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Supplementary	Information	

Single	cell	data	integration	
 
Evaluation	pipeline	

Our	evaluation	pipeline	to	build	the	hypothalamus	reference	map	consists	of	a	series	of	R	and	

python	 scripts,	 utilizing	 Seurat,	 	 scanpy	 (version	 1.5.1)	 and	 scvi-tools	 (version	 0.10.0)	 1	 2	 3,	

optimized	to	be	used	with	slurm	as	job	management	system	to	run	memory	and	time	consuming	

tasks	 on	 a	 high-performance	 computing	 infrastructure.	 We	 used	 SeuratDisk	 (version	 4.0.2)	

(https://github.com/mojaveazure/seurat-disk)	 to	 convert	 between	 h5Seurat	 and	 h5ad	 files.	

Starting	with	the	merged	dataset,	we	first	built	a	reference	map	containing	a	subset	of	85,000	

neurons	to	compare	different	integration	algorithms	and	pipeline	approaches.	

Various	normalization	approaches	have	been	proposed	to	cope	with	special	properties	of	sc-seq	

data	such	as	zero-inflation	and	have	also	been	compared	using	benchmark	datasets	4	5	6.	In	a	first	

exploratory	 analysis,	we	 compared	methods	 that	 performed	well	 and	 are	 accessible:	 scran	 7,	

sctransform	 8	 and	 library-size	 normalization	 plus	 log-transformation	 (log-normalization)	 as	

implemented	in	Seurat	1	and	scanpy	2.	We	did	not	observe	a	strong	improvement	in	integration	

performance	over	standard	log-normalization	and	consequently	used	this	as	input	to	methods	

that	 require	normalized	data.	 Selection	of	highly	variable	genes	 is	 another	 critical	 step	 in	 the	

processing	pipeline:	we	used	Seurat’s	FindIntegrationsFeatures	with	‘method’	set	to	’vst’	to	find	

features	 per	 batch	 and	 then	 took	 the	median	 rank	 to	 prioritize	 features	 that	 are	 relevant	 in	

multiple	 batches	 instead	 of	 characterizing	 individual	 batches.	 We	 then	 scaled	 the	 data	 and	

calculated	a	PCA	without	further	corrections	as	a	reference	for	’non-integrated’	data	and	as	input	

to	Harmony.	

With	our	evaluation	pipeline	 (Ext.	Figure	1A),	we	 tested	different	combinations	of	 feature	set	

sizes,	numbers	of	principal	components	and	integration	algorithms	to	determine	which	algorithm	

would	be	best	suited	to	integrate	the	full	merged	dataset	with	regard	to	the	metrics	described	

below	and	which	hyperparameters	would	be	optimal.		

Evalua&on of integra&on Methods 
 
Preventing	 integration	methods	 from	 over-correcting	 and	 removing	 biologically	 relevant	 cell	

types	is	a	fundamental	problem	of	large	integration	tasks,	and	it	is	difficult	to	control	for	this	on	

the	level	of	neuronal	(sub)types.	Previous	efforts	have	focused	on	merging	major	cell	types,	such	

as	oligodendrocytes,	neurons	or	astrocytes,	and	it	is	possible	to	harmonize	author	annotations	at	

this	level	and	use	them	to	evaluate	cell	type	purity	9	10.	However,	in	most	cases	these	annotations	

are	not	precise	enough	to	ensure	that	neuronal	subtypes,	specifically	subtypes	of	distinct	genetic	
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and	 functionally	 defined	 neuron	 types,	 for	 example	 arcuate	 POMC	 neurons,	 are	 properly	

represented	 in	 the	 integrated	 data.	 Hence,	 we	 curated	 a	 set	 of	 signatures	 representing	well-

described	and	validated	subtypes	from	the	included	sc-seq	datasets	and	identified	cells	enriched	

for	these	signatures	using	AUCell	(see	methods),	independently	of	other	annotations	or	clustering	

results,	 to	 measure	 biological	 purity	 (Suppl.	 Table	 2,	 Ext.	 Figure	 2E).	 The	 goal	 of	 the	 data	

integration	efforts	was	then	to	maximize	the	co-clustering	of	the	same	neuronal	subtypes	from	

different	datasets	 (mixing),	while	at	 the	 same	 time	keeping	different	 subtypes	well	 separated	

(purity).	

The	integration	algorithms	Seurat	(CCA),	Harmony,	Scanorama,	scVI	and	combat	(see	methods	

for	 a	 brief	 introduction)	 were	 evaluated	 with	 different	 parameter	 combinations	 and	 input	

features	to	identify	an	optimal	reference	embedding	of	the	merged	data.	While	various	metrics	

have	 been	 proposed	 to	 evaluate	 integration	 results	 10	 11,	 we	 adapted	 nearest-neighbor	 and	

clustering	based	approaches	and	additionally	developed	our	own	metric	to	rank	the	integration	

results.	We	 focused	 on	 four	metrics:	 (1)	 a	 random-forest	mixing	 score	 based	 on	 how	well	 a	

classifier	 was	 able	 to	 differentiate	 between	 batches	 (rf-mixing),	 (2)	 k-nearest	 neighborhood	

entropy	based	on	the	distribution	of	batches	to	evaluate	local	mixing	of	cells	(knn-mixing)12,	(3)	

average	silhouette	width	to	measure	cluster	separation	(ASW)	10	and	(4)	a	nearest	neighborhood	

score	based	on	curated	cell	types	to	measure	biological	purity	(knn-purity).	

Integration	methods	overview	

Based	 on	 available	 reviews	 10	 12	 13	 we	 selected	 a	 subset	 of	 5	 methods	 that	 are	 established	

approaches	in	the	sc-seq	integration	field,	performed	well	on	benchmark	datasets,	are	scalable	to	

large	amounts	of	data	and	represent	different	algorithmic	concepts.	We	used	them	to	correct	for	

the	Batch-ID	variable	defined	based	on	dataset	of	origin	and	the	additional	detection	procedure	

described	above.	

Harmony	uses	a	softclustering-approach	that	allows	cells	to	be	assigned	to	multiple	clusters	in	

combination	with	a	correction	step	to	iteratively	correct	an	input	embedding	(PCA)	14.	We	used	

the	 HarmonyMatrix	 function	 from	 the	 Harmony	 R	 package	 (version	 0.1)	

(https://github.com/immunogenomics/harmony)	 to	 correct	 the	 PCA	 space	 at	 different	

dimensionalities	and	 further	 tuned	some	of	 the	available	parameters	 (Theta,	Sigma,	Lambda).	

Harmony	 relies	 on	 an	 initialization	 via	 k-means	 clustering,	 which	we	 repeated	with	 a	 higher	

number	of	random	starts	(100-200)	to	make	this	step	more	robust.	

Scanorama	builds	on	the	identification	of	nearest	neighbors	in	other	batches	combined	with	the	

concept	of	panorama	stitching	from	image	analysis	to	remove	batch	effects	15.	We	provided	either	

the	 normalized	 or	 the	 scaled	 counts	 of	 the	 highly	 variable	 features	 as	 input	 to	 obtain	 a	 low-
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dimensional	embedding	for	evaluation	and	clustering.	We	applied	the	integrate	function	from	the	

original	Scanorama	package	(version	1.7)	(https://github.com/brianhie/scanorama)	with	varying	

values	of	the	alpha,	sigma	and	knn	parameters.	With	the	correct	function	Scanorama	is	able	to	

correct	the	original	counts	as	well.	

Seurat-integration’s	approach	of	FindIntegrationAnchors	and	IntegrateData	combines	pair-wise	

computation	of	a	shared	low	dimensional	embedding	of	two	batches	using	canonical	correlation	

analysis	 (CCA)	 and	 identification	 of	 nearest	 neighbors	 in	 the	 other	 dataset	 with	 subsequent	

iterative	 merging	 of	 all	 pair-wise	 results	 16.	 Here	 we	 applied	 Seurat’s	 pipeline	 to	 the	 log-

normalized	data	and	subsequently	calculated	a	PCA	on	the	 integrated	counts,	without	varying	

parameters	of	the	integration	itself	due	to	its	long	runtime.	

Combat	 is	 an	 empirical	 Bayes	 framework	 based	 batch-correction	 method	 developed	 for	

microarray	data	that	has	been	shown	to	perform	well	on	sc-seq	data	10	17.	We	used	either	the	

normalized	or	the	scaled	counts	of	the	highly	variable	features	as	input	to	scanpy’s	function	of	the	

python	 implementation	of	 combat	 2	 (https://github.com/brentp/combat.py)	 to	obtain	corrected	

counts	which	were	used	to	calculate	a	low-dimensional	embedding	via	PCA	for	evaluation	and	

clustering.	

scVI.	Single-cell	variational	inference	models	the	counts	as	samples	drawn	from	a	zero-inflated	

negative	 binomial	 (ZINB)	 distribution	 accounting	 for	 library	 depth	 and	 batch	 origin,	 utilizing	

neural	networks	to	map	to	a	low-dimensional	latent	space	and	corrected	counts	as	output	18.	It	

uses	the	raw	UMI	counts	as	input	and	includes	library	size	as	a	model	parameter,	consequently	

only	 the	 feature	 selection	 was	 dependent	 on	 the	 processing	 pipeline.	 We	 used	 a	 standard	

workflow	of	scvi	(v0.16.4)	as	described	in	the	documentation	(https://scvi-tools.org/),	tuning	the	

available	parameters	(max	epochs,	n	layers,	n	hidden,	n	latent,	dropout-rate)	to	train	a	model	that	

best	fitted	our	combined	hypothalamus	dataset.	

Evaluation	metrics	

In	order	to	prioritize	integration	results	we	established	four	metrics	to	evaluate	batch	mixing	and	

cell	 type	 purity,	 partly	 using	 established	metrics	 as	 discussed	 for	 example	 by	 Lütge	 et	 al.	 or	

Luecken	et	al.	11	10,	and	some	approaches	developed	specifically	for	HypoMap.	

ASW:	Average	silhouette	width	has	been	previously	used	to	control	separation	of	cell	types	after	

data	 integration	 10.	 We	 used	 the	 scikit-learn	 implementation	 (https://scikit-learn.org/stable/ 

modules/generated/sklearn.metrics.silhouette_score.html)	 to	 calculate	 average	 silhouette	 width	

based	on	cosine	distances	per	cell	and	then	summarized	this	by	taking	the	mean	over	all	cells.	

Calculating	ASW	requires	cell	type	or	cluster	annotations	for	each	cell.	Since	no	high-resolution	

annotation	for	all	cells	is	available,	we	iteratively	ran	Leiden	clustering	on	a	nearest-neighbor	tree	
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of	 each	 integration	 until	 a	 pre-specified	 number	 of	 clusters	 was	 reached.	 These	 steps	 were	

implemented	using	scanpy	and	ran	on	a	subsample	of	all	cells	(38,000)	to	limit	the	run-time.	It	

should	be	noted	that	ASW	does	not	control	for	true	cell	type	purity,	if	a	method	wrongly	groups	

unrelated	 cells	 in	 well-defined	 clusters.	 Additionally,	 the	 clustering	 underlying	 the	 ASW	

calculation	differs	between	integration	results,	hence	the	metric	can	vary	even	if	true	separation	

is	similar.	ASW	above	0	indicates	higher	cluster	separation.	

rf-mixing:	 The	 random-forest	 based	mixing	 metric	 was	 inspired	 by	 our	 within-dataset	 batch	

identification	approach.	For	each	 integration	result	we	trained	a	random	forest	predicting	the	

batch	variable	on	a	subsample	of	all	cells	(38,000)	to	limit	the	run-time.	If	the	random	forest	is	

able	to	identify	the	batch	of	origin,	only	this	batch	will	have	a	high	out-of-bag	(oob)-probability,	

conversely	if	the	random	forest	cannot	distinguish	between	batches,	the	oob-probabilities	will	be	

distributed	more	evenly.	We	quantified	the	batch	prediction	per	cell	as	the	entropy	of	the	oob-

probabilities	 p(Xi)	 normalized	 by	 the	 logarithm	 of	 the	 number	 of	 batches	 b	 with	 an	 oob-

probability	 greather	 than	 0.01:	 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 	!∑ #(%!)∗()*+#(%!),"
!#$

()*	(∑ .(#(%!)	/	0.02))"
!

	where	 I	 is	 the	 indicator	

function.	While	this	normalization	factor	is	only	an	approximation,	it	ensured	that	cells	from	cell	

types	consisting	of	only	few	batches	were	not	scoring	artificially	worse.	We	then	used	the	median	

over	all	cells	as	the	rf-mixing	score,	with	values	close	to	1	indicating	high	mixing	and	values	close	

to	0	indicating	full	separation	of	batches.	

knn-mixing:	This	is	an	implementation	of	the	metric	described	in	Lütge	et	al.	11	and	Luecken	et	al.	
10,	which	 is	based	on	 the	k-nearest	neighbor	 tree	of	 the	data.	knn-based	metrics	are	 the	most	

common	approach	to	quantify	batch	mixing.	The	entropy	of	the	batch	distribution	of	each	cell’s	

neighbors	 represents	 an	 estimator	 for	 the	 local	 mixing	 around	 each	 cell.	 We	 used	 Seurat’s	

implementation	 of	 nearest	 neighbor	 identification	 with	 Annoy	

(https://github.com/satijalab/seurat/)	with	cosine	distances	to	identify	20	neighbors	per	cell	and	

then	 calculate	 the	 entropy	 per	 cell.	 The	 knn-mixing	 score	 is	 calculated	 as	 the	median	 of	 the	

entropy	per	cell,	with	higher	values	indicating	better	mixing.	Overall,	we	found	that	rf-mixing	and	

knn-mixing	correlated	well,	but	differed	in	some	details:	the	knn	based	approach	was	better	at	

stratifying	closely	related	results,	but	suffered	from	hubness:	the	k-nearest	neighbor	graph	(knn)	

computed	to	determine	neighbors	of	each	cell	was	not	balanced,	instead	some	cells	occur	more	

often	as	neighbors	than	others	19.	These	cells	influenced	the	metric	much	stronger	than	cells	that	

had	only	one	or	few	neighbors.	Especially	in	the	case	of	unbalanced	dataset	sizes	or	contribution	

to	clusters	a	method	that	is	able	to	move	small	batch	preferentially	into	hub	positions	of	the	knn	

graph	will	 score	 over-proportionally	well.	 For	 example,	we	 found	 that	 Scanorama	performed	

over-proportionally	well	on	knn-based	metrics	compared	to	rf-mixing	and	visual	inspection.	
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knn-purity:	Controlling	for	biologically	relevant	cell	type	purity	is	another	obstacle	in	evaluating	

integration	results.	The	heterogeneity	of	neuron	populations	and	their	differing	annotations	by	

study	authors	make	it	difficult	to	use	these	as	a	common	basis	in	evaluation	metrics.	We	decided	

to	curate	a	set	of	known	cell	type	signatures,	which	characterize	ground-truth	cell	types	in	the	

integrated	 dataset	 independently	 of	 specific	 clustering	 results	 or	 annotations.	We	 started	 by	

constructing	signatures	from	RNA-seq	data	of	genetically	defined	cell	types	generated	as	part	of	

the	Neuro-seq	dataset	20,	but	eventually	decided	that	these	did	not	cover	a	sufficient	number	of	

different	cell	types	and	lacked	specificity.	We	then	turned	to	building	an	initial	integration	of	the	

data	 with	 the	 two	 easily	 accessible	 methods	 scVI	 and	 Harmony	 using	 default	 parameters.	

Inspection	 of	 the	 resulting	 UMAPs	 showed	 overall	 similarity	 of	 the	 two,	 hence	we	 next	 used	

Leiden	clustering	on	the	scVI	result	to	obtain	cluster	labels	and	then	defined	informative	marker	

genes	for	a	subset	of	these:	clusters	with	at	least	3	distinct	marker	genes,	indicated	by	specificity	

scores	(see	Marker	detection)	above	3	and	a	restricted	number	of	occurrences	as	marker	genes	

across	all	 clusters	were	 selected	 for	 further	 inspection.	Next,	we	manually	 curated	 this	 list	of	

clusters,	 requiring	 them	 to	be	described	 in	 at	 least	one	of	 the	original	 studies	 and	preferably	

validated	through	staining	or	an	in-depth	description.	The	signature	of	specific	marker	genes	of	

each	cluster	was	mapped	back	onto	the	dataset	using	the	AUCell	R	package	(version	1.12.0)	21	to	

select	cells	belonging	to	the	respective	clusters	(Suppl.	Table	2).	AUCell	computes	a	score	based	

on	the	placement	of	the	signature	genes	within	the	ranked	gene	expression	values	of	each	cell,	

which	is	 independent	of	the	data	integration	or	clustering.	We	chose	this	indirect	approach	to	

prevent	tailoring	our	metric	towards	the	clustering	used	to	define	the	cell	types,	at	the	cost	of	

losing	accuracy,	as	not	all	cells	are	confidently	mapped	when	choosing	a	restrictive	threshold	for	

the	AUC-score	per	 cell.	AUCell	was	used	with	default	parameters	and	aucMaxRank	set	 to	700	

genes.	We	used	the	”global”	distribution	based	on	mean	and	standard	deviations	of	all	cells	as	

proposed	by	the	package	authors	(AUCell	exploreThresholds)	scaled	by	a	user-defined	factor	of	

2.5	as	threshold	to	define	which	cells	belong	to	a	cell	type	21.	 	We	additionally	used	the	unified	

author	annotations	of	major	cell	types	(e.g.,	astrocytes,	oligodendrocytes)	to	define	signatures	in	

a	similar	way	and	used	them	together	with	the	neuron	cell	types	during	the	mapping	with	AUCell.	

In	total	we	defined	24	neuron	types	and	10	non-neuronal	cell	types	(Suppl.	Table	2)	that	mapped	

to	145,984	cells	(37.9%	of	all	cells)	in	HypoMap	(Ext.	Figure	2E).	The	knn	graph	defined	for	knn-

mixing	was	used	to	calculate	the	fraction	of	cells	in	the	neighborhood	that	belong	to	the	same	cell	

type	for	each	cell	of	a	cell	type.	For	each	cell	type	we	averaged	the	value	over	all	mapped	cells	to	

obtain	a	per-cell	type	knn-purity	score	and	then	used	the	global	median	over	these	values	to	rank	

the	methods.	

For	visualization	and	final	ranking	we	normalized	each	metric	to	a	range	of	0	to	1	between	the	

minimum	and	maximum	scores	of	all	results.	For	knn-purity	we	set	the	minimum	to	0.25	to	better	
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reflect	that	all	results	retained	some	purity.	The	purity	score	as	depicted	in	Figure	1a	was	then	

calculated	as	75%	of	the	knn-purity	score	plus	25%	of	ASW	(or	only	using	knn-purity	if	ASW	was	

shown	separately	such	as	in	Ext.	Figure	2)	and	the	global	mixing	score	as	50%	of	knn-mixing	and	

50%	of	rf-mixing.	

Comparison	of	integration	methods	for	HypoMap	

For	our	initial	evaluation	of	integration	methods	we	used	12	datasets	(Suppl.	Table	1)	and	subset	

them	to	neuronal	cell	types	as	they	provided	the	biggest	challenge	during	the	integration	of	the	

sc-seq	data.	For	example,	while	initial	testing	showed	that	all	integration	methods	were	able	to	

successfully	 segregate	 major	 cell	 types	 such	 Astrocytes	 and	 Oligodendrocytes,	 separation	 of	

complex	 cell	 types	 such	 as	 the	 Qrfp-expressing	 neurons	 from	 hypocretine	 (Hcrt)-expressing	

neurons	was	not	possible	with	all	methods.	For	the	systematic	comparison	of	all	five	integration	

methods	 we	 used	 a	 heterogeneous	 dataset	 of	 85,451	 cells	 to	 evaluate	 more	 than	 1,000	

combinations	of	selection	approaches	and	highly-variable	feature	set	sizes,	embedding	sizes	and	

integration	method	parameters	with	the	 four	metrics	described	above	(Ext.	Figure	1).	For	the	

visualization	and	global	ranking,	we	computed	a	final	mixing	score	as	the	average	of	the	rf-mixing	

and	the	knn-mixing	scores	summarized	over	all	cells.	We	defined	a	global	purity	score	as	75%	of	

the	knn-purity	score	plus	25%	of	ASW,	giving	less	weight	to	ASW	because	it	can	also	score	highly	

if	clusters	are	not	biologically	meaningful	but	well	separated.		

As	shown	in	Ext.	Figure	1B,	both	scVI	and	PCA	(without	further	integration,	Raw)	showed	the	best	

retention	of	the	cluster	purity,	but	scVI	consistently	achieved	much	higher	dataset	mixing	scores.	

Harmony	and	Seurat	 integration	also	performed	well	 in	dataset	mixing,	but	had	 lower	cluster	

purity,	 consistent	with	 previous	 findings9	 10.	 Scanorama	was	 previously	 reported	 to	 perform	

well10	and	achieved	high	scores	in	both	purity	and	separation	in	our	study,	but	the	mixing	score	

remained	unsatisfactory.	Combat	exhibited	good	mixing	scores	and	showed	good	retention	of	

known	cell	types	(purity),	however,	the	cluster	separation	(ASW),	was	inferior	compared	to	scVI	

(Ext.	Figure	1B,	Suppl.	Table	3).	Hence,	 for	 the	 final	HypoMap	 integration	we	selected	scVI	 to	

integrate	the	data	sets.	

Optimizing	scVI	for	HypoMap	

We	used	the	metrics	and	cell	type	signatures	described	above	to	determine	the	best	combination	

of	hyperparameters	(Ext.	Figure	2)	based	on	a	random-search	like	approach	where	we	tested	a	

random	subset	of	a	large	grid	of	possible	parameter	combinations	to	decrease	the	total	run-time.	

We	also	explored	whether	there	was	a	difference	in	integration	performance	when	sub-setting	to	

neurons	only.	For	this,	we	trained	scVI	with	the	same	hyperparameter	sets	for	the	auto-encoder	

(but	different	feature	sets)	on	the	full	data	and	a	subset	containing	all	neurons.	The	evaluation	
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was	only	conducted	on	the	neurons	(for	both	full	data	and	neuronal	subset)	to	avoid	scores	of	

non-neuronal	cell	types	influencing	the	metrics	in	either	direction.	We	found	that	sub-setting	to	

neurons	 had	 no	 clear	 advantage	 in	 terms	 of	mixing	 or	 purity	 (Ext.	 Figure	 2b).	 Therefore,	we	

continued	without	splitting	the	data,	which	also	allowed	for	a	more	straightforward	downstream	

analysis	 of	 the	 results.	 To	 define	 a	 robust	 set	 of	 final	 parameters	 we	 compared	 different	

hyperparameter	ranges	across	the	metrics	similar	to	the	example	shown	in	Ext.	Figure	2c.	

For	the	final	scVI	model	we	found	that	a	relatively	high	number	of	training	epochs	led	to	better	

mixing	at	the	cost	of	cell	type	purity.	The	final	model	was	trained	for	300	epochs.	We	increased	

the	number	of	n	layers	to	3	and	used	256	nodes	per	layer	(n	hidden)	in	the	final	model,	although	

the	difference	to	128	nodes	was	very	small.	Compared	to	other	methods,	scVI	profited	less	from	

a	higher	dimensionality	of	the	latent	space,	but	the	default	values	of	10	or	20	for	n	latent	led	to	a	

worse	purity	performance	than	values	for	n	latent	between	50	and	120.	For	the	final	model	we	

set	n	latent	to	85.	All	other	parameters	were	set	to	default.	

Experimental	Methods	
 
Animal	husbandry	

All	animal	procedures	were	conducted	according	with	protocols	approved	by	local	government	

authorities	 (Bezirksregierung	 Köln).	 Permission	 for	 breeding	 and	 experiments	 on	 mice	 was	

issued	 by	 the	 Department	 for	 Environment	 and	 Consumer	 Protection-Veterinary	 Section	 in	

Cologne.	Mice	were	housed	in	individually	ventilated	cages	at	22–24◦C	and	at	45-55%	humidity,	

using	a	12-h	light/dark	cycle.	Animals	had	access	to	water	and	food	ad	libitum	and	were	fed	a	

normal	chow	diet	(ssniff,	V1554).	Food	was	only	withdrawn	during	defined	fasting	periods.	

Mouse	 studies	 performed	 in	 Cambridge	were	 in	 accordance	with	UK	Home	Office	 Legislation	

regulated	under	 the	Animals	 (Scientific	Procedures)	Act	1986	Amendment,	Regulations	2012,	

and	 procedures	 were	 approved	 by	 the	 University	 of	 Cambridge	 Animal	 Welfare	 and	 Ethical	

Review	Body.	18	male	C57BL/6J	mice	at	6-8	weeks	were	housed	in	individually	ventilated	cages	

with	temperature	 	controlled	at	20-24°C	and	humidity	at	45-65%,	and	a	12-h	light/dark	cycle	

(lights	 on	 06:00–18:00)	 at	 the	 animal	 facility	 at	 the	 Anne	 McLaren	 Building,	 University	 of	

Cambridge,	 	 Animals	 had	 ad	 libitum	 access	 to	 food	 (RM3(E)	 Expanded	 chow,	 Special	 Diets	

Services,	UK),	except	for	the	overnight	fasted	group	(6	animals),	where	the	chow	was	removed	

from	at	5pm	until	9am	the	next	day,	all	animals	had	access	to	water	throughout	the	experiment.		

Animals	were	randomized	for	the	grouping.				

Mouse	lines	

Driver	lines	
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Glp1r-ires-Cre	22,	AgRP-ires-Cre	23	and	POMC-Cre	24	mice	have	been	previously	described.		

ROSA26lSlEGFPL10a	(ROSA26-CAGS-lox-STOP-lox-EGFPL10a-WPRE)	mice	

This	 line	 was	 generated	 by	 breeding	 ROSA26lSlrSrEGFPL10a	 (ROSA26-CAGS-lox-STOP-lox-

roxSTOP-rox-EGFPL10a-WPRE)	 25	 with	 a	 ubiquitously	 expressed	 CAGGS-Dre	 deleter	 line	 26.	

Experimental	lines	

C57BL/6N	mice	were	obtained	from	Charles	River,	France.	

Glp1rCre	ROSA26lSlEGFPL10a	mice	were	generated	via	mating	homozygous	Glp1r-ires-Cre	mice	

to	homozygous	ROSA26fl/fl	mice	of	the	EGFPL10a	construct.	A	similar	breeding	strategy	was	used	

for	 the	POMCCre	ROSA26lSlEGFPL10a	mice.	Resulting	double	 transgenic	Cre+/-	ROSA26fl/wt	mice	

were	used	as	experimental	animals.	

Sex	and	gender	differences		

For	the	construction	of	HypoMap	we	did	not	have	control	over	the	samples	of	public	data	sets.	In	

the	final	HypoMap	48.6%	of	cells	originated	from	male	mice,	24.9%	from	female	mice	and	for	26.5	

%	it	was	not	clear	due	to	missing	information	or	pooling	of	samples.	For	validation	experiments	

we	used	male	mice,	a	decision	that	was	mostly	driven	by	the	high	experimental	cost	of	nucSeq	

and	bacTRAP	and	by	the	observation	that	most	HypoMap	clusters	are	containing	both	female	and	

male	cells	and	thus	observations	about	general	gene	expression	(like	the	ISH	experiments)	should	

be	transferable	between	males	and	females.	

BacTRAP-based	ribosomal	profiling	

Affinity	purification	of	translating	ribosomes	was	performed	as	described	by	Heiman	et	al.	27	with	

minor	modifications.	Briefly,	10	weeks	old	male	Glp1rCre	ROSA26lSlEGFPL10a	mice,	12	weeks	old	

POMCCre	ROSA26lSlEGFPL10a	and	12	weeks	old	AGRPCre	ROSA26lSlEGFPL10a	were	sacrificed	in	

a	 random-fed	 state.	The	hypothalamus	was	 rapidly	dissected	and	 immediately	 snap	 frozen	 in	

liquid	nitrogen	until	use.	Please	see	Suppl.	Table	21	for	details	on	all	reagents	and	chemicals	used	

in	the	following	sections.			

Protein	 A	 Dynabeads	 (375µl	 per	 IP;	 Invitrogen)	 were	 prewashed	 and	 50µg	 of	 two	 anti-GFP	

antibodies	 (HtzGFP-19F7	 and	 Htz-GFP-19C8,	Memorial	 Sloan	 Kettering	Monoclonal	 Antibody	

Facility)	were	 added	 to	 the	beads	 and	 incubated	 at	4◦C	overnight.	Then,	 the	bound	Protein	A	

Dynabeads	were	washed	three	times	and	resuspended	in	200µl	wash	buffer.		

Pooled	hypothalamic	 tissue	 (4	mice	pooled	 for	 each	Glp1rCre	ROSA26lSlEGFPL10a	 replicate,	 4	

replicates;	3	mice	pooled	 for	each	POMCCre	ROSA26lSlEGFPL10a	replicate,	4	replicates;	3	mice	

pooled	for	each	AGRPCre	ROSA26lSlEGFPL10a	replicate,	3	replicates)	was	homogenized	in	lysis	
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buffer	on	a	rotating	glass/teflon	potter	homogenizer	(Potter	S,	Braun)	at	4◦C.	Homogenates	were	

centrifuged	 at	 2,000xg	 for	 10	 min	 at	 4◦C,	 and	 the	 supernatant	 was	 transferred	 to	 a	 new	

microcentrifuge	 tube	 on	 ice	 and	 NP-40	 (Applichem)	 and	 1,2-diheptanoyl-sn-glycero3-

phosphocholine	 (DHPC;	 Avanti	 Polar	 Lipids)	 were	 added	 to	 the	 supernatant	 at	 a	 final	

concentration	of	1%	and	30	mM,	respectively.	After	incubation	on	ice	for	5	min,	the	lysate	was	

centrifuged	 at	 17,000xg	 for	 10	min	 at	 4◦C	 and	30µl	 of	 supernatant	was	 snap	 frozen	 in	 liquid	

nitrogen	until	use.		

For	 immunoprecipitation,	 200µl	 of	 anti-GFP	 antibody-bound	 Protein	 A	magnetic	 beads	 were	

added	to	the	supernatant	and	incubated	at	4◦C	for	1h.	Next,	beads	were	collected	with	a	magnet	

and	subsequently	washed	four	times.	After	the	final	wash	the	beads	were	collected.	Input	and	IP	

beads	were	resuspended	and	incubated	in	RLT	buffer	(RNeasy	Micro	Kit,	QIAGEN)	for	5	mins	at	

room	temperature	(RT).	RNA	was	purified	subsequently	using	the	RNeasy	Micro	Kit	(QIAGEN).	

RNA	integrity	was	assessed	using	an	Agilent	2100	bioanalyzer.	

RNA	Sequencing	

Whole	 transcriptome	 amplification	 was	 performed	 using	 the	 Ovation	 RNA-seq	 system	 (V2)	

(Tecan,	Mannedorf,	Switzerland).	Sequencing	libraries	were	generated	using	Illumina	Nextera	XT	

DNA	sample	preparation	kit	(San	Diego,	CA,	USA.)	using	1	ng	cDNA	input,	and	were	paired-end	

sequenced	(2x	100bp)	on	an	Illumina	HiSeq	4000.	

Analysis	of	bacTRAP	RNA-sequencing	data	

We	 applied	 the	 community-curated	 nfcore	 rnaseq	 analysis	 pipeline	 (version	 1.4)	 (https://nf-

co.re/ rnaseq).	 The	 gene-level	 quantification	was	 carried	out	 using	 Salmon	 (version	0.14.1)	 28	

using	the	reference	genome	GRCm38.	In	order	to	obtain	characteristic	signatures	representing	

the	molecular	profiles	of	targeted	neurons	we	identified	up-regulated	genes	(pvalueadjusted	≤	0.01,	

log2(FoldChange)	>	0.5)	between	the	ribosomal	pulldown	(IP)	and	the	hypothalamic	background	

(Input)	using	differential	gene	expression	analysis	with	the	DESeq2	R	package	29	(version	1.30.0).	

We	additionally	 filtered	 for	protein-coding	genes	using	Ensembl	30.	For	 the	Pomc-Lepr,	Pomc-

Glp1r	and	Pnoc	bacTRAP	data	we	used	published	results	25	31.	

Single-nucleus	RNA	Sequencing		

Single-nucleus	RNA	sequencing	was	performed	as	previously	described	32.		Briefly,	hypothalami	

were	pooled	by	the	nutritional	condition	to	yield	2	ad	libitum	fed	samples	(prepared	on	separate	

days)	 and	 1	 fasted	 sample.	 	 The	 samples	were	 homogenized	 using	 a	Dounce	 homogeniser	 in	

homogenate	 buffer	 containing	 1	 μl/ml	 of	 DRAQ5	 (Biostatus,	 Loughborough,	 UK).	 The	

homogenates	were	centrifuged	at	900×g	for	10	min	at	4	°C,	the	pellets	were	resuspended	in	25%	
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OptiPrep	(Sigma	Aldrich)	solution,	and	was	layered	on	top	of	separate	29%	OptiPrep	solutions	to	

create	a	density	gradient	for	nuclear	separation	at	13,500×g	for	20	min	at	4	°C.	The	nuclear	pellet	

was	removed	and	resuspended	in	a	wash	buffer	and	was	passed	through	a	40	μm	cell	strainer	for	

Fluorescent-activated	 cell	 sorting	 (FACS)	 on	 a	BD	 Influx	 cell	 sorter	 (BD	Biosciences,	 Franklin	

Lakes,	NJ,	USA).	The	gating	was	set	according	to	FSC	and	SSC	to	and	fluorescence	at	647/670	nm	

to	detect	DraQ5	nuclear	 staining.	Each	 sample	was	 sorted	 into	 two	separate	 tubes,	 each	with	

15,000	particles.	

Sequencing	libraries	were	generated	using	10X	Genomics	Chromium	Single-Cell	3′	Reagent	kits	

(Pleasanton,	 CA,	 USA,	 version	 3)	 and	 cDNA	 was	 PCR	 amplified	 for	 19	 cycles.	 	 Paired-end	

sequencing	was	performed	using	an	Illumina	NovaSeq	6000	(San	Diego,	CA,	USA,	read	1:	28	bp	

and	read	2:	91	bp).		

RNA	in	situ	hybridization	

After	a	16	h	fast,	10	weeks	old	male	C57BL/6N	mice	were	perfused	transcardially	with	ice-cold	

PBS	(pH	7.4)	followed	by	ice-cold	4%	paraformaldehyde	(PFA;	 in	PBS,	pH	7.4).	The	brain	was	

removed	 from	the	skull	and	post-fixed	 in	4%	PFA	at	4◦C	for	24	h,	and	moved	to	20%	sucrose	

solution	(in	1X	PBS)	at	4◦C.	The	brains	were	cut	 in	20µm	thick	sections.	The	 fluorescence	 ISH	

(RNAscope)	was	performed	using	probes	specific	for	Pomc	(Cat#	314081),	Anxa2	(Cat#	501011),	

Ghrh	(Cat#	470991),	Oxt		(Cat#	493171),	Sst	(Cat#	404631),	Unc13c	(Cat#	519021),	Tbx19	(Cat#	

484741),	Nkx2-4	 (Cat#	 1070491),	 Trh	 (Cat#	 436811),	 Glp1r	 (Cat#	 418851),	 ,	 Crabp1	 	 (Cat#	

474711),	Tmem215	(Cat#	409241),	Htr3b	(Cat#	497541),	and	Nts	(Cat#	420441)	according	to	the	

manufacturer’s	 instructions.	 	 Probes	 specific	 for	 Pnoc	 was	 custom	 made	 and	 contains	 20	

oligonucleotide	pairs	targeting	region	325	-	1263	of	transcript	accession	NM_010932.2.	3-plex	

negative	 and	 3-plex	 positive	 control	 probes	 (ACDBio)	were	 processed	 in	 parallel	with	 target	

probes.	All	incubation	steps	were	performed	at	40◦C	using	the	ACD	HybEz	hybridization	system	

(ACDBio).	Sections	were	mounted	on	SuperFrost	Plus	(ThermoFisher),	dried	at	RT	and	baked	at	

60◦C	overnight.	Sections	were	subsequently	incubated	with	hydrogen	peroxide	at	RT	for	10	min	

and	 rinsed	 in	 autoclaved	 Millipore	 water	 two	 times	 and	 subsequently	 submerged	 in	 Target	

Retrieval	Buffer	(ACDBio)	at	95-97◦C	for	8	min.	Slides	were	washed	in	autoclaved	Millipore	water	

for	15	sec	and	were	dehydrated	in	100%	ethanol	for	30	sec.	After	air	dry,	a	hydrophobic	barrier	

was	using	ImmEdge	barrier	pen	(ACDBio).	Slides	were	then	stored	at	RT	until	assaying.	Sections	

were	 incubated	 with	 Protease	 III	 (ACDBio)	 for	 25	 min.	 The	 subsequent	 hybridization,	

amplification	and	detection	steps	were	performed	according	to	the	manufacturer’s	instructions	

(Multiplex	 Fluorescent	 Detection	 kit	 v2,	 ACDBio).	 Sections	 were	 mounted	 with	 DAPI	 with	

Vectashield	Antifade	Mounting	Medium	(Vector	Laboratories)	and	stored	at	4◦C	in	the	dark.	
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Imaging	and	quantification	of	RNA	ISH	

Images	were	captured	as	previously	described	25.		Briefly,	sections	were	imaged	using	Leica	TCS	

SP-8-X	confocal	microscope	with	a	40X	objective,	with	z-stacks	set	at	1µm	intervals.	Images	were	

analyzed	using	FIJI	(National	Institutes	of	Health,	version	2.0.0-rc-41/1.50d).	For	representative	

images,	 adjustments	 were	 made	 to	 brightness	 and	 contrast,	 whereas	 for	 quantification,	 all	

channels	were	kept	unchanged.	Two	to	four	sections	per	mouse	were	quantified	per	area.	Cell	

counting	 was	 performed	 manually.	 The	 threshold	 for	 probe	 recognition	 was	 determined	 by	

manual	visual	judgment,	by	defining	single-cell	regions	of	interest	(ROIs)	showing	Pomc,	Ghrh,	

Oxt,	Sst,	Tbx19	or	Trh,	and	only	four	or	more	probe	signals	per	ROI	of	Glp1r,	Anxa2,	Unc13c	or	

Nkx2-4	were	considered	as	positive.	For	the	Pnoc	cell	type	validation,	ROIs	were	determined	in	a	

similar	way.	
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