Supporting information

Evaluation of Antimicrobial, Antibiofilm Activity of *Citrus medica* Fruit juice-based Carbon Dots against *Pseudomonas aeruginosa*

Nithya Selvaraju¹, Pitchaipillai Sankar Ganesh^{2,*} Veeramurali Palrasu³, Gunasekaran Venugopal^{1,*}, Vanitha Mariappan^{4,*}

¹Advanced Nanomaterials and System Lab, Department of Materials Science, School of Technology, Central University of Tamil Nadu, Thiruvarur - 610005, Tamil Nadu, India

²Department of Microbiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Velappanchavadi, PH Road, Chennai – 600 077, India.

³Department of Electronics, Government Arts College, Kulithalai, Karur (Dist), Tamil Nadu-639120, India

⁴Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia

Corresponding Authors:

Dr. P. Sankar Ganesh, Department of Microbiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Velappanchavadi, PH Road, Chennai, India. Email: p_sankarganesh@hotmail.com

Dr. Gunasekaran Venugopal, Advanced Nanomaterials and System Lab, Department of Materials Science, School of Technology, Central University of Tamil Nadu, Thiruvarur - 610005, Tamil Nadu, India. Email: gunasekaran@cutn.ac.in: pvsguna@gmail.com

Dr. Vanitha Mariappan, Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia Email: vanitha.ma@gmail.com

Photostability of CQDs:

Figure S1. Photostability test for 3 hrs at an interval 15 min

1.2 1.0 ecceptitititi Normalised Intensity 0.8 Before 24 h After 24 h 0.6 0.2 0.0 0 200 400 600 800 1000 1200 1400 Time (min)

Figure S2. Photostability test for 24 hrs

Measurements of fluorescence quantum yield:

The Quantum Yield of carbon quantum dots (CQDs) was calculated using the following formula

$$QY = QY_R \frac{I_S A_R (n_S)^2}{I_R A_S (n_R)^2}$$

Quinine sulfate (QS) were used as the reference material in 0.1 M H_2SO_4 and the reference quantum yield is 0.54 at 350 nm where I_R and I_S denotes the integrated fluorescent emission intensity of the QS and CQD, where A_R and A_S is the absorbance, n_R and n_S and is the refractive index of the solvent of QS and CQDs, respectively.

Table ST1: Minimum inhibitory concentration (MIC) of naturally derived carbon dots against the clinical isolates of *P. aeruginosa* and control strain of *P. aeruginosa* PAO1

Concentration	P. aeruginosa	P. aeruginosa PAO1 MIC (%,v/v)		
(CDs)	MIC (%,v/v)			
10%	MIC	MIC		
5%	MIC	MIC		
2.5%	MIC	MIC		
1.25%	MIC	MIC		
0.625%	Growth	Growth		
0.3125%	Growth	Growth		
0.156%	Growth	Growth		
0.078%	Growth	Growth		
0.039%	Growth	Growth		
0.019%	Growth	Growth		

Table ST2: Antibiogram pattern of *P. aeruginosa* based on Kirby-Bauer method (1996)

Antibiotics	Antibiotics Average ± standard deviation value				
	SDC-01	SDC-02	SDC-03	SDC-04	SDC-05
Ciprofloxacin	36.0±0.1	37.02±0.1	36.02±0.2	37.0±5.1	37.0±5.1
Gatifloxacin	R	36.05±0.4	37.5±0.1	37.0±1.7	27.02±0.2
Tobramycin	27.0±0.2	27.02±0.2	26.3±1.1	26.0±1.7	27.0±0.2
Mezolocillin	R	22.0±1.7	17.6±2.5	R	R
Azlocillin	23.6±0.2	R	22.03±0.1	R	28.6±2.3
Ofloxacin	29.3±0.5	26.0±1.7	28.6±2.3	30.0±1.0	29.6±0.2
Pipercecillin/Tazobactam	R	27.0±1.7	29.0±1.0	R	R
Ceftriaxone	23.3±2.8	18.3±2.8	17.6±0.1	R	17.6±0.5
Amikacin	24.3±1.1	23.3±0.5	22.6±1.1	20±0	17.6±2.5
Netillin	19.3±0.2	17.6±0.5	20.3±0.5	17.6±0.5	20.3±0.5
Norfloxacin	R	34.6±0.5	R	34.6±0.5	36.05±0.4
Gentamicin	23.0±0.2	20±0	20±0.1	20±0	26.0±1.7
Garbenicillin	24.3±1.1	27.6±2.0	25.3±0.5	R	R
Peperacillin	R	24.0±1.7	R	R	28.6±2.3
Ticarcillin/Clavulanic Acid	21.0±0.7	19.3±0.5	R	R	17.6±2.5