# **Supporting Information**

# Aerobic Bioaugmentation to Decrease Polychlorinated Biphenyl (PCB)

# Emissions from Contaminated Sediments to Air

*Christian M. Bako, Andres Martinez, Jessica M. Ewald, Jason B.X. Hua, David J. Ramotowski, Qin Dong, Jerald L. Schnoor, and Timothy E. Mattes*<sup>\*</sup>

The Department of Civil & Environmental Engineering, 4105 Seamans Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, IA United States, 52245

IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, IA 52242

\*Corresponding author; Email – <u>tim-mattes@uiowa.edu</u>; Phone – (319) 335-5065

21 pages: 6 Figures and 19 Tables

# **Contents:**

| Supporting Information                                                                              | 1  |
|-----------------------------------------------------------------------------------------------------|----|
| S1. Sediment & Site Description                                                                     | 3  |
| S2. Experimental Design and Passive Sampling                                                        | 4  |
| S3. <i>bphA</i> Gene Abundance with qPCR                                                            | 6  |
| S4. Paraburkholderia xenovorans LB400 Growth on Saponin                                             | 6  |
| S5. Mitigation of PCB Emissions from Sediment to Air Using <i>Paraburkholderia xenovorans</i> LB400 | 7  |
| S6. PCB Reactive Transport Modeling                                                                 | 9  |
| S6.1. Mass-Balance Equations for Reactive Transport Model                                           | 9  |
| S6.2. Passive Sampler Mass-Balance Equations for Reactive Transport Model                           | 9  |
| S6.3. Definitions of Terms Used in Reactive Transport Model Equations                               | 10 |
| S6.4. Results of PCB Reactive Transport Model for Most Abundant PCB Congeners                       | 12 |
| S7. Statistical Analyses                                                                            | 13 |
| S7.1. Summary of Results for LC-PCB Statistical Analyses                                            | 13 |
| S7.2. Tabular Results for Statistical Analysis on PUF Measurements                                  | 15 |
| S7.3. Tabular Results for Statistical Analysis on SPME Measurements                                 | 17 |
| S8. PCB Quantification                                                                              | 19 |
| References                                                                                          | 20 |

# Figures

| Figure S1- Plan view map of the emergency overflow lagoon at the Altavista, VA wastewater treatment    |    |
|--------------------------------------------------------------------------------------------------------|----|
| plant showing approximate PCB concentrations at previous sampling sites                                | .4 |
| Figure S2 - Experimental design matrix for this study                                                  | .5 |
| Figure S3 – Bioreactor utilized in this study design.                                                  | .5 |
| Figure S4 – Accumulation of the most abundant individual congeners on passive samplers deployed in     |    |
| bioreactors1                                                                                           | 2  |
| Figure S5 – Residual, homoscedasticity, and QQ plots for results of three-way mixed-effect analyses of |    |
| PUF samples (left) and SPME samples (right)1                                                           | 4  |

# Tables

| Table S1- Results of sediment characterization tests                                                                                  | S3                  |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Table S2 – Oligonucleotide primer information for the bphA target gene                                                                | S6                  |
| Table S3 – Pertinent qPCR parameters in accordance with MIQE guidelines                                                               | S6                  |
| Table S4 – % difference of PCB <sub>i</sub> sediment-air emissions between treatments in PUF samples ( $\Delta$ PC                    | CB <sub>i</sub> )S8 |
| <b>Table S5</b> – % difference of freely dissolved PCB <sub>i</sub> between treatments in SPME samples ( $\Delta$ PCB <sub>i</sub> ). | S9                  |
| Table S6 – Definitions of each term used in the mass-balance equations for the reactive transport r                                   | nodel               |
| and their dependent equations.                                                                                                        | S11                 |
| Table S7 - Tabular results of three-way mixed effects analysis on log-transformed LC-PCB PUF of                                       | dataS17             |
| Table S8 – Tabular results of two-way mixed effects analysis on consolidated LC-PCB PUF data.                                         | S17                 |
| Table S9 - Results of Holm-Šídák's multiple comparisons tests following three-way mixed effects                                       | ,                   |
| analysis on log-transformed LC-PCB PUF measurements.                                                                                  | S17                 |
| Table S10 - Details of Holm-Šídák's multiple comparisons tests following three-way mixed effect                                       | S                   |
| analysis on log-transformed LC-PCB PUF measurements.                                                                                  | S18                 |
| Table S11 - Results of Holm-Šídák's multiple comparisons tests following two-way mixed effects                                        |                     |
| analysis on consolidated LC-PCB PUF measurements.                                                                                     | S18                 |
| Table S12 - Details of Holm-Šídák's multiple comparisons tests following two-way mixed effects                                        |                     |
| analysis on consolidated LC-PCB PUF measurements.                                                                                     | S18                 |
| Table S13 - Tabular results of three-way mixed effects analysis on log-transformed LC-PCB SPM                                         | IE data.            |
|                                                                                                                                       | S19                 |
| Table S14 - Tabular results of two-way mixed effects analysis on consolidated LC-PCB SPME da                                          | ıtaS19              |
| Table S15 - Results of Holm-Šídák's multiple comparisons tests following three-way mixed effect                                       | ts                  |
| analysis on log-transformed LC-PCB SPME measurements.                                                                                 | S19                 |
| Table S16 - Details of Holm-Šídák's multiple comparisons tests following three-way mixed effect                                       | S                   |
| analysis on log-transformed LC-PCB SPME measurements.                                                                                 | S20                 |
| Table S17 - Results of Holm-Šídák's multiple comparisons tests following two-way mixed effects                                        | ļ                   |
| analysis on consolidated LC-PCB SPME measurements                                                                                     | S20                 |
| Table S18 - Details of Holm-Šídák's multiple comparisons tests following two-way mixed effects                                        |                     |
| analysis on consolidated SPME measurements                                                                                            | S20                 |
| Table S19 - PCB precursor and product masses of labeled and unlabeled calibration standards emp                                       | ployed              |
| in multiple reaction monitoring mode on the triple quadrupole mass spectrometer. <sup>a</sup>                                         | S21                 |

# S1. Sediment & Site Description

Table S1- Results of sediment characterization tests conducted by Minnesota Valley Testing Laboratory (MVTL, New Ulm, MN).

| Soil Parameters                 |            |
|---------------------------------|------------|
| Organic Carbon (%)              | 3.0        |
| Nitrogen (N-NO <sub>3</sub> )   | 12         |
| Phosphorus (P) Meh 3 ppm        | 189        |
| Potassium (K) Meh 3 ppm         | 52         |
| Zinc (Zn) ppm                   | 7.9        |
| Sulfur (SO <sub>4</sub> -S) ppm | 95.3       |
| Calcium (Ca) ppm                | 884.2      |
| Magnesium (Mg) ppm              | 120.8      |
| Boron (B) ppm                   | 0.64 L     |
| Iron (Fe) ppm                   | 87.5 S     |
| Manganese (Mn) ppm              | 40.0 S     |
| Copper (Cu) ppm                 | 7.6 S      |
| Sodium (Na) ppm                 | 32         |
| pH                              | 6.4        |
| Buffer Index                    | 7.1        |
| CEC (cmol <sub>c</sub> /kg)     | 6.0        |
| Base Saturation (%):            |            |
| Calcium (Ca)                    | 73.6       |
| Magnesium (Mg)                  | 16.8       |
| Potassium (K)                   | 2.3        |
| Sodium (Na)                     | 2.4        |
| Hydrogen (H)                    | 4.8        |
| Texture (%):                    | Sandy Loam |
| Sand                            | 72.2       |
| Silt                            | 24.7       |
| Clay                            | 3          |



**Figure S1-** Plan view map of the emergency overflow lagoon at the Altavista, VA wastewater treatment plant showing approximate PCB concentrations at previous sampling sites.<sup>1</sup> PCB concentration contours were estimated using inverse distance weighted (IDW) interpolation. Map made using ArcGIS 10.4.1 (ESRI, Redlands, CA). Map courtesy of Reid Simmer (2018).

# S2. Experimental Design and Passive Sampling



**Figure S2** - Experimental design matrix for this study. Three replicates (n=3) used in control groups and four replicates (n=4) in bioaugmented treatments to account for possible variability in biological activity. Sediment-free controls with and without saponin were established for comparing levels of *bphA* gene abundance in treatments with qPCR.



Figure S3 Bioreactor utilized in this study design. Top left: Shown with aluminum foil cover removed. Top right: Shown with aluminum foil cover. Bottom: Conceptual diagram of PCB mass transport dynamics within the bioreactor.

#### S3. bphA Gene Abundance with qPCR

The following tables contain primer and QA/QC details that satisfy MIQE guidelines for qPCR.

**Table S2** – Oligonucleotide primer information for the *bphA* target gene.<sup>2</sup>

| Target gene        | Primer<br>name   | Sequences (5'- 3')      | Product<br>size (bp) | Reference   |
|--------------------|------------------|-------------------------|----------------------|-------------|
|                    | <i>bphA</i> 463f | CGCGTSGMVACCTACAARG     | 211                  | (Petrić et. |
| <i>bpnA</i> (qPCR) | <i>bphA</i> 674r | GGTACATGTCRCTGCAGAAYTGC | 211                  | al., 2011)  |

Table S3 – Pertinent qPCR parameters in accordance with MIQE guidelines.<sup>3</sup>

| Target gene | Primer<br>concentration<br>(µM) | DNA<br>template<br>mass<br>(ng) | qPCR linear range<br>(gene copies/reaction) | qPCR<br>efficiency | Y-intercept |
|-------------|---------------------------------|---------------------------------|---------------------------------------------|--------------------|-------------|
| bphA        | 0.3                             | 10                              | 30 - 30 × 10 <sup>7</sup>                   | 97.58%             | 36.64       |

# S4. Paraburkholderia xenovorans LB400 Growth on Saponin

An experiment was conducted to determine if *Paraburkholderia xenovorans* LB400 could use saponin (500 mg/L) as its sole carbon and energy source for growth. Biphenyl-grown LB400 was harvested and introduced into liquid K1 medium at an original  $OD_{600} = 0.1$ . Cells were washed prior to transfer to prevent residual biphenyl carryover. Growth was monitored by taking  $OD_{600}$  measurements and comparing to a saponin-free control (**Figure S4**).



**Figure S4** – Growth of LB400 with and without 500 mg/L saponin as the sole carbon and energy source in liquid K1 medium over 7 days. LB400 cells initially grew to  $OD_{600} = 0.2$  after 1 day in the presence of saponin but dropped gradually to  $OD_{600} = 0.15$  after 7 days. Error bars represent standard deviation of duplicate measurements.

# 1 S5. Mitigation of PCB Emissions from Sediment to Air Using Paraburkholderia xenovorans LB400

 $\frac{2}{2}$  Table S4 – Percent difference of PCB<sub>i</sub> sediment-air emissions between treatments in PUF samples ( $\Delta PCB_i$ ). Values shown are the percent differences between PCB<sub>i</sub>'s geometric

3 mean in the treatments listed in the column heading (1-[GeomeanTreatment1/GeomeanTreament2]). Positive values (blue) indicate a lower amount of PCB<sub>i</sub> mass accumulated in

4 PUF of the first treatment, relative to the second, at each respective timepoint. Negative values (red) indicate higher PCB<sub>i</sub> mass accumulated. LB400 mitigated nearly all release of 5 mono- and dichlorinated congeners from sediment slurry to PUF. Presence of saponin enhanced emissions mitigation by approximately 24% throughout the incubation period,

6 relative to the saponin-free treatment. Conditional color formatting uses maximum value of 100%, minimum of -100%, and midpoint of 0%.

|       |                | PUF   |                                                        |      |      |       |      |      |     |      |     |     |     |       |      |     |       |
|-------|----------------|-------|--------------------------------------------------------|------|------|-------|------|------|-----|------|-----|-----|-----|-------|------|-----|-------|
|       |                | ΔPC   | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |      |      |       |      |      |     |      |     | and |     |       |      |     |       |
|       | PCBi           | 3d    | 11d                                                    | 16d  | 35d  | 3d    | 11d  | 16d  | 35d | 3d   | 11d | 16d | 35d | 3d    | 11d  | 16d | 35d   |
| Mono- | 1              | 99%   | 97%                                                    | 84%  | 47%  | 98%   | 98%  | 92%  | 94% | -90% | 33% | 53% | 89% | -5%   | -28% | 23% | 30%   |
| )i-   | 4              | 92%   | 86%                                                    | 83%  | 70%  | 93%   | 93%  | 90%  | 90% | 15%  | 52% | 40% | 65% | 18%   | 1%   | 0%  | 2%    |
| _     | 8              | 95%   | 80%                                                    | 78%  | 9%   | 95%   | 91%  | 91%  | 84% | 11%  | 53% | 62% | 83% | 83%   | -1%  | 11% | -16%  |
|       | 10             | 51%   | -24%                                                   | -32% | -50% | 59%   | -19% | -14% | -6% | 16%  | 4%  | 13% | 29% | 8%    | -8%  | 8%  | -7%   |
| r;-   | 17             | 74%   | 69%                                                    | 65%  | 50%  | 74%   | 86%  | 78%  | 80% | 1%   | 55% | 37% | 61% | 52%   | 29%  | 15% | -47%  |
| Τ     | 18+30          | 69%   | 67%                                                    | 50%  | 38%  | 70%   | 85%  | 72%  | 70% | 2%   | 55% | 44% | 51% | 31%   | 26%  | 21% | -25%  |
|       | 19             | 37%   | -112%                                                  | -33% | -34% | 35%   | -77% | -14% | -9% | -4%  | 17% | 14% | 18% | 36%   | 18%  | 18% | -17%  |
|       | 20+28          | -15%  | 3%                                                     | 6%   | -30% | -27%  | 33%  | 33%  | 17% | -10% | 31% | 29% | 36% | 49%   | 50%  | 32% | -39%  |
|       | 27             | -124% | 57%                                                    | 44%  | 35%  | -145% | 66%  | 51%  | 54% | -9%  | 20% | 14% | 30% | 65%   | 25%  | 18% | -35%  |
|       | 31             | 55%   | 69%                                                    | 70%  | 36%  | 54%   | 86%  | 83%  | 76% | -1%  | 56% | 43% | 62% | 41%   | 43%  | 32% | -51%  |
|       | 32             | 2%    | -22%                                                   | -27% | -39% | -9%   | 32%  | 1%   | 4%  | -10% | 44% | 22% | 31% | 43%   | 30%  | 18% | -31%  |
| ra-   | 40+71          | 40%   | -45%                                                   | -15% | -49% | 25%   | -23% | 3%   | 12% | -25% | 15% | 16% | 41% | 34%   | 56%  | 31% | -78%  |
| Tet   | 42             | 48%   | -33%                                                   | 27%  | -26% | 41%   | -6%  | 42%  | 24% | -14% | 20% | 20% | 40% | 24%   | 48%  | 42% | -49%  |
|       | 44+47+65       | 43%   | -36%                                                   | 14%  | -15% | 35%   | -9%  | 30%  | 31% | -14% | 20% | 19% | 40% | 41%   | 53%  | 30% | -51%  |
|       | 49+69          | 56%   | -6%                                                    | 33%  | -9%  | 53%   | 22%  | 50%  | 38% | -7%  | 26% | 25% | 44% | 27%   | 53%  | 33% | -52%  |
|       | 50+53          | -17%  | 33%                                                    | -1%  | -42% | -17%  | 47%  | 18%  | 10% | 0%   | 22% | 19% | 37% | 43%   | 45%  | 29% | -58%  |
|       | 52             | 37%   | 31%                                                    | 34%  | 16%  | 20%   | 52%  | 53%  | 49% | -26% | 30% | 28% | 39% | -145% | 44%  | 27% | -18%  |
|       | 56             | 20%   | -5%                                                    | 8%   | -57% | 16%   | 40%  | 30%  | 18% | -6%  | 43% | 24% | 48% | 40%   | 82%  | 41% | -77%  |
| nta   | 61+70+74+76    | 33%   | 19%                                                    | 16%  | -71% | 37%   | 44%  | 40%  | 18% | 6%   | 30% | 29% | 52% | 24%   | 72%  | 35% | -104% |
| Pei   | 64             | 44%   | 7%                                                     | 0%   | -54% | 37%   | 33%  | 25%  | 7%  | -13% | 28% | 25% | 39% | 30%   | 52%  | 42% | -31%  |
|       | 00 + 101 + 112 | 28%   | -2%                                                    | 15%  | -76% | 22%   | 28%  | 39%  | 10% | -8%  | 29% | 28% | 49% | 62%   | 81%  | 44% | -82%  |
|       | 90+101+113     | 58%   | 62%                                                    | 25%  | -34% | 48%   | 64%  | 39%  | 29% | -23% | 7%  | 19% | 47% | -5%   | 50%  | 23% | -67%  |
|       | 95             | 63%   | 41%                                                    | 10%  | -57% | 51%   | 58%  | 30%  | 9%  | -33% | 28% | 22% | 42% | 11%   | 57%  | 29% | -62%  |
|       | 110            | 51%   | 25%                                                    | 18%  | -34% | 43%   | 39%  | 33%  | 26% | -16% | 19% | 18% | 45% | -11%  | 63%  | 22% | -58%  |

7

Table S5 – Percent difference of freely dissolved PCB<sub>i</sub> between treatments in SPME samples (ΔPCB<sub>i</sub>). Values shown are the percent differences between PCB<sub>i</sub>'s geometric mean in the treatments listed in the column heading (1-[GeomeanTreatment1/GeomeanTreatment2]). Positive values (blue) indicate a lower amount of PCB<sub>i</sub> mass accumulated in SPME of the first treatment, relative to the second, at each respective timepoint. Negative values (red) indicate higher PCB<sub>i</sub> mass accumulated. LB400 was effective at reducing freely dissolved concentrations of di- and tri-chlorinated congeners. Presence of saponin contributed to an enhanced reduction of approximately 20% throughout the incubation period,

12 relative to the saponin-free treatment. Conditional color formatting uses maximum value of 100%, minimum of -100%, and midpoint of 0%.

|          |                  | SrWE |                            |                                                                                                              |        |      |      |       |       |           |                                        |     |      |     |      |       |       |
|----------|------------------|------|----------------------------|--------------------------------------------------------------------------------------------------------------|--------|------|------|-------|-------|-----------|----------------------------------------|-----|------|-----|------|-------|-------|
|          |                  | ΔΡΟ  | CB <sub>i</sub> betw<br>Co | etween LB400 and $\Delta PCB_i$ between LB400+Sap. $\Delta PCB_i$ between LB400+Sap. $LB400+Sap$ , and LB400 |        |      |      |       |       | ו<br>3400 | $\Delta PCB_i$ between Sap and Control |     |      |     |      |       |       |
|          | PCB <sub>i</sub> | 3d   | 11d                        | 16d                                                                                                          | 35d    | 3d   | 11d  | 16d   | 35d   | 3d        | 11d                                    | 16d | 35d  | 3d  | 11d  | 16d   | 35d   |
| Mono-    | 1                | 80%  | -111%                      | -111%                                                                                                        | 4%     | 88%  | 9%   | -24%  | -26%  | 42%       | -93%                                   | 41% | -32% | 1%  | -58% | -34%  | 3%    |
| Di-      | 4                | 92%  | 42%                        | 83%                                                                                                          | -33%   | 97%  | 60%  | 91%   | 63%   | 75%       | 77%                                    | 46% | 73%  | -8% | 23%  | -9%   | -28%  |
| _        | 8                | 90%  | 29%                        | -205%                                                                                                        | -1644% | 96%  | 54%  | 21%   | -181% | 66%       | 67%                                    | 74% | 84%  | 7%  | -38% | 60%   | 3%    |
|          | 10               | 47%  | -92%                       | 46%                                                                                                          | -181%  | 37%  | 43%  | 64%   | -68%  | -61%      | -10%                                   | 32% | 40%  | 4%  | 16%  | -6%   | -29%  |
| 'ri-     | 17               | 84%  | 75%                        | 84%                                                                                                          | 42%    | 82%  | 25%  | 88%   | 72%   | 2%        | 82%                                    | 26% | 52%  | 14% | 35%  | 18%   | -63%  |
| Τ        | 18+30            | 78%  | 68%                        | 77%                                                                                                          | -1%    | 76%  | 29%  | 86%   | 45%   | 6%        | 78%                                    | 37% | 46%  | 11% | 33%  | 28%   | -51%  |
|          | 19               | -5%  | 6%                         | 49%                                                                                                          | 23%    | -71% | 14%  | 58%   | 31%   | -200%     | 19%                                    | 18% | 11%  | 7%  | 35%  | 10%   | -18%  |
|          | 20+28            | 30%  | 34%                        | 53%                                                                                                          | -40%   | 34%  | 27%  | 64%   | 10%   | 5%        | 52%                                    | 24% | 36%  | 16% | 40%  | 45%   | -98%  |
|          | 27               | 72%  | 73%                        | 79%                                                                                                          | 57%    | 60%  | -40% | 82%   | 65%   | -44%      | 63%                                    | 16% | 18%  | 19% | 36%  | 22%   | -47%  |
|          | 31               | 81%  | 79%                        | 81%                                                                                                          | -142%  | 84%  | 36%  | 88%   | -9%   | 28%       | 87%                                    | 35% | 55%  | 17% | 36%  | 41%   | -148% |
|          | 32               | 35%  | 30%                        | 45%                                                                                                          | 6%     | 24%  | -18% | 64%   | 22%   | -6%       | 18%                                    | 36% | 18%  | 13% | 38%  | 17%   | -43%  |
| ra-      | 40+71            | -10% | 11%                        | 53%                                                                                                          | -8%    | -5%  | -7%  | 67%   | 14%   | -39%      | 5%                                     | 31% | 21%  | 19% | 42%  | 38%   | -95%  |
| let      | 42               | 14%  | 32%                        | 76%                                                                                                          | 26%    | 14%  | -5%  | 78%   | 42%   | -114%     | 28%                                    | 10% | 21%  | 27% | 42%  | 43%   | -57%  |
| <b>_</b> | 44+47+65         | -22% | 26%                        | 70%                                                                                                          | 11%    | -19% | -5%  | 70%   | 28%   | -145%     | 22%                                    | -2% | 19%  | 19% | 42%  | 37%   | -60%  |
|          | 49+69            | 4%   | 44%                        | 69%                                                                                                          | 22%    | 10%  | -16% | 75%   | 42%   | -78%      | 35%                                    | 17% | 26%  | 25% | 44%  | 41%   | -60%  |
|          | 50+53            | 32%  | 46%                        | 56%                                                                                                          | 13%    | 39%  | 8%   | 62%   | 27%   | 4%        | 50%                                    | 15% | 16%  | 22% | 41%  | 35%   | -54%  |
|          | 52               | -9%  | 57%                        | 71%                                                                                                          | 34%    | 0%   | 5%   | 83%   | 48%   | -94%      | 59%                                    | 40% | 20%  | 19% | 42%  | 44%   | -27%  |
|          | 56               | 48%  | -17%                       | -58%                                                                                                         | -35%   | 29%  | 24%  | -25%  | 8%    | 70%       | 12%                                    | 21% | 32%  | 28% | 41%  | 47%   | -132% |
| lta-     | 61+70+74+76      | 52%  | 4%                         | -3%                                                                                                          | -132%  | 46%  | 13%  | 12%   | -39%  | 63%       | 17%                                    | 15% | 40%  | 29% | 44%  | 50%   | -183% |
| en       | 64               | 35%  | -3%                        | 39%                                                                                                          | -3%    | 42%  | 7%   | 57%   | 17%   | 50%       | 4%                                     | 31% | 19%  | 26% | 38%  | 47%   | -40%  |
| Ι        | 66               | 61%  | -13%                       | -570%                                                                                                        | -472%  | 48%  | 21%  | -471% | -296% | 79%       | 10%                                    | 15% | 31%  | 33% | 46%  | -125% | -877% |
|          | 90+101+113       | 49%  | -7%                        | 33%                                                                                                          | 4%     | 18%  | 28%  | 36%   | 30%   | 29%       | 23%                                    | 5%  | 27%  | 26% | 46%  | 42%   | -97%  |
|          | 95               | 49%  | 10%                        | 14%                                                                                                          | -7%    | 25%  | 6%   | 34%   | 17%   | 47%       | 16%                                    | 23% | 22%  | 24% | 45%  | 43%   | -80%  |
|          | 110              | 7%   | 1%                         | 39%                                                                                                          | -11%   | -34% | 24%  | 41%   | 18%   | -45%      | 26%                                    | 3%  | 26%  | 67% | 43%  | 42%   | -102% |

SPME

#### S6. PCB Reactive Transport Modeling

A mass balance of the most abundant individual congeners (PCB<sub>i</sub>) is solved for their concentration in the water (aqueous phase), concentration in the air, mass on the SPME fiber, and mass on the PUF passive sampler using the equations denoted with an asterisk and their dependent equations shown below. The sum of PCB<sub>i</sub>'s mass in each compartment is equal to its total mass in the bioreactor system. Each equation given is followed by their dependent equations. All terms are defined or referenced in **Table S6**. The model itself ("R" code)<sup>4</sup> and the underlying data<sup>5</sup> used to produce the simulated results are both available for openaccess reuse with no user registration or cost requirements at the Iowa Research Online (IRO) data repository.

## S6.1. Mass-Balance Equations for Reactive Transport Model

~ 1

$$V_w \frac{dC_w}{dt} = -k_a C_w V_w + k_d C_p V_{pw} - A_{aw} k_{aw} \left( C_w - \frac{C_a}{K_{aw}} \right) - k_b C_w V_w$$
 Equation 1\*

$$\rightarrow C_{w_i} = \frac{C_t d_s}{1 + MK}$$
 Equation 2

$$\rightarrow K = f_{oc} K_{oc}$$
 Equation 3

$$\rightarrow K_{oc} = 10^{\alpha \log K_{ow} + \beta}$$
 Equation 4

$$\rightarrow C_p = MKC_w$$
 Equation 5

$$\rightarrow k_{aw} = \left(\frac{1}{K_{aw}^{air}K_{aw}^{T}} + \frac{1}{K_{aw}^{H_20}}\right)^{-1}$$
 Equation 6

$$\rightarrow K_{aw}^{T} = K_{aw} e^{\left(\frac{-\Delta U_{ow}}{R}\left(\frac{1}{T} - \frac{1}{T_{std}}\right)\right)}$$
 Equation 7

$$\rightarrow K_{aw}^{air} = V_{H_2O-air} \left( \frac{D_{PCB_i \cdot air}}{D_{H_2O-air}} \right)^{0.67}$$
Equation 8

$$\rightarrow D_{PCB_i - air} = D_{H_2O - air} \sqrt{\frac{MW_{PCB_i}}{MW_{H_2O}}}$$
 Equation 9

$$D_{\text{PCB}_i - \text{H}_2\text{O}} = D_{CO_2 - \text{H}_2\text{O}} \sqrt{\frac{MW_{\text{PCB}_i}}{MW_{cO_2}}}$$
Equation 10

$$\rightarrow K_{aw}^{H_2O} = V_{CO_2 - H_2O} \sqrt{\left(\frac{Sc_{PCB_i}}{Sc_{CO_2}}\right)}$$
 Equation 11

$$\rightarrow Sc_{PCB_i} = \frac{V_{H_2O}}{D_{PCB_i - H_2O}}$$
 Equation 12

$$V_a \frac{dC_a}{dt} = A_{aw} k_{aw} \left( C_w - \frac{C_a}{K_{aw}} \right)$$
 Equation 13\*

S6.2. Passive Sampler Mass-Balance Equations for Reactive Transport Model

$$\frac{dm_f}{dt} = \frac{k_o A_f}{L} \left( C_w - \frac{m_f}{V_f K_f} \right)$$
 Equation 14\*

$$\rightarrow K_f = 10^{1.06(logK_{ow} - 1.16)}$$
 Equation 15  

$$\frac{dm_{\text{PUF}}}{dt} = r \left( C_a - \frac{m_{\text{PUF}}}{V_{\text{PUF}}K_{\text{PUF}}D} \right)$$
 Equation 16\*  

$$\rightarrow K_{puf} = 10^{0.6366(logK_{oa} - 3.1774)}$$
 Equation 17

## S6.3. Definitions of Terms Used in Reactive Transport Model Equations

Table S6 – Definitions of each term used in the mass-balance equations for the reactive transport model and their dependentequations. Each symbol is described in the order it appears in the equations above, followed by its dependent terms or equations.If a term has a constant value, it is given. If not, the appropriate equation that can be used to determine its value is referenced inthe "Value" column. An asterisk denotes equations that are part of the system of ordinary differential equations solvedsimultaneously in the model. If applicable, a reference is given in the "Reference" column.

| Symbol           | Description                                           | Value               | Units          | Reference                           |
|------------------|-------------------------------------------------------|---------------------|----------------|-------------------------------------|
| V                | Volume of aqueous solution in bioreactor              | 10×10-5             | m <sup>3</sup> | This study                          |
| • •              | volume of aqueous solution in bioreactor              | 10~10               |                |                                     |
|                  |                                                       |                     |                |                                     |
| Cw               | PCB <sub>i</sub> concentration in aqueous phase       | Equation 1*         | ng/L           |                                     |
| ,                |                                                       | Congener- specific, |                |                                     |
| k <sub>a</sub>   | PCB <sub>i</sub> absorption rate                      | fitted parameter    | day-1          |                                     |
|                  |                                                       |                     |                |                                     |
|                  |                                                       |                     |                |                                     |
| C <sub>w</sub>   | PCB. concentration in water initially                 | Equation 2          | ng/I           |                                     |
| $C_t$            | PCB: concentration in sediment                        | Congener-specific   | ng/g           | (Dataset)                           |
| $d_s$            | Density of sediment                                   | 900                 | g/L            |                                     |
|                  | Ratio of Sediment to aqueous solution in              |                     |                |                                     |
| М                | bioreactor                                            | 0.1                 | kg/L           | This study                          |
|                  |                                                       |                     |                |                                     |
|                  |                                                       |                     |                |                                     |
|                  |                                                       |                     |                |                                     |
|                  |                                                       |                     |                |                                     |
|                  |                                                       |                     |                |                                     |
|                  |                                                       |                     |                |                                     |
|                  | PCB <sub>i</sub> particle-aqueous phase partition     | 2                   | -              |                                     |
| K                | coefficient                                           | Equation S          | L/kg           |                                     |
| Joc              | Fraction of organic carbon in sediment particle       | 0.03                | kg-oc/kg       | This study                          |
|                  |                                                       |                     |                |                                     |
|                  |                                                       |                     |                |                                     |
|                  |                                                       |                     |                |                                     |
|                  |                                                       |                     |                |                                     |
| v                |                                                       | Equation 1          | тл             |                                     |
| N <sub>OC</sub>  | PCB <sub>i</sub> organic carbon partition coefficient | Equation 4          | L/Kg           | (Nguyen et. al., 2005) <sup>o</sup> |
| α                | regression                                            | sediment specific   |                | $(Nguyan et al. 2005)^6$            |
| Kau              | PCB: octanol-water partition coefficient              | Congener-specific   | I /kg          | $(Hawker & Cornell 1988)^7$         |
|                  | Empirical constant obtained via linear                | Congener &          | L/Kg           |                                     |
| β                | regression                                            | sediment-specific   |                | $(Nguyen et. al., 2005)^{6}$        |
|                  |                                                       | Congener- specific. |                |                                     |
| $k_d$            | PCB <sub>i</sub> desorption rate                      | fitted parameter    | day-1          |                                     |
|                  |                                                       |                     |                |                                     |
|                  |                                                       |                     |                |                                     |
|                  |                                                       |                     |                |                                     |
|                  |                                                       |                     |                |                                     |
|                  |                                                       |                     |                |                                     |
|                  |                                                       |                     |                |                                     |
|                  |                                                       |                     |                |                                     |
|                  | Sediment particle concentration in aqueous            | _                   |                |                                     |
| I C <sub>n</sub> | nhase                                                 | Equation 5          | ko/L           |                                     |

| $V_{pw}$                                | Volume of porewater in bioreactor                                 | 2.5×10 <sup>-6</sup> | m <sup>3</sup>      | This study                                 |
|-----------------------------------------|-------------------------------------------------------------------|----------------------|---------------------|--------------------------------------------|
|                                         | Area of air-aqueous phase interface in                            |                      |                     |                                            |
| A <sub>aw</sub>                         | bioreactor                                                        | 30                   | cm <sup>2</sup>     | This study                                 |
|                                         |                                                                   |                      |                     |                                            |
|                                         |                                                                   |                      |                     |                                            |
|                                         |                                                                   |                      |                     |                                            |
|                                         |                                                                   |                      |                     |                                            |
|                                         |                                                                   |                      |                     |                                            |
|                                         | PCB air-aqueous phase mass transfer                               |                      |                     |                                            |
| kaw                                     | coefficient                                                       | Equation 6           | cm/day              | (Martinez et al 2010) <sup>8</sup>         |
|                                         |                                                                   |                      | - cill, duly        | (                                          |
|                                         |                                                                   |                      |                     |                                            |
|                                         |                                                                   |                      |                     |                                            |
|                                         |                                                                   |                      |                     |                                            |
|                                         |                                                                   |                      |                     |                                            |
| w <sup>T</sup>                          | $PCB_i$ Dimensionless Henry's Law constant at                     | Equation 7           |                     | (C 200())                                  |
| Λ <sub>aw</sub>                         | temperature, <i>I</i>                                             | Equation 7           |                     | (Goss, 2006) <sup>9</sup>                  |
| V                                       | PCB <sub>i</sub> dimensionless Henry's Law constant at            | 0.0120452            |                     | (D) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A |
| A U                                     | standard temperature, $T_{\rm std}$                               | 0.0130452            |                     | (Dunnivant et. al., 1992) <sup>10</sup>    |
| $\Delta U_{ow}$                         | PCB <sub>i</sub> octanol-water internal energy of transfer        | 55517.96             | J/mol               | (Li et. al., 2003) <sup>11</sup>           |
| R                                       | Molar gas constant                                                | 8.3144               | J/mol-K             |                                            |
| <u>T</u>                                | Water temperature                                                 | 293.15               | K                   | This study                                 |
| T <sub>std</sub>                        | Standard temperature for air and water                            | 298.15               | K                   |                                            |
|                                         |                                                                   |                      |                     |                                            |
|                                         |                                                                   |                      |                     |                                            |
|                                         |                                                                   |                      |                     |                                            |
|                                         |                                                                   |                      |                     |                                            |
|                                         |                                                                   |                      |                     |                                            |
| Kair                                    | PCB: air-side mass transfer coefficient                           | Equation 8           | m/s                 | (Martinez et. al., 2010) <sup>8</sup>      |
|                                         | $H_2O$ 's air-side mass transfer coefficient                      | 1                    |                     | (                                          |
| $V_{\rm H_2O-air}$                      | without ventilation                                               | 0.003                | m/s                 | (Comenges et. al., 2017) <sup>12</sup>     |
|                                         | PCB <sub>i</sub> gas-phase diffusion coefficient at $T_{std}$ and |                      |                     |                                            |
| $D_{\text{PCB}_i - \text{air}}$         | atmospheric pressure, $P_{atm} = 1,013.25$ mbars                  | Equation 9           | cm <sup>2</sup> /s  | (Martinez et. al., 2010)8                  |
|                                         | Water gas-phase diffusion coefficient at $T_{std}$                |                      |                     |                                            |
| D <sub>H2</sub> O - air                 | and P <sub>atm</sub>                                              | 0.2743615            | cm <sup>2</sup> /s  | (Martinez et. al., 2010)8                  |
| $MW_{PCB_i}$                            | PCB <sub>i</sub> molecular weight                                 | Congener-specific    | g/mol               |                                            |
| $MW_{\rm H_2O}$                         | H <sub>2</sub> O molecular weight                                 | 18.0152              | g/mol               |                                            |
|                                         |                                                                   |                      |                     |                                            |
|                                         |                                                                   |                      |                     |                                            |
|                                         | PCB: diffusion coefficient in water at $T_{eff}$ and              |                      |                     |                                            |
| $D_{\text{PCB}_i - \text{H}_2\text{O}}$ | $P_{atm}$                                                         | Equation $10$        | cm <sup>2</sup> /s  | $(Martinez et. al., 2010)^8$               |
| - 1 2                                   | $CO_2$ diffusion coefficient in water at $T_{\rm cu}$ and         |                      |                     | (                                          |
| D <sub>CO2</sub> - H <sub>2</sub> O     | $P_{atm}$                                                         | 1.67606×10-5         | cm <sup>2</sup> /s  | (Martinez et. al., 2010) <sup>8</sup>      |
| MW <sub>CO2</sub>                       | CO <sub>2</sub> molecular weight                                  | 44.0094              | g/mol               |                                            |
|                                         |                                                                   |                      |                     |                                            |
|                                         |                                                                   |                      |                     |                                            |
|                                         |                                                                   |                      |                     |                                            |
|                                         |                                                                   |                      |                     |                                            |
|                                         |                                                                   |                      |                     |                                            |
| K <sup>H<sub>2</sub>0</sup>             | BCD water aide mass transfer apofficient                          | Faustion 11          |                     | (Martinez at al. $2010)^8$                 |
| aw                                      | $CO_1$ water-side mass transfer coefficient                       |                      | 111/5               | (martinez et. al., 2010)                   |
| Vco II o                                | without ventilation                                               | 0.041                | m/s                 | $(Compares at al 2017)^{12}$               |
| SCco                                    | without ventiliation $CO$ Solumida number at $T$ and $D$          | 600                  | 111/5               | (Company at al. $2017$ ) <sup>2</sup>      |
| 50,02                                   | $CO_2$ Schimidt humber at $T_{std}$ and $P_{atm}$                 | 000                  |                     | (Comenges et. al., 2017) <sup>1-</sup>     |
|                                         |                                                                   |                      |                     |                                            |
|                                         |                                                                   |                      |                     |                                            |
|                                         |                                                                   |                      |                     |                                            |
| Se                                      |                                                                   | E                    |                     |                                            |
| JCPCB <sub>i</sub>                      | PCB <sub>i</sub> Schmidt number at $T_{std}$ and $P_{atm}$        | Equation 12          | 2                   | (Martinez et. al., $2010)^8$               |
| V H20                                   | Kinematic viscosity of water $T_{std}$ and $P_{atm}$              | 0.010072884          | cm <sup>2</sup> /s  | (Martinez et. al., 2010) <sup>8</sup>      |
|                                         |                                                                   |                      |                     |                                            |
|                                         |                                                                   |                      |                     |                                            |
|                                         |                                                                   |                      |                     |                                            |
|                                         |                                                                   |                      |                     |                                            |
|                                         |                                                                   |                      |                     |                                            |
|                                         |                                                                   |                      |                     |                                            |
|                                         |                                                                   | Б. (1.12             |                     |                                            |
| ιLa                                     | PCB; concentration in air                                         | Equation 13          | l ng/m <sup>3</sup> |                                            |

| k <sub>b</sub>   | PCB <sub>i</sub> biotransformation rate by LB400           | Congener-specific      | day-1               | (Bako et. al., 2021ab) <sup>13,14</sup> |
|------------------|------------------------------------------------------------|------------------------|---------------------|-----------------------------------------|
| Va               | Volume of air in headspace of bioreactor                   | 1.25×10-5              | m <sup>3</sup>      | This study                              |
|                  |                                                            |                        |                     |                                         |
|                  |                                                            |                        |                     |                                         |
|                  |                                                            |                        |                     |                                         |
|                  |                                                            |                        |                     |                                         |
|                  |                                                            |                        |                     |                                         |
|                  |                                                            |                        |                     |                                         |
|                  |                                                            |                        |                     |                                         |
| $m_f$            | PCB <sub>i</sub> mass in SPME fiber                        | Equation 14*           | ng/cm               |                                         |
|                  | PCB <sub>i</sub> fiber-aqueous phase mass transfer         |                        |                     |                                         |
| ko               | coefficient                                                | Congener-specific      | cm/day              |                                         |
| $A_f$            | Average SPME fiber surface area                            | 0.138                  | cm <sup>2</sup>     | This study                              |
| L                | Average SPME fiber length                                  | 20                     | cm                  | This study                              |
| $V_f$            | Volume of PDMS coating on fiber                            | 6.9 × 10 <sup>-8</sup> | L/cm                | This study                              |
|                  |                                                            |                        |                     |                                         |
|                  |                                                            |                        |                     |                                         |
|                  |                                                            |                        |                     |                                         |
|                  |                                                            |                        |                     |                                         |
|                  |                                                            |                        |                     |                                         |
|                  |                                                            |                        |                     |                                         |
| K <sub>f</sub>   | PCB <sub>i</sub> fiber-aqueous phase partition coefficient | Equation 15            |                     | (Lu et. al., 2011) <sup>15</sup>        |
|                  |                                                            |                        |                     |                                         |
|                  |                                                            |                        |                     |                                         |
|                  |                                                            |                        |                     |                                         |
|                  |                                                            |                        |                     |                                         |
|                  |                                                            |                        |                     |                                         |
|                  |                                                            |                        |                     |                                         |
|                  |                                                            | 10                     |                     |                                         |
| $m_{ m PUF}$     | PCB <sub>i</sub> mass in PUF                               | Equation 10*           | ng                  |                                         |
| r                | PUF sampling rate                                          | 0.0045                 | m <sup>3</sup> /day | This study                              |
| V <sub>puf</sub> | PUF Volume                                                 | 0.000029               | m <sup>3</sup>      | This study                              |
| D                | PUF density                                                | 21,300                 | g/m <sup>3</sup>    | This study                              |
|                  |                                                            |                        |                     |                                         |
|                  |                                                            |                        |                     |                                         |
|                  |                                                            |                        |                     |                                         |
|                  |                                                            |                        |                     |                                         |
|                  |                                                            |                        |                     |                                         |
| K <sub>puf</sub> | PUF-air partition coefficient                              | Equation 17            | m <sup>3</sup> /g   | (Shoeib & Harner, 2002) <sup>16</sup>   |
| K <sub>oa</sub>  | PCB <sub>i</sub> octanol-air partition coefficient         | Congener-specific      |                     | (Harner & Bidleman, 1996) <sup>17</sup> |



Figure S5 – Accumulation of the most abundant individual congeners on passive samplers deployed in bioreactors, over 35 days with chemical structures inset. PUF samples are shown on the left and SPME on the right. Symbols indicate experimental results, and the corresponding dotted lines represent results of the PCB reactive transport model. Error bars represent standard error of triplicate measurements in non-bioaugmented controls (n = 3) and quadruplet in bioaugmented treatments (n = 4).

#### S7. Statistical Analyses

### S7.1. Summary of Results for LC-PCB Statistical Analyses

A three-way mixed effect analysis was carried out to determine the effects of time, saponin, and LB400 on LC-PCB accumulation in both PUF and SPME passive samplers. The fixed effects were fitted to a restricted maximum likelihood (REML) linear mixed effects model in GraphPad Prism<sup>TM</sup>. Residual analysis was performed to test for the assumptions of the three-way mixed effect analysis (**Figure S6**). Additionally, normality and homogeneity of variances were assessed using Shapiro-Wilk's and Levene's tests, respectively, using R software. Residuals were normally distributed (p > 0.05) and there was homogeneity of variances (p > 0.05). Statistical significance was accepted at the p < 0.05 level for simple main effects.

For PUF samples, there was a significant interaction effect detected between time and bioaugmentation, F (3, 16) = 4.470, p = 0.0184. In addition, bioaugmentation, F (1, 16) = 161.6, and time, F (3, 23) = 74.18, were highly statistically significant main effects (p < 0.0001) whereas saponin was not, F (1, 23) = 3.006, p = 0.0964 (**Table S7**).

For SPME samples, there was a significant interaction effect detected between time and bioaugmentation, F (3, 16) = 4.445, p = 0.0187. Time and bioaugmentation were significant main effects F (3, 24) = 3.329, p = 0.0365, and F (1, 16) = 32.39, p < 0.0001 whereas saponin was not, F (1, 23) = 3.006, p = 0.0964 (**Table S13**).

Because saponin was an insignificant main effect in both types of samplers, a two-way mixed effects analysis using the residual error of the three-way mixed effects model was run using data which consolidated bioaugmented groups (Control and Control+Saponin) and non-bioaugmented groups (LB400 and LB400+Saponin). Results of this analysis found that bioaugmentation had a highly significant main effect on  $\Sigma$ PCB accumulation in both PUF (**Table S8**) and SPME (**Table S14**; *p* < 0.005)

All simple pairwise comparisons between treatments at the same timepoint were made using a Holm-Šídák-adjusted post-hoc t-test. Results of these comparisons can be observed in **Table S9-Table S12** and **Table S15-Table S18** for PUF and SPME, respectively.



Figure S6 – Residual, homoscedasticity, and QQ plots for results of three-way mixed-effect analyses of PUF samples (left) and SPME samples (right).

## S7.2. Tabular Results for Statistical Analysis on PUF Measurements

Below are tables generated from the three-way and two-way mixed effect analyses conducted on log10-transformed PUF measurements in GraphPad Prism<sup>™</sup>.

**Table S7** – Tabular results of three-way mixed effects analysis on log-transformed LC-PCB PUF measurements using LB400, saponin, and time as fixed effects fitted to a restricted maximum likelihood (REML) linear mixed effects model with sphericity assumed.  $\alpha = 0.05$ .

|                                  |          | P value | Statistically significant |                    |
|----------------------------------|----------|---------|---------------------------|--------------------|
| Fixed effects (type III)         | P value  | summary | (P < 0.05)?               | F (DFn, DFd)       |
| Time                             | < 0.0001 | ****    | Yes                       | F (3, 23) = 74.18  |
| Bioaugmentation                  | < 0.0001 | ****    | Yes                       | F(1, 16) = 161.6   |
| Saponin                          | 0.0964   | ns      | No                        | F(1, 23) = 3.006   |
| Time x Bioaugmentation           | 0.0184   | *       | Yes                       | F(3, 16) = 4.470   |
| Time x Saponin                   | 0.9821   | ns      | No                        | F(3, 23) = 0.05603 |
| Bioaugmentation x Saponin        | 0.1014   | ns      | No                        | F(1, 16) = 3.020   |
| Time x Bioaugmentation x Saponin | 0.2595   | ns      | No                        | F (3, 16) = 1.473  |

**Table S8** – Tabular results of two-way mixed effects analysis on consolidated LC-PCB PUF data using LB400 and time as fixed effects fitted to a restricted maximum likelihood (REML) linear mixed effects model with no sphericity assumed (Geisser-Greenhouse Correction applied).  $\alpha = 0.05$ .

|                          |          | P value | Statistically significant |                          | Geisser-Greenhouse's |
|--------------------------|----------|---------|---------------------------|--------------------------|----------------------|
| Fixed effects (type III) | P value  | summary | (P < 0.05)?               | F (DFn, DFd)             | epsilon              |
| Time                     | < 0.0001 | ****    | Yes                       | F (2.366, 27.61) = 121.7 | 0.7887               |
| Treatment                | < 0.0001 | ****    | Yes                       | F(1, 12) = 63.35         |                      |
| Time x Treatment         | 0.0111   | *       | Yes                       | F (3, 35) = 4.291        |                      |

Table S9 – Results of Holm-Šídák's multiple comparisons tests following three-way mixed effects analysis on log-transformed LC-PCB PUF measurements.

| Holm-Šídák's multiple            | Predicted (LS) | Below      |         | Adjusted |
|----------------------------------|----------------|------------|---------|----------|
| comparisons test                 | mean diff.     | threshold? | Summary | P Value  |
| 3d:Control vs. 3d:Saponin        | 0.1807         | No         | ns      | >0.9999  |
| 3d:Control vs. 3d:LB400          | 1.565          | Yes        | ***     | 0.0003   |
| 3d:Control vs. 3d:LB400 + Sap.   | 1.583          | Yes        | ****    | < 0.0001 |
| 3d:Saponin vs. 3d:LB400          | 1.384          | Yes        | ***     | 0.0004   |
| 3d:Saponin vs. 3d:LB400 + Sap.   | 1.402          | Yes        | ***     | 0.0007   |
| 3d:LB400 vs. 3d:LB400 + Sap.     | 0.01817        | No         | ns      | >0.9999  |
| 11d:Control vs. 11d:Saponin      | 0.04004        | No         | ns      | >0.9999  |
| 11d:Control vs. 11d:LB400        | 0.718          | No         | ns      | 0.2119   |
| 11d:Control vs. 11d:LB400 + Sap. | 1.021          | Yes        | *       | 0.0113   |
| 11d:Saponin vs. 11d:LB400        | 0.678          | No         | ns      | 0.3311   |
| 11d:Saponin vs. 11d:LB400 + Sap. | 0.9813         | Yes        | *       | 0.0238   |
| 11d:LB400 vs. 11d:LB400 + Sap.   | 0.3033         | No         | ns      | 0.9966   |
| 16d:Control vs. 16d:Saponin      | 0.08345        | No         | ns      | >0.9999  |
| 16d:Control vs. 16d:LB400        | 0.7531         | No         | ns      | 0.1644   |
| 16d:Control vs. 16d:LB400 + Sap. | 1.055          | Yes        | **      | 0.0077   |
| 16d:LB400 vs. 16d:LB400 + Sap.   | 0.3022         | No         | ns      | 0.9966   |
| 35d:Control vs. 35d:Saponin      | -0.1796        | No         | ns      | >0.9999  |
| 35d:Control vs. 35d:LB400        | 0.3779         | No         | ns      | 0.9662   |
| 35d:Control vs. 35d:LB400 + Sap. | 0.9602         | Yes        | *       | 0.0224   |
| 35d:Saponin vs. 35d:LB400        | 0.5575         | No         | ns      | 0.6731   |
| 35d:Saponin vs. 35d:LB400 + Sap. | 1.14           | Yes        | **      | 0.0064   |
| 35d:LB400 vs. 35d:LB400 + Sap.   | 0.5822         | No         | ns      | 0.4495   |

|                                  | Predicted   | Predicted   | Predicted (LS) | SE of  |    |    |         |    |
|----------------------------------|-------------|-------------|----------------|--------|----|----|---------|----|
| Test details                     | (LS) mean 1 | (LS) mean 2 | mean diff.     | diff.  | N1 | N2 | t       | DF |
| 3d:Control vs. 3d:Saponin        | 4.154       | 3.974       | 0.1807         | 0.2617 | 3  | 3  | 0.6904  | 39 |
| 3d:Control vs. 3d:LB400          | 4.154       | 2.59        | 1.565          | 0.2298 | 3  | 3  | 6.808   | 16 |
| 3d:Control vs. 3d:LB400 + Sap.   | 4.154       | 2.572       | 1.583          | 0.2456 | 3  | 4  | 6.443   | 39 |
| 3d:Saponin vs. 3d:LB400          | 3.974       | 2.59        | 1.384          | 0.2617 | 3  | 3  | 5.288   | 39 |
| 3d:Saponin vs. 3d:LB400 + Sap.   | 3.974       | 2.572       | 1.402          | 0.2185 | 3  | 4  | 6.415   | 16 |
| 3d:LB400 vs. 3d:LB400 + Sap.     | 2.59        | 2.572       | 0.01817        | 0.2456 | 3  | 4  | 0.07396 | 39 |
| 11d:Control vs. 11d:Saponin      | 5.095       | 5.055       | 0.04004        | 0.2608 | 3  | 3  | 0.1535  | 39 |
| 11d:Control vs. 11d:LB400        | 5.095       | 4.377       | 0.718          | 0.2185 | 3  | 4  | 3.286   | 16 |
| 11d:Control vs. 11d:LB400 + Sap. | 5.095       | 4.074       | 1.021          | 0.2447 | 3  | 4  | 4.174   | 39 |
| 11d:Saponin vs. 11d:LB400        | 5.055       | 4.377       | 0.678          | 0.2447 | 3  | 4  | 2.771   | 39 |
| 11d:Saponin vs. 11d:LB400 + Sap. | 5.055       | 4.074       | 0.9813         | 0.2185 | 3  | 4  | 4.49    | 16 |
| 11d:LB400 vs. 11d:LB400 + Sap.   | 4.377       | 4.074       | 0.3033         | 0.2274 | 4  | 4  | 1.334   | 39 |
| 16d:Control vs. 16d:Saponin      | 5.039       | 4.956       | 0.08345        | 0.2608 | 3  | 3  | 0.32    | 39 |
| 16d:Control vs. 16d:LB400        | 5.039       | 4.286       | 0.7531         | 0.2185 | 3  | 4  | 3.446   | 16 |
| 16d:Control vs. 16d:LB400 + Sap. | 5.039       | 3.984       | 1.055          | 0.2447 | 3  | 4  | 4.313   | 39 |
| 16d:LB400 vs. 16d:LB400 + Sap.   | 4.286       | 3.984       | 0.3022         | 0.2274 | 4  | 4  | 1.329   | 39 |
| 35d:Control vs. 35d:Saponin      | 5.629       | 5.808       | -0.1796        | 0.2608 | 3  | 3  | 0.6885  | 39 |
| 35d:Control vs. 35d:LB400        | 5.629       | 5.251       | 0.3779         | 0.2185 | 3  | 4  | 1.729   | 16 |
| 35d:Control vs. 35d:LB400 + Sap. | 5.629       | 4.669       | 0.9602         | 0.2447 | 3  | 4  | 3.924   | 39 |
| 35d:Saponin vs. 35d:LB400        | 5.808       | 5.251       | 0.5575         | 0.2447 | 3  | 4  | 2.278   | 39 |
| 35d:Saponin vs. 35d:LB400 + Sap. | 5.808       | 4.669       | 1.14           | 0.2185 | 3  | 4  | 5.215   | 16 |
| 35d:LB400 vs. 35d:LB400 + Sap.   | 5.251       | 4.669       | 0.5822         | 0.2274 | 4  | 4  | 2.56    | 39 |

Table S10 – Details of Holm-Šídák's multiple comparisons tests following three-way mixed effects analysis on log-transformed LC-PCB PUF measurements.

Table S11 – Results of Holm-Šídák's multiple comparisons tests following two-way mixed effects analysis on consolidated LC-PCB PUF measurements.

| Holm-Šídák's multiple comparisons test<br>Non-bioaugmented - Bioaugmented | Mean Diff. | Below threshold? | Summary | Adjusted P Value |
|---------------------------------------------------------------------------|------------|------------------|---------|------------------|
| 3d                                                                        | 1.451      | Yes              | ***     | 0.0001           |
| 11d                                                                       | 0.8563     | Yes              | ***     | 0.0003           |
| 16d                                                                       | 0.8662     | Yes              | ***     | 0.0003           |
| 35d                                                                       | 0.7468     | Yes              | **      | 0.0013           |

Table S12 – Details of Holm-Šídák's multiple comparisons tests following two-way mixed effects analysis on consolidated LC-PCB PUF measurements.

| Test details<br>Non bioaugmented Bioaugmented | Mean 1 | Mean 2 | Mean Diff. | SE of diff. | N1 | N2 | t     | DF    |
|-----------------------------------------------|--------|--------|------------|-------------|----|----|-------|-------|
| Non-bloaugmenteu - bloaugmenteu               |        |        |            |             |    |    |       |       |
| 3d                                            | 4.031  | 2.579  | 1.451      | 0.2081      | 6  | 7  | 6.974 | 10.72 |
| 11d                                           | 5.082  | 4.226  | 0.8563     | 0.1559      | 6  | 8  | 5.492 | 12    |
| 16d                                           | 5.001  | 4.135  | 0.8662     | 0.1499      | 6  | 8  | 5.777 | 11.39 |
| 35d                                           | 5.707  | 4.96   | 0.7468     | 0.1598      | 6  | 8  | 4.674 | 8.603 |

## S7.3. Tabular Results for Statistical Analysis on SPME Measurements

Below are tables generated from three-way and two-way mixed effect analyses conducted on log10-transformed SPME measurements in GraphPad Prism<sup>™</sup>.

**Table S13** – Tabular results of three-way mixed effects analysis on log-transformed LC-PCB SPME measurements using LB400, saponin, and time as fixed effects fitted to a restricted maximum likelihood (REML) linear mixed effects model with sphericity assumed.  $\alpha = 0.05$ .

|                               |          | P value | Statistically significant |                     |
|-------------------------------|----------|---------|---------------------------|---------------------|
| Fixed effects (type III)      | P value  | summary | (P < 0.05)?               | F (DFn, DFd)        |
| Time                          | 0.0365   | *       | Yes                       | F (3, 24) = 3.329   |
| Bioaugmented                  | < 0.0001 | ****    | Yes                       | F(1, 16) = 32.39    |
| Saponin                       | 0.6282   | ns      | No                        | F(1, 24) = 0.2406   |
| Time x Bioaugmented           | 0.0187   | *       | Yes                       | F(3, 16) = 4.445    |
| Time x Saponin                | 0.149    | ns      | No                        | F (3, 24) = 1.947   |
| Bioaugmented x Saponin        | 0.941    | ns      | No                        | F(1, 16) = 0.005646 |
| Time x Bioaugmented x Saponin | 0.5614   | ns      | No                        | F (3, 16) = 0.7076  |

**Table S14** – Tabular results of two-way mixed effects analysis on consolidated LC-PCB SPME data using LB400 and time as fixed effects fitted to a restricted maximum likelihood (REML) linear mixed effects model with no sphericity assumed (Geisser-Greenhouse Correction applied).  $\alpha = 0.05$ .

|                          |         | P value | Statistically significant |                          | Geisser-Greenhouse's |
|--------------------------|---------|---------|---------------------------|--------------------------|----------------------|
| Fixed effects (type III) | P value | summary | (P < 0.05)?               | F (DFn, DFd)             | epsilon              |
| Time                     | 0.0219  | *       | Yes                       | F (2.447, 29.36) = 4.028 | 0.8156               |
| Bioaugmented             | 0.0004  | ***     | Yes                       | F(1, 12) = 23.50         |                      |
| Time x Bioaugmented      | 0.0127  | *       | Yes                       | F(3, 36) = 4.144         |                      |

Table S15 – Results of Holm-Šídák's multiple comparisons tests following three-way mixed effects analysis on log-transformed LC-PCB SPME measurements.

| Holm-Šídák's multiple            | Predicted (LS)<br>mean diff | Below<br>threshold? | Summary | Adjusted<br>P Value |
|----------------------------------|-----------------------------|---------------------|---------|---------------------|
| 3d:Control vs. 3d:Saponin        | 0.08196                     | No                  | ns      | >0.9999             |
| 3d:Control vs. 3d:LB400          | 0.9047                      | No                  | ns      | 0.0904              |
| 3d:Control vs. 3d:LB400 + Sap.   | 0.7985                      | No                  | ns      | 0.1634              |
| 3d:Saponin vs. 3d:LB400          | 0.8228                      | No                  | ns      | 0.1258              |
| 3d:Saponin vs. 3d:LB400 + Sap.   | 0.7166                      | No                  | ns      | 0.3939              |
| 3d:LB400 vs. 3d:LB400 + Sap.     | -0.1062                     | No                  | ns      | >0.9999             |
| 11d:Control vs. 11d:Saponin      | 0.3509                      | No                  | ns      | >0.9999             |
| 11d:Control vs. 11d:LB400        | 0.2639                      | No                  | ns      | >0.9999             |
| 11d:Control vs. 11d:LB400 + Sap. | 0.5602                      | No                  | ns      | 0.8591              |
| 11d:Saponin vs. 11d:LB400        | -0.087                      | No                  | ns      | >0.9999             |
| 11d:Saponin vs. 11d:LB400 + Sap. | 0.2092                      | No                  | ns      | >0.9999             |
| 11d:LB400 vs. 11d:LB400 + Sap.   | 0.2962                      | No                  | ns      | >0.9999             |
| 16d:Control vs. 16d:Saponin      | 0.2152                      | No                  | ns      | >0.9999             |
| 16d:Control vs. 16d:LB400        | 0.7084                      | No                  | ns      | 0.4148              |
| 16d:Control vs. 16d:LB400 + Sap. | 0.7487                      | No                  | ns      | 0.2597              |
| 16d:LB400 vs. 16d:LB400 + Sap.   | 0.04032                     | No                  | ns      | >0.9999             |
| 35d:Control vs. 35d:Saponin      | -0.4506                     | No                  | ns      | 0.998               |
| 35d:Control vs. 35d:LB400        | -0.08042                    | No                  | ns      | >0.9999             |
| 35d:Control vs. 35d:LB400 + Sap. | -0.1601                     | No                  | ns      | >0.9999             |
| 35d:Saponin vs. 35d:LB400        | 0.3702                      | No                  | ns      | 0.9999              |
| 35d:Saponin vs. 35d:LB400 + Sap. | 0.2906                      | No                  | ns      | >0.9999             |
| 35d:LB400 vs. 35d:LB400 + Sap.   | -0.07965                    | No                  | ns      | >0.9999             |

|                                  | Predicted   | Predicted   | Predicted (LS) | SE of  |    |    |        |    |
|----------------------------------|-------------|-------------|----------------|--------|----|----|--------|----|
| Test details                     | (LS) mean 1 | (LS) mean 2 | mean diff.     | diff.  | N1 | N2 | t      | DF |
| 3d:Control vs. 3d:Saponin        | 1.109       | 1.027       | 0.08196        | 0.2521 | 3  | 3  | 0.3251 | 40 |
| 3d:Control vs. 3d:LB400          | 1.109       | 0.2042      | 0.9047         | 0.2203 | 3  | 4  | 4.107  | 16 |
| 3d:Control vs. 3d:LB400 + Sap.   | 1.109       | 0.3104      | 0.7985         | 0.2361 | 3  | 4  | 3.382  | 40 |
| 3d:Saponin vs. 3d:LB400          | 1.027       | 0.2042      | 0.8228         | 0.2361 | 3  | 4  | 3.484  | 40 |
| 3d:Saponin vs. 3d:LB400 + Sap.   | 1.027       | 0.3104      | 0.7166         | 0.2203 | 3  | 4  | 3.253  | 16 |
| 3d:LB400 vs. 3d:LB400 + Sap.     | 0.2042      | 0.3104      | -0.1062        | 0.219  | 4  | 4  | 0.485  | 40 |
| 11d:Control vs. 11d:Saponin      | 0.7305      | 0.3796      | 0.3509         | 0.2521 | 3  | 3  | 1.392  | 40 |
| 11d:Control vs. 11d:LB400        | 0.7305      | 0.4666      | 0.2639         | 0.2203 | 3  | 4  | 1.198  | 16 |
| 11d:Control vs. 11d:LB400 + Sap. | 0.7305      | 0.1704      | 0.5602         | 0.2361 | 3  | 4  | 2.372  | 40 |
| 11d:Saponin vs. 11d:LB400        | 0.3796      | 0.4666      | -0.087         | 0.2361 | 3  | 4  | 0.3684 | 40 |
| 11d:Saponin vs. 11d:LB400 + Sap. | 0.3796      | 0.1704      | 0.2092         | 0.2203 | 3  | 4  | 0.9497 | 16 |
| 11d:LB400 vs. 11d:LB400 + Sap.   | 0.4666      | 0.1704      | 0.2962         | 0.219  | 4  | 4  | 1.353  | 40 |
| 16d:Control vs. 16d:Saponin      | 1.09        | 0.8743      | 0.2152         | 0.2521 | 3  | 3  | 0.8537 | 40 |
| 16d:Control vs. 16d:LB400        | 1.09        | 0.3811      | 0.7084         | 0.2203 | 3  | 4  | 3.216  | 16 |
| 16d:Control vs. 16d:LB400 + Sap. | 1.09        | 0.3408      | 0.7487         | 0.2361 | 3  | 4  | 3.171  | 40 |
| 16d:LB400 vs. 16d:LB400 + Sap.   | 0.3811      | 0.3408      | 0.04032        | 0.219  | 4  | 4  | 0.1842 | 40 |
| 35d:Control vs. 35d:Saponin      | 0.1774      | 0.628       | -0.4506        | 0.2521 | 3  | 3  | 1.787  | 40 |
| 35d:Control vs. 35d:LB400        | 0.1774      | 0.2578      | -0.08042       | 0.2203 | 3  | 4  | 0.365  | 16 |
| 35d:Control vs. 35d:LB400 + Sap. | 0.1774      | 0.3374      | -0.1601        | 0.2361 | 3  | 4  | 0.6779 | 40 |
| 35d:Saponin vs. 35d:LB400        | 0.628       | 0.2578      | 0.3702         | 0.2361 | 3  | 4  | 1.568  | 40 |
| 35d:Saponin vs. 35d:LB400 + Sap. | 0.628       | 0.3374      | 0.2906         | 0.2203 | 3  | 4  | 1.319  | 16 |
| 35d:LB400 vs. 35d:LB400 + Sap.   | 0.2578      | 0.3374      | -0.07965       | 0.219  | 4  | 4  | 0.3638 | 40 |

Table S16 – Details of Holm-Šídák's multiple comparisons tests following three-way mixed effects analysis on log-transformed LC-PCB SPME measurements.

Table S17 – Results of Holm-Šídák's multiple comparisons tests following two-way mixed effects analysis on consolidated LC-PCB SPME measurements.

| Holm-Šídák's multiple comparisons test<br>Non-bioaugmented - Bioaugmented | Mean Diff. | Below threshold? | Summary | Adjusted P Value |
|---------------------------------------------------------------------------|------------|------------------|---------|------------------|
| 3d                                                                        | 0.8152     | Yes              | ***     | 0.0002           |
| 11d                                                                       | 0.2383     | No               | ns      | 0.3062           |
| 16d                                                                       | 0.6246     | Yes              | *       | 0.0331           |
| 35d                                                                       | 0.1046     | No               | ns      | 0.6313           |

Table S18 - Details of Holm-Šídák's multiple comparisons tests following two-way mixed effects analysis on consolidated SPME measurements.

| Test details                    | Mean 1 | Mean 2 | Mean Diff. | SE of diff. | N1 | N2 | t      | DF    |
|---------------------------------|--------|--------|------------|-------------|----|----|--------|-------|
| Non-bioaugmented - Bioaugmented |        |        |            |             |    |    |        |       |
| 3d                              | 1.072  | 0.2573 | 0.8152     | 0.1173      | 6  | 8  | 6.949  | 9.963 |
| 11d                             | 0.5568 | 0.3185 | 0.2383     | 0.1619      | 6  | 8  | 1.472  | 11.87 |
| 16d                             | 0.9855 | 0.3609 | 0.6246     | 0.1989      | 6  | 8  | 3.14   | 9.507 |
| 35d                             | 0.4022 | 0.2976 | 0.1046     | 0.2065      | 6  | 8  | 0.5064 | 5.785 |

# S8. PCB Quantification

**Table S19** – PCB precursor and product masses of labeled and unlabeled calibration standards employed in multiple reaction monitoring mode on the triple quadrupole mass spectrometer.<sup>*a*</sup>

| Cl Homolog                            | Precursor Mass | Product Mass |
|---------------------------------------|----------------|--------------|
| Monochlorinated                       | 188            | 152          |
| Dichlorinated                         | 222            | 152          |
| Trichlorinated                        | 258            | 186          |
| Tetrachlorinated                      | 291.9          | 222          |
| Pentachlorinated                      | 325.9          | 255.9        |
| Hexachlorinated                       | 359.8          | 289.9        |
| Heptachlorinated                      | 393.8          | 323.9        |
| Octachlorinated                       | 429.7          | 359.8        |
| Nonachlorinated                       | 463.7          | 393.8        |
| Decachlorinated                       | 497.7          | 427.9        |
| 65D Tetrachlorinated (surrogate std.) | 269.9          | 227          |

<sup>a</sup> Standards were from AccuStandard, New Haven, CT, USA

#### References

- Mattes, T. E.; Ewald, J. M.; Liang, Y.; Martinez, A.; Awad, A.; Richards, P.; Hornbuckle, K. C.; Schnoor, J. L. PCB Dechlorination Hotspots and Reductive Dehalogenase Genes in Sediments from a Contaminated Wastewater Lagoon. *Environ. Sci. Pollut. Res.* 2018, 25 (17), 16376–16388. https://doi.org/10.1007/s11356-017-9872-x.
- (2) Petrić, I.; Hršak, D.; Fingler, S.; Udiković-Kolić, N.; Bru, D.; Martin-Laurent, F. Insight in the PCB-Degrading Functional Community in Long-Term Contaminated Soil under Bioremediation. J. Soils Sediments 2011, 11 (2), 290–300. https://doi.org/10.1007/s11368-010-0299-y.
- (3) Bustin, S. A.; Benes, V.; Garson, J. A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M. W.; Shipley, G. L.; Vandesompele, J.; Wittwer, C. T. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. *Clin. Chem.* 2009, 55 (4), 611– 622. https://doi.org/10.1373/clinchem.2008.112797.
- (4) Bako, C. M.; Martinez, A. R Code for Polychlorinated Biphenyl (PCB) Reactive Transport Model. *Iowa Res. Online* **2022**. https://doi.org/10.25820/code.006163.
- (5) Bako, C. M.; Martinez, A.; Ewald, J. M.; Hua, J. B. X.; Schnoor, J. L.; Mattes, T. E. Dataset Describing Polychlorinated Biphenyl (PCB) Congener Accumulation on Passive Samplers and Mass Transport in Sediment Slurry Bioreactors Bioaugmented with *Paraburkholderia xenovorans* LB400. *Iowa Res. Online* 2021, *V1*. https://doi.org/10.25820/data.006160.
- (6) Nguyen, T. H.; Goss, K.-U.; Ball, W. P. Polyparameter Linear Free Energy Relationships for Estimating the Equilibrium Partition of Organic Compounds between Water and the Natural Organic Matter in Soils and Sediments. *Environ. Sci. Technol.* 2005, *39* (4), 913–924. https://doi.org/10.1021/es048839s.
- (7) Hawker, D. W.; Connell, D. W. Octanol-Water Partition Coefficients of Polychlorinated Biphenyl Congeners. *Environ. Sci. Technol.* **1988**, *22* (4), 382–387. https://doi.org/10.1021/es00169a004.
- (8) Martinez, A.; Wang, K.; Hornbuckle, K. C. Fate of PCB Congeners in an Industrial Harbor of Lake Michigan. *Environ. Sci. Technol.* **2010**, *44* (8), 2803–2808. https://doi.org/10.1021/es902911a.
- (9) Goss, K.-U. Prediction of the Temperature Dependency of Henry's Law Constant Using Poly-Parameter Linear Free Energy Relationships. *Chemosphere* 2006, 64 (8), 1369–1374. https://doi.org/10.1016/j.chemosphere.2005.12.049.
- (10) Dunnivant, F. M.; Elzerman, A. W.; Jure, P. C.; Hasan, M. N. Quantitative Structure-Property Relationships for Aqueous Solubilities and Henry's Law Constants of Polychlorinated Biphenyls. *Environ. Sci. Technol.* 1992, 26 (8), 1567–1573. https://doi.org/10.1021/es00032a012.
- (11) Li, N.; Wania, F.; Lei, Y. D.; Daly, G. L. A Comprehensive and Critical Compilation, Evaluation, and Selection of Physical–Chemical Property Data for Selected Polychlorinated Biphenyls. J. Phys. Chem. Ref. Data 2003, 32 (4), 1545–1590. https://doi.org/10.1063/1.1562632.
- (12) Comenges, J. M. Z.; Joossens, E.; Benito, J. V. S.; Worth, A.; Paini, A. Theoretical and Mathematical Foundation of the Virtual Cell Based Assay – A Review. *Toxicol. Vitr.* 2017, 45, 209–221. https://doi.org/10.1016/j.tiv.2016.07.013.
- (13) Bako, C. M.; Mattes, T. E.; Marek, R. F.; Hornbuckle, K. C.; Schnoor, J. L. Biodegradation of PCB Congeners by *Paraburkholderia xenovorans* LB400 in Presence and Absence of Sediment during Lab Bioreactor Experiments. *Environ. Pollut.* 2021, 271, 116364. https://doi.org/10.1016/j.envpol.2020.116364.
- (14) Bako, C. M.; Mattes, T. E.; Marek, R. F.; Hornbuckle, K. C.; Schnoor, J. L. Dataset Describing Biodegradation of Individual Polychlorinated Biphenyl Congeners (PCBs) by *Paraburkholderia xenovorans* LB400 in Presence and Absence of Sediment Slurry. *Data Br.* 2021, 35, 106821. https://doi.org/10.1016/j.dib.2021.106821.
- (15) Lu, X.; Skwarski, A.; Drake, B.; Reible, D. D. Predicting Bioavailability of PAHs and PCBs with Porewater

Concentrations Measured by Solid-Phase Microextraction Fibers. *Environ. Toxicol. Chem.* **2011**, *30* (5), 1109–1116. https://doi.org/10.1002/etc.495.

- (16) Shoeib, M.; Harner, T. Characterization and Comparison of Three Passive Air Samplers for Persistent Organic Pollutants. *Environ. Sci. Technol.* **2002**, *36* (19), 4142–4151. https://doi.org/10.1021/es020635t.
- (17) Harner, T.; Bidleman, T. F. Measurements of Octanol–Air Partition Coefficients for Polychlorinated Biphenyls. J. Chem. Eng. Data **1996**, 41 (4), 895–899. https://doi.org/10.1021/je960097y.