/0
CuFe	_*	_*	0.002/0	25/0
MnCr	0.00045	4	0	0
FeCr	0.0005	2.5	0	0
CoCr	0.0001	8	0	0
NiCr	0.00085	15	0	0

S1. Cr K-edge XANES spectra of the **ACr** series.

The XANES spectra are displayed in figure a) and figure b) presents an enlargement of the spectra over the pre-edge region.

S2. Fe K-edge XANES spectra of the AFe series.

The XANES spectra are displayed in figure a) and figure b) presents an enlargement of the spectra over the pre-edge region.

S3. Intensities of the Fe K-edge XMCD α pea as a function of the intensity of the δ peak.

S4. A K-edge XMCD signal compared to the adapted enlargement of the XANES spectrum over the pre-edge/rising edge and edge regions. a, b) **MnCr** and **MnFe** at the Mn K-edge ; c, d) **FeCr** at the Fe K-edge ; e, f) **CoCr** and **CoFe** at the Co K-edge ; g, h) **NiCr** and **NiFe** at the Ni K-edge ; i, j) **CuFe** at the Cu K-edge.

S5. Area under curve for the main δ peak of the XMCD signal at the Fe Kedge as a function of its intensity for the **AFe** series.

S6. Area under curve for the main δ contribution to the XMCD signal at the Cr K-edge as a function of its intensity for the **ACr** series.

a) Area under curve for each lobe (δ_1 and δ_2) of the XMCD signal as a function of its intensity.

b) Difference between the area under curve of the δ_2 and δ_1 lobes as a function of the difference between their intensity.

S7. Magnetic field dependence of the magnetization at 4K for a) the **AFe** series and b) the **ACr** series.

S8. Powder X-ray diffraction of CuFe PBAs containing 0 (**CuFe**, black line) and 4 (Cs₄CuFe, red line) Cs⁺ cations inserted in interstitial sites.

The X-ray diffraction pattern of Cs_4CuFe is characteristic of the tetragonal structure, revealing a cooperative Jahn-Teller distortion with all elongated axes of the Cu^{2+} complexes along the same direction, while **CuFe** exhibits the well-known fcc structure of PBAs.

S9. Ni K-edge XANES spectra of NiFe and NiCr.

The XANES spectra are presented in figure a and figure b displays an enlargement of the spectra over the pre-edge region.

