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Materials and Methods 

 
The experimental protocol was approved by the Institutional Review Board at the 

University of California, San Francisco. Participants gave their written, informed consent 
before testing. 

 
Participants 

Ten individuals, with self-reported normal hearing, participated in this study (see 
Table S1 for demographic information). Each participant was a neurosurgical patient with 
intractable epilepsy who had a high-density electrode grid implanted subdurally for 
clinical monitoring of seizure activity. The placement of the grid was determined solely 
by clinical needs, typically covering the lateral cortical surface. 6 subjects had left-
hemisphere grids and 4 subjects had right-hemisphere grids. Table S1 also includes the 
anatomical location of each participant’s epilepsy focus. Electrodes were localized by 
aligning preimplantation MRI and post-implantation CT scans. 

 
Data acquisition and neural signal processing 

During experimental tasks, neural signals were recorded from the 256 channel (16 
x 16, 4 mm spacing) ECoG grid (or from two 128 channel ECoG grids, 8 x 16, 4 mm 
spacing) using a multichannel amplifier optically connected to a digital signal processer. 
The local field potential at each electrode contact was amplified and sampled at 3052Hz. 
The raw waveform was visually examined, and channels containing continuous 
epileptiform activity or signal variation too low to be detectable from noise were 
removed. Time segments on remaining channels that contained electrical/movement-
related artifacts or discrete epileptiform activity were manually marked and excluded. 
The signal was common average referenced and notch-filtered at 60 Hz, 120 Hz, and 180 
Hz to remove line noise. Using the Hilbert transform, the analytic amplitude of eight 
Gaussian filters (center frequencies: 70-150 Hz) was computed. The high-gamma signal 
was taken as the average analytic amplitude across these eight bands. This signal was 
downsampled to 100 Hz and z-scored either to a silent baseline or across the entire 
recording block (Hγ). For each token, we analyzed the neural data in the window from 
150 ms before stimulus onset to 650 ms after stimulus offset. 

 
Stimulus design  

Stimuli consisted of spoken sentences synthesized to have four linguistically 
distinct intonational contours. These contours, depicted in Fig. 1b, were Neutral, 
Emphasis 1, Emphasis 3, and Question. In the Neutral condition, the less variable pitch 
contour and falling pitch at the end of the sentence do not impart additional meaning 
beyond the declarative meaning of the words. In the Emphasis 1 condition, a pitch accent 
(rising followed by falling pitch) on the first word and low pitch throughout the rest of 
the sentence indicates the first word as the focus of the sentence, whereas the pitch accent 
on the third word in Emphasis 3 indicates that the third word was emphasized. Finally, 
rising pitch through the last word in the Question condition signals that the utterance was 
interrogative.  
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We applied these intonation contours to four declarative sentences (“Humans 
value genuine behavior”, “Movies demand minimal energy”, “Lawyers give a relevant 
opinion”, and “Reindeer are a visual animal”) constructed such that rising intonation at 
the end of the utterance would signal a question and a pitch accent could be added to 
either of the bolded words (referred to as the first word and third word even though in the 
latter two sentences the second bolded word is the fourth word). In order to precisely 
align the pitch contours across sentences, the sentences were designed to contain the 
same number of syllables.  

Each sentence and intonation combination was recorded from a native female 
speaker of standard American English. To create base tokens, we duration-matched the 
syllables of the Neutral sentence recordings and equalized the average root-mean-square 
intensity across sentences. The total duration of each sentence was 2.2 seconds. To create 
the four intonation contours, the average pitch trace of recorded Neutral, Question, 
Emphasis 1, and Emphasis 3 sentences was taken and smoothed. We then applied each 
intonation contour to each base token using the pitch-synchronous-overlap-add (PSOLA) 
method (52).  

Finally, we manipulated baseline pitch and formant values to create three speakers 
(two female, one male). In general, voices from different speakers are perceived on two 
main acoustic dimensions, fundamental frequency (f0) and formant frequencies, based on 
the length of the vocal folds and shape of the vocal tract, respectively (53, 54). To model 
these two dimensions, the three speakers consisted of a low-pitch, low-formant male 
speaker (median pitch = 80 Hz, formants lowered by 15% of original recording), a high-
pitch, low-formant female speaker (median pitch = 180 Hz, formants lowered by 15% of 
original recording), and a high-pitch, high-formant female speaker (median pitch = 180 
Hz, formants lowered by 5% of original recording). The two female speakers had the 
same f0, but differing baseline formant frequencies, one of which matched the male 
speaker’s baseline formant frequencies. Baseline pitch values were manipulated using 
PSOLA and baseline formants were manipulated by shifting the entire sound spectrum 
while maintaining duration and fundamental frequency. All speech synthesis was done 
using the linguistics software, PRAAT (55).  

The resulting stimulus set consisted of 4 intonation contours x 4 sentences x 3 
speakers = 48 tokens (Audio S1-48). The tokens were each played twice in one recording 
block in random order. The total experimental time for each block was about 5 minutes. 
We collected 2-4 blocks per participant (mean 2.7 blocks). 

 
Data Analysis 

All analyses were carried out using custom software written in MATLAB and 
Python. Open-source scientific Python packages used included numpy, scipy, pandas, 
scikit-learn, and statsmodels. Figures were created using matplotlib and seaborn. The 
code used to analyze the data and produce the figures is publicly available on Github at 
https://github.com/ChangLabUcsf/intonatang. The accompanying documentation can be 
found at https://changlabucsf.github.io/intonatang.  

Raw data, experimental stimuli, and analysis code is accessible at 
https://doi.org/10.5281/zenodo.826950.  
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Single-electrode encoding analysis 

Single-electrode encoding analyses were not restricted anatomically a priori. 
Using ordinary least-squares regression, we fit encoding models that predicted neural 
activity (Hγ) from stimulus conditions (e.g. Neutral, Question, Emphasis 1, and Emphasis 
3 formed the set of intonation conditions). To determine how variance in the neural 
activity was explained by the intonation, sentence, and speaker conditions, we 
represented stimulus conditions and interactions with sets of dichotomous predictor 
variables. This regression analysis is mathematically equivalent to three-way, crossed 
ANOVA. To reduce timepoint by timepoint variability, we took neural activity as the 
average of Hγ in 60 ms windows, moving in 30 ms steps. For each model, the coefficient 
of determination, R2, provides a measure of the proportion of variance in neural activity 
that is explained by stimulus conditions and interactions. The p-value associated with the 
omnibus F-statistic provides a measure of significance. We set the significance threshold 
at a = 0.05 and corrected for multiple comparisons using the Bonferroni method, taking 
individual time points and electrodes as independent samples. The average number of 
significant electrodes for each participant was 17.7 (min: 5, max: 32).   

 
Variance partitioning and evaluation of interaction terms 

The predictor variables were grouped into seven mutually exclusive sets. Three of 
the seven groups represented the main effects of intonation (In), sentence (Se), and 
speaker (Sp) condition. An additional three of the seven represented pairwise 
interactions, intonation ´ sentence (InSe), intonation ´ speaker (InSp), and sentence ´ 
speaker (SeSp). The last group of predictor variables represented the three-way 
interaction (InSeSp). For each token with intonation condition i, sentence condition j, and 
speaker condition k, the high-gamma was modeled as: 

 
Hγijk(t) = β0(t)  +  βIn(t) ⋅ Ini  +  βSe(t) ⋅ Sej  +  βSp(t) ⋅ Spk +  βInSe(t) ⋅ InSeij  +   

βInSp(t) ⋅ InSpik  +  βSeSp(t) ⋅ SeSpjk  +  βInSeSp(t) ⋅ InSeSpijk 
 
The contribution of each group of predictor variables, including the groups for 

interaction terms, was evaluated by comparing the variance explained by the fully 
specified model with one that excluded the group. The proportion of variance uniquely 
explained by each group, R2

G, was calculated as the difference in R2 between those two 
models: 
 

R2
G = R2

full − R2
wo_G 

 
The significance of each group of predictors was evaluated using the F-test(m, 

N-k-1) with the following F-statistic:  
 

FG =	
R2

G

m
 
1 − R2

full

N − k −1
 

 
where m is the number of predictor variables coding for the group G, k is the 

number of predictor variables in the fully specified model, and N is the number of trials. 



 
 

5 
 

By applying a Bonferroni correction on the p-value, this method takes a conservative 
stance on finding significant values.  

 
De-lexicalized non-speech control stimuli 

To determine whether the cortical representation of intonational pitch contours is 
independent from the processing of phonetic information, we created a set of non-speech 
control stimuli that completely removed spectral information related to phonetic features 
and consisted of only a pitch contour (for 5 of 8 subjects who listened to non-speech 
control stimuli, these stimuli also had amplitude contours corresponding to the amplitude 
contours of each sentence condition (Audio S49 – S80); remaining 3 of 8 subjects heard 
(Audio S81 – S88).). These stimuli were created by summing a sinusoid and its second 
and third harmonics (29). The varying frequency of the sinusoid was matched to the pitch 
contour of each intonation condition. 

To test whether neural responses to non-speech stimuli were similar in pattern to 
responses to the original speech stimuli, we used linear discriminant analysis (LDA) to 
ask whether the pattern of neural activity that differentiates intonation contours in the 
speech context generalizes to a non-speech context. To do this, we fit the model using 
neural responses to speech to predict the intonation condition from the neural activity 
time series from a single electrode (average Hy in 60 ms windows centered at -0.15 s to 
2.85 s in 30 ms steps) and then tested the model on non-speech data. We then determined 
whether model performance on the non-speech data, measured as classification accuracy, 
was as good as performance for the speech data.  

Specifically, we first computed a distribution of classification accuracies for 
speech. We trained an LDA classifier on a random 80% of the speech trials and then 
tested the model on a set with Nnon-speech trials bootstrapped from the remaining 20%. To 
prevent overfitting, we used a form of regularized LDA, diagonal LDA, which uses a 
diagonal covariance matrix that is shared between classes (i.e. intonation conditions). We 
performed this procedure 1000 times to arrive at the distribution of accuracies for speech 
data. We then trained an LDA classifier on 100% of the speech trials and used this model 
to test the non-speech trials and determined whether this accuracy fell within the 95% of 
values from the 2.5 to the 97.5 percentile for the speech trials.  

 
Missing fundamental, non-speech control stimuli 

To determine whether the neural activity we observed was a response to the 
psychoacoustic, perceptual attribute of pitch, rather than the physical, acoustic energy at 
the fundamental frequency (f0), we created a second type of non-speech control stimuli 
that did not contain energy at f0 (30, 31) (Audio S89 – S96). These missing f0 stimuli 
contained the fourth, fifth, and sixth harmonics. To mask distortion products that may be 
introduced at the level of the cochlea (56, 57), we also added pink noise from 0.25s 
before pitch contour onset through the duration of the stimulus. We presented these 
stimuli in random order to three participants, while we recorded their cortical activity. 
We then used the same analysis, described above, to test whether the pattern of neural 
activity to intonation contours was similar between the speech context and the missing f0 
context. Briefly, we trained an LDA classifier to predict intonation condition from neural 
responses to speech stimuli. We then tested this classifier on neural responses to missing 
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f0 and determined whether classification accuracy was as good for missing f0 data as it 
was for speech data (see section above for more details). 

 
Absolute and relative pitch temporal receptive field analysis 

To investigate how the cortical representation of intonation reflected the encoding 
of pitch values, we recorded neural activity as participants listened to a subset of the 
TIMIT continuous speech corpus (28). This stimulus set contained sentences spoken by 
hundreds of male and female speakers allowing for a statistical separation of absolute and 
relative pitch values (Fig. S3). Vocal pitch values were extracted using an automated 
autocorrelation method and corrected for halving and doubling errors. We defined 
absolute pitch as the natural logarithm of pitch values in Hz. There are two main methods 
used to compute relative pitch. One method normalizes values by interpolating each 
value between a speaker’s minimum pitch and maximum pitch (58), while the other uses 
z-scoring (59). Here, we used to the z-score method to compute relative pitch values, and 
normalized absolute pitch values in ln Hz by the mean and standard deviation of each 
sentence as a proxy for speaker. We then discretized absolute and relative pitch values 
into 10 bins, equally spaced in pitch space from the 2.5 percentile to the 97.5 percentile 
value (Fig. S3H, I). The bottom and top 2.5% of the pitch values were placed into the 
first and last bins, respectively. By defining these percentile bounds, we prevent unstable 
estimates that can occur when the top and bottom bins contain too few data points. 

To determine how absolute and relative pitch values in speech drive neural 
activity, we fit temporal receptive field models (34) that predicted neural activity from 
pitch values in the immediately preceding 400 ms window (sampled at 100 Hz) using L2 
regularized multiple linear regression. By including both absolute and relative pitch 
values as features, we could assess the unique contribution of absolute and relative pitch 
in predicting neural activity. We also included two additional temporal features using a 
continuous variable with intensity information and a binary variable when pitch values 
were present. This binary feature allows us to statistically control for the contribution of 
the presence of pitch (or voicing in the speech signal) when evaluating the contribution of 
absolute and relative pitch levels. To calculate the unique contribution of absolute and 
relative pitch, we calculated the R2 gained when absolute or relative pitch features, 
respectively, were included in the model.  

We used L2 regularization (ridge regression) and cross-validation to prevent 
overfitting since the number of features in temporal receptive field models is typically 
large (>500). We evaluated the models using the correlation between actual and predicted 
values of neural activity on held on data. Specifically, we divided the data into three 
mutually exclusive sets containing 80%, 10%, and 10% of the total number of sentences. 
The first set of 80% was used as the training set. The second set was used to fit the L2 
regularization hyperparameter, and the final tenth was used as the test set. We performed 
this procedure 25 times and the performance of the model was taken as the mean of 
performance across all testing sets.  

To calculate the significance of the R2
absolute and R2

relative values computed for each 
electrode, we used a permutation test. We shuffled the pitch and intensity contours 
between TIMIT sentences before using the same analysis pipeline to compute null values 
of R2

absolute and R2
relative. We ran this analysis 200 times to arrive at the null distribution. 

R2
absolute and R2

relative values above the 95th percentile were considered significant.  
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Predicted neural activity from pitch temporal receptive fields 

To determine whether the absolute or relative pitch temporal receptive field 
models captured stimulus features that were relevant for intonation-encoding electrodes, 
we used the pitch temporal receptive field (ptrf) models fit using TIMIT speech data to 
predict neural responses to the original intonation stimuli containing the four intonation 
conditions. To determine whether absolute or relative pitch better explained the neural 
responses, we compared the performance of the different ptrf models. We parameterized 
the original intonation stimuli using bins for absolute and relative pitch determined by the 
TIMIT data. We then used the absolute ptrf model and the relative ptrf model to predict 
the neural responses to the intonation stimuli. Since there are no features in the ptrf 
models associated with the spectral information that determine phonetic information, we 
averaged predictions and real neural responses over sentence conditions. We additionally 
averaged predictions and real neural responses over the two female speakers who did not 
differ in pitch. We then took the correlation (Pearson’s r) between the predicted and 
actual neural responses for the absolute pitch only model (rabs_pred) and relative pitch only 
model (rrel_pred).  
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Fig. S1 

 

Fig. S1. Individual and group cortical maps of intonation, sentence, and speaker 
condition encoding. 
Individual cortical maps in A and B show the proportion of variance explained by the 
main effects of intonation, sentence, and speaker condition, as well as the proportion 
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explained by the sum of all pairwise and three-way interactions as pie charts. All 
significant electrodes (defined as those where the full encoding model was significant for 
at least 2 time points at a = 0.05, Bonferroni corrected) are shown with the area of the pie 
chart proportional to the total R2 of the fully specified model. The black circles represent 
the areas for 25%, 50%, 75%, and 100% of the maximum total R2 across all significant 
electrodes for one subject. (A) Maps for participants with left hemisphere grids. (B) Maps 
for participants with right hemisphere grids. (C) Group cortical map showing Intonation, 
Sentence, and Speaker electrodes from all ten subjects warped to a common MNI brain. 
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Fig. S2 
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Fig. S2. Activity that differentiates sentence conditions is driven by phonetic feature 
selectivity. 
(A) Average neural responses time-locked to the onsets of individual phonemes from 
sentences in the TIMIT speech corpus. Each column shows the average response of an 
individual electrode. The phonetic selectivity index measures whether a response to a 
given phoneme can be discriminated from the response to all other phonemes. Grouping 
of phonemes into four phonetic categories is show to the left. (B) Anatomical location of 
electrodes shown in A. Each electrode is located in the STG. (C) Scatter plot showing 
each significant electrode’s sentence condition encoding and average phonetic selectivity 
index (r = 0.64, p-value < 1 ´ 10−20). Data from 177 significant electrodes across 10 
participants are shown. (D) Scatter plots of intonation encoding and average PSI on the 
top and of speaker encoding and average PSI on the bottom (r = −0.18, p-value < 0.05; r 
= −0.15, p-value > 0.05, respectively). (E) Average neural response of each example 
electrode in A to original stimulus set. Each row shows responses to a different sentence. 
For each column, tick marks indicate the onsets of phonemes which fall into the class 
written at the top of the column. The responses are colored by intonation condition. These 
phonetically-selective, Sentence electrodes are not sensitive to intonation and have a 
similar response regardless of what the intonation condition was. 
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Fig. S3 

 

Fig. S3. Absolute and relative pitch contours and variability in TIMIT speech 
corpus. 
The TIMIT corpus contains continuous speech recorded from hundreds of male and 
female speakers. Having many speakers who differ in their baseline absolute pitch allows 
for the statistical separation of absolute and relative pitch. (A) Five example tokens from 
the TIMIT dataset with their acoustic amplitude signal and spectrograms. The first two 
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were spoken by female speakers while the last three were spoken by male speakers. (B) 
Absolute pitch contours for the five tokens in (A). The fundamental frequency was 
extracted from the speech signal using an autocorrelation method. (C) Relative pitch 
contours for the five tokens in (A). The relative pitch was calculated as the z-score of 
absolute pitch values (in ln Hz) for each token. (D) Distribution of mean pitch values for 
the speakers in the subset of TIMIT used in this study. (E) Scatterplot of mean pitch 
values and pitch variability (coefficient of variation expressed as percentage of the 
mean). Each dot represents one token and red dots indicate the five tokens from (A). (F, 
G) Histogram of all the absolute pitch (F) and relative pitch (G) values calculated from 
TIMIT tokens, with values from male and female speakers shown separately. Gray lines 
indicate the 2.5 and 97.5 percentile. (H, I) Histograms showing the binning used to 
parameterize absolute (H) and relative (I) pitch values for the pitch temporal receptive 
field models. Ten equally spaced bins (for absolute pitch, bins are equally spaced on a 
logarithmic scale) were created between the 2.5 and 97.5 percentile of all pitch values. 
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Fig. S4 

 

Fig. S4. Example relative pitch encoding electrodes tuned for low relative pitch and 
high-to-low relative pitch. 
The pitch temporal receptive field (ptrf) fit using neural responses to the TIMIT speech 
corpus and the prediction of this encoding model to the original set of stimuli are shown 
for two example relative pitch encoding electrodes. The ptrf indicates how different 
values of absolute and relative pitch at different time delays affects neural activity. (A) 
Pitch contours of original set of stimuli. The left panel shows the pitch contours for each 
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intonation condition for the female speakers. The middle panel shows the pitch contours 
for each intonation condition for the male speaker. The right panel shows the average 
pitch contour for the male versus the female speakers. (B) Electrode that encoded relative 
pitch (R2

relative = 0.07, significant by permutation test; R2
absolute = −0.01, not significant) 

and was tuned to low relative pitch. (C) The top two rows show the predicted neural 
responses from the absolute pitch only and relative pitch only models. The bottom row 
shows the actual neural responses. The actual response of this electrode to the original 
stimulus set was better predicted by the relative pitch only model (rrel_pred = 0.76; rabs_pred 
= 0.55). (D) Electrode that encoded relative pitch (R2

relative = 0.02, significant by 
permutation test; R2

absolute = −0.01, not significant) and was tuned to high relative pitch at 
a delay of ~180 ms and low relative pitch at a delay of ~100 ms. (E) The activity on this 
electrode was better predicted by the relative pitch only model than the absolute pitch 
only one (rrel_pred = 0.85; rabs_pred = 0.74). 
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Fig. S5 
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Fig. S5. Example absolute pitch encoding electrodes tuned for high and low absolute 
pitch. 
The pitch temporal receptive field, predicted responses of the ptrf model to the original 
set of stimuli, and the actual responses are shown for two example absolute pitch 
encoding electrodes. The ptrf indicates how different values of absolute and relative pitch 
at different time delays affects neural activity. (A) Pitch contours of original set of 
stimuli. (B) Electrode that encoded absolute pitch (R2

relative = 0.00, not significant by 
permutation test; R2

absolute = 0.02, significant) and was tuned to absolute pitch values 
greater than 180 Hz. (C) The top two rows show the predicted neural responses from the 
absolute pitch only and relative pitch only models. The bottom row shows the actual 
neural responses. This electrode had a greater response to the female speakers than the 
male speaker. The actual response of this electrode was better predicted by the absolute 
pitch only model (rrel_pred = 0.75; rabs_pred = 0.78). (D, E) Electrode that encoded absolute 
pitch and was tuned to low absolute pitch (R2

relative = 0.01, significant; R2
absolute = 0.15, 

significant; rrel_pred = 0.59; rabs_pred = 0.68). (F) Scatterplot between relative and absolute 
pitch encoding with neural discriminability of speaker conditions (rrelative_speaker = 0.21, p-
value < 0.05; rabsolute_speaker = 0.79, p-value < 1 ´ 10−38). Colored markers indicate 
electrodes with significant (permutation test; R2 > 95th percentile of null distribution) 
relative pitch and absolute pitch encoding for the left and right panels, respectively.   
  



 
 

18 
 

Table S1. Clinical and demographic details for subjects. 
Hem = hemisphere of implantation, R = right, L = left 
  

Subject Hem Age Sex Handedness Language 
dominance Epilepsy focus 

EC113 L 22 M R L Left hippocampus and 
anterior temporal lobe 

EC118 L 31 F R L Left insula and temporal 
lobe 

EC122 L 28 M R L Left anterior temporal lobe 

EC123 L 33 F R L Left temporal lobe 

EC125 R 35 M R L Right anterior medial 
temporal lobe 

EC129 R  F R L Right superior frontal gyrus 

EC131 L 28 M R L Left anterior-mesial 
temporal lobe 

EC137 R 20 M R L Right hippocampus 

EC142 R 20 M R L Right supramarginal gyrus 

EC143 L 21 M R L Left superior temporal 
gyrus 



 
 

19 
 

Audio S1 – S48: 
Synthesized set of speech stimuli that independently varies intonation contour, phonetic 
content, and speaker. Each individual .wav file is named snX_stY_spZ.wav, where X is 1-
4, Y is 1-4, and Z is 1-3. X indicates the sentence condition (sentence number or sn). Y 
indicates the intonation contour (sentence type or st). Z indicates the speaker (speaker or 
sp).  
 

Audio S49 – S80: 
Set of non-speech stimuli that preserves intonational pitch contour but removes spectral 
content related to phonetic features.  These stimuli also have varying amplitude contours 
corresponding to the sentence condition from the original set of speech stimuli. Each wav 
file is named purr_Z_stY_snX, where Z is either “female” or “male”, Y indicates the 
intonation contour (1: Neutral, 2: Question, 3: Emphasis 1, 4: Emphasis 3), and X 
indicates which sentence condition the amplitude contour came from (1-4). These stimuli 
were played to 5/10 total participants. 
 

Audio S81 – S88: 
Set of non-speech stimuli that preserves intonational pitch contour, but removes spectral 
content related to phonetic features. These stimuli have flat amplitude contours. Each 
wav file is named purr_stretch_0_Z_stY, where Z is either “female” or “male” and Y 
indicates the intonation contour (1: Neutral, 2: Question, 3: Emphasis 1, 4: Emphasis 3). 
These stimuli were played to 3/10 total participants. 
 

Audio S89 – S96: 
Missing fundamental stimuli that preserves intonational pitch contour. These stimuli are 
the combination of the fourth, fifth, and sixth harmonics of the fundamental frequency 
contour with pink noise added 0.25 before pitch contour onset to mask energy at the 
fundamental frequency that may be introduced at the level of the cochlea. Each wav file 
is named purr_missing_f0_noise_first_stretch_0_Z_stY, where Z is either “female” or 
“male” and Y indicates the intonation contour (1: Neutral, 2: Question, 3: Emphasis 1, 4: 
Emphasis 3). These stimuli were played to 3/10 total participants. 
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