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SUMMARY
The rapid emergence of SARS-CoV-2 variants challenges vaccination strategies. Here, we collected 201
serum samples from persons with a single infection or multiple vaccine exposures, or both. We measured
their neutralization titers against 15 natural variants and 7 variants with engineered spike mutations and
analyzed antigenic diversity. Antigenic maps of primary infection sera showed that Omicron sublineages
BA.2, BA.4/BA.5, and BA.2.12.1 are distinct from BA.1 and more similar to Beta/Gamma/Mu variants. Three
mRNACOVID-19 vaccinations increased neutralization of BA.1more than BA.4/BA.5 or BA.2.12.1. BA.1 post-
vaccination infection elicited higher neutralization titers to all variants than three vaccinations alone, although
with less neutralization to BA.2.12.1 and BA.4/BA.5. Those with BA.1 infection after two or three vaccinations
had similar neutralization titer magnitude and antigenic recognition. Accounting for antigenic differences
among variants when interpreting neutralization titers can aid the understanding of complex patterns in hu-
moral immunity that informs the selection of future COVID-19 vaccine strains.
Cell Host & Microbe 30, 1745–1758, December 14, 2022 Published by Elsevier Inc. 1745
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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INTRODUCTION

COVID-19 has resulted in over 6.4 million deaths and 599 million

infections worldwide.1 SARS-CoV-2 continues to circulate glob-

ally, even as population immunity increases due to infections, re-

infections, and vaccination series, alone or in combination.2

Although authorized and licensed COVID-19 vaccines provide

substantial protection against severe COVID-19, new and

emerging SARS-CoV-2 variants continue to threaten their effec-

tiveness. The need to develop vaccination strategies to provide

the broadest and strongest immunity against emerging and

future SARS-CoV-2 variants is therefore imperative.

Approved or authorized mRNA COVID-19 vaccines encode

the spike protein of the first SARS-CoV-2 strain to emerge,

Wuhan-Hu-1, defined as the ancestral strain. An increased rein-

fection risk associated with the Omicron variant compared with

earlier SARS-CoV-2 variants has been observed.3 Omicron

BA.1, first identified in November 2021, has led to millions of in-

fections, including post-vaccine infections (PVIs). This has led to

more recommendations for vaccine boosting. Additional

variants closely related to Omicron, including BA.2 and its de-

scendants, were detected soon afterward. These have rapidly

outcompeted BA.1. For example, BA.2.12.1 and BA.4 and

BA.5 (hereafter referred to as BA.4/BA.5) are now collectively

the most common variants in the United States.4–6 Additional

Omicron subvariants are also emerging, including BA.2.75 sub-

lineages, which are spreading in various global regions.7

Vaccine formulations based on the ancestral spike antigen

continue to be available for both primary series and booster

vaccination schedules.8 Recent public health discussions ques-

tion whether vaccinations derived from more recent strains

substantially increase antibody magnitude (quantity) and

breadth (recognition of many antigenically distinct variants)

above boosting with the same ancestral strain, including in pop-

ulations that may be unvaccinated, vaccinated, boosted, in-

fected, reinfected, or various combinations thereof. Three doses

of mRNA COVID-19 vaccines containing the ancestral strain in-

crease immunity against a range of variants.9–13 However, fourth

doses with the ancestral strain only transiently boost neutraliza-

tion titers back to the peak observed after three doses.14–16 By

contrast, sequential exposure to the ancestral vaccine followed

by an Omicron PVI may increase neutralization titers across var-

iants compared with vaccination with three doses alone,17

although other studies suggest protection against severe dis-

ease is similar.18

Optimal timing and composition of SARS-CoV-2 vaccines for

both boosters and primary series, therefore, remain unclear. The

World Health Organization (WHO) recently noted that an Omi-

cron vaccine may provide broader protection against emerging

variants in individuals who have already received two doses of

ancestral vaccines. WHO recommended that unvaccinated indi-

viduals should still receive at least two doses of the ancestral-

based vaccine rather than a single Omicron-based vaccine

alone,19 and regulatory approvals for BA.1 antigen-containing

vaccines are underway.20 More recently, the United States

Food andDrug Administration (FDA) recommended that updates

to COVID-19 booster vaccines include both ancestral and BA.4/

BA.5 spike antigens.21 Preliminary results involving bivalent vac-

cines containing both the ancestral strain and Omicron BA.1
1746 Cell Host & Microbe 30, 1745–1758, December 14, 2022
suggest that they induce similar or higher titers against BA.1

than a third dose with the ancestral strain alone.22,23

Antigenic diversity between Omicron variants has

further complicated vaccine composition decision making. For

example, a BA.1 booster may not provide sufficient protection

if more recently emerged variants like BA.2.12.1 and

BA.4/BA.5 further escape immunity.4,24,25 Furthermore, individ-

uals who have been vaccinated with BNT162b2 or vaccinated

and infected with BA.1 or BA.2 have lower neutralization titers

against BA.2.12.1 and BA.4/BA.5 compared with BA.1 or

BA.2.17,24 A similar observation was made with BBIBP-CorV

(Sinopharm) vaccinated individuals with and without Omi-

cron PVI.26

A challenge for informing vaccine strain selection with variant-

specific antibody titers is the need to interpret antibody neutral-

ization patterns in increasingly complex, time-varying antigenic

histories derived from infection, vaccination, or both (hybrid

immunity). Compounding this challenge is the need to predict

humoral immunity against future variants. ‘‘Antigenic cartog-

raphy’’ is a statistical method that geometrically interprets anti-

body titers, positioning variants on an ‘‘antigenic map’’ based

on how they are neutralized by primary exposure sera.27

Compared with the direct interpretation of geometric mean ti-

ters, antigenic cartography simultaneously analyzes titers from

a panel of sera and accommodates variation in individual titers

when interpreting how sera recognize variant antigens. Resulting

antigenic maps show the clustering of variants based on how

they are recognized by distinct sera. High-quality maps perform

well in cross-validation experiments by accurately predicting ti-

ters not included in making the map. Techniques that build on

antigenic cartography, such as ‘‘antibody landscapes,’’ enable

the evaluation of how neutralization titers change following anti-

gen re-exposure compared with primary exposure. The height of

an accurate antibody landscape can be used to predict titers

against variants that were not used in making the landscape,

as described by Fonville.28 Few antigenic maps have been

made of SARS-CoV-2, likely because antigenic cartography re-

quires the generation of large datasets of well-characterized

sera from individuals with primary exposure to distinct,

sequence-confirmed variants or experimentally inoculated ani-

mals.9,29–34 Although the published SARS-CoV-2 antigenic

maps agree on the antigenic relationships between the ancestral

strain, Delta, Beta, and Omicron BA.1 variants, the positions of

BA.2, BA.2.12.1, and BA.4/BA.5 variants remain uncertain.

Further, because different populations may experience different

combinations of infection and vaccination exposures, more

studies are needed to increase our understanding of antibody re-

sponses to SARS-CoV-2 variants.

In this study, we generated a unique dataset of neutralization

titers against a large panel of SARS-CoV-2 variants, using well-

characterized sera from a longitudinal cohort following primary

COVID-19 cases with sequence-confirmed variant infections,

and applied antigenic cartography to analyze antigenic

divergences among the major SARS-CoV-2 variants. We also

performed similar measurements and analyses on a separate

cohort of uninfected individuals after two and three doses with

an ancestral, spike-based mRNA COVID-19 vaccine (hereafter

referred to as mRNA COVID-19 vaccine) to compare differences

in neutralization titers across variants based on different types of
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antigenic exposures. We then used antibody landscapes and

other related statistical metrics to quantify the gain in neutraliza-

tion titer magnitude and breadth across variants following two or

three mRNA COVID-19 vaccine doses and Omicron BA.1 or

BA.1.1 PVIs compared with boosting with the mRNA COVID-

19 vaccine alone. Together, these methods offer a useful analyt-

ical framework for quantifying and comparing the neutralization

of SARS-CoV-2 variants following primary and subsequent anti-

gen exposure. This approach along with many other consider-

ations, including variant surveillance, and availability of candi-

date vaccines and clinical data, can be used by public health

authorities when making final recommendations for vaccine

composition.

RESULTS

Primary infection sera display different neutralization
patterns across variants
To measure the neutralization of the SARS-CoV-2 variants by

sera following infections by different variants, we used serum

samples from SARS-CoV-2-infected participants from the

Epidemiology, Immunology, and Clinical Characteristics of

Emerging Infectious Diseases with Pandemic Potential (EPICC)

study (Table S1A).35 We identified serum samples collected 8–

51 days post symptom onset (mean = 28 days) from 45 individ-

uals with natural primary infections with 21 distinct variants. All

individuals were unvaccinated and had sequenced, genotyped

infecting viruses, as well as matched clinical and demographic

data (Tables S1A and S1B). We complemented this serum set

with additional serum samples from unvaccinated persons in-

fected by variants that were underrepresented in the EPICC

cohort. An additional 31 primary infection serum samples with

known infecting genotypes and vaccination histories were pur-

chased from Boca Biolistics (Pompano Beach, FL, USA,

Tables S1C and S1D).34 We also included convalescent serum

samples from one Beta-infected case from an unrelated FDA

study protocol and six additional Beta-infected cases obtained

from the HIV Vaccine Trial Network (HVTN) (see STAR Methods;

Table S1A).

Each of the 83 serum samples was titrated for neutralization

potency against a panel of 15 SARS-CoV-2 lentiviral pseudovi-

ruses representing the major variants, including BA.1, BA.1.1,

BA.2, BA.2.12.1, and BA.4/BA.5 (Table S2). Neutralization titers

(50% inhibitory dilution, ID50) for sera against each variant

were grouped by infecting variant and shown in Figure 1. For

each serum group, significant differences in magnitude were
Figure 1. Neutralization antibody titers (ID50 values) against SARS-CoV
infected by a major SARS-CoV-2 variant

(A–J) Sera from (A) wild-type variant (D614G), (B) Alpha, (C) Beta, (D) Gamma, (E) D

BA.1.1). Each gray line corresponds to one serum sample. The red arrow denotes

each variant. Significance values for each variant are shown relative to the infect

(K) GMTs from (A)–(J) for sera from the infecting variants (rows) against all measu

pairs with larger titers have darker shades of green.

(L) Fold reduction in titer for each serum-antigen pair relative to the titer of the infec

across all serum samples with the same exposure history, and darker red cells de

diluted 1:40 followed by 3-fold serial dilutions. Neutralization assays were perform

using nonlinear dose-response regression. Titers measuring below the lowest seru

was performed on the paired samples using the Friedman test, followed by post

groups are shown, where *p % 0.05, **p % 0.01, ***p % 0.001, and ****p % 0.00
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observed across the variant panel, although the pattern of

neutralization depended on the infecting variant. Variants that

temporally precededOmicron also generally elicited lower titers

against Omicron variants (Figures 1A–1I). The highest geomet-

ricmean titer (GMT) across the serum samples was generally for

the infecting variant, with Alpha and Delta sera showing higher

GMTs against the infecting variant compared with D614G

(Figures 1B and 1E, respectively). Among the pre-Omicron in-

fections and in agreement with previous data,36–44 the titers of

Alpha, Delta, Epsilon, and Lambda convalescent serum sam-

ples against Beta, Gamma, and Mu variants were generally

lower than against other pre-Omicron variants. Neutralization

ID50 titers against the variants are shown in Figure 1K, and

fold changes relative to the infecting variant are shown in

Figure 1L.

Antigenic maps using primary infection sera show
Omicron variants BA.2, BA.4/BA.5, and BA.212.1 as
antigenically distinct from BA.1 and more similar to the
Beta/Gamma/Mu cluster
To further characterize how the primary infection sera recognize

antigenic relationships among all variants, we applied antigenic

cartography to an extended neutralization dataset that included

neutralization titers for all 83 samples against the 15 major

SARS-CoV-2 variants described above, as well as seven addi-

tional engineered spike variants with six single and double muta-

tion in the receptor binding domain (Table S2). The cartography

analysis allowed the simultaneous interpretation of 1,332

neutralization titers following primary natural infection to quantify

the degree of recognition of distinct variants. Using a form of

multi-dimensional scaling, the position of each strain and serum

is optimized in Euclidean space such that the ‘‘antigenic dis-

tance,’’ a measure of antigenic recognition, between points, cor-

responds to the measured neutralization titer (the term antigenic

distance used hereafter is always in reference to an antigenic

map). The closer a serum (shown as a square on the map) is to

a variant (shown as a circle on the map), the higher the titer for

that serum to that variant. Overall, we find that the sera cluster

near their respective infecting variants, as expected. As is stan-

dard for evaluating antigenic maps, we performed numerous val-

idations to confirm that themaps are accurate representations of

the titer data (see STAR Methods).

Consistent with previously published SARS-CoV-2 antigenic

maps,9,29–34 we observed four major variant clusters (Figure 2A).

These clusters generally correspond to strains with shared

amino acid changes in the spike receptor binding domain
-2 variant pseudoviruses for primary infection sera from individuals

elta, (F) Epsilon, (G) Iota, (H) Lambda, (I) other variants, and (J) Omicron (BA.1 or

the infecting variant. Geometric mean neutralization titers (GMTs) are listed for

ing variant.

red antigens (columns). Cells are shaded based on GMT, and serum-antigen

ting variant (boxed in black). Each cell value represents the average fold change

note larger relative reductions in titer. For all neutralization assays, serum was

ed twice, each with an intra-assay duplicate. Neutralization curves were fitted

m dilution of 1:40 were treated as 20 for statistical analysis. Statistical analysis

hoc Dunn’s multiple comparison tests. p values for comparisons between the

01.
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Figure 2. Antigenic maps made with neutralization titers from single-antigen exposure sera demonstrate that BA.1, BA.2, BA.2.12.1, and
BA.4/BA.5 are most antigenically distinct from other major variants

(A–D) Antigenic maps were made using antigenic cartography with titers for (A) sera collected after convalescent primary infection with distinct variants and sera

from uninfected individuals who received (C) two doses or (D) three doses of mRNA COVID-19 vaccines. Each grid-square side corresponds to a 2-fold dilution in

the pseudovirus neutralization assay. Antigenic distance is measured in any direction on the grid. Antigens are shown as circles and labeled. Sera are shown as

squares and are colored by infecting variant. (B) Substitutions in the spike and receptor binding domains for all variants used in this study.

(E) Fold difference in neutralization with 95% confidence intervals from the ancestral strain to each other variant on each map. For example, a fold difference of

four corresponds to two grid squares on the antigenic map.
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(Figure 2B), listed in parentheses below for each variant. The var-

iants that were most similar to the ancestral strain (D614G) were

Alpha (N501Y), Epsilon (L452R), and individual point mutations

introduced into D614G (N501Y, L452R, T478K, R346K, and

K417N). Lambda (L452Q and F490S) is only slightly further to

the right of the ancestral strain, whereas Delta (L452R and

T478K) is slightly below it. To the top and right of the ancestral

strain are Beta and Gamma (E484K, N501Y, and K417N/T), Mu

(E484K and N501Y), and D614G with both mutations E484K

and N501Y. Iota (E484K), R.1 (E484K), and D614G with E484K

are between the ancestral and Beta/Gamma/Mu cluster, likely

because they lack the additional antigenic mutation at N501Y.
Omicron BA.1 and BA.1.1 are to the right and are most distant

from the ancestral variant. Both contain additional mutations in

the receptor binding domain that are not observed in other var-

iants, while BA.1.1 also contains R346K (Figure 2B). Strikingly,

we found that BA.2.12.1, BA.2, and BA.4/BA.5 variants retain a

large antigenic distance from the ancestral strain (89.3-, 86-,

and 63.1-fold, respectively) but are shifted away from BA.1 and

BA.1.1 and toward the Beta/Gamma/Mu cluster, supporting a

recent observation that BA.2.12.1, BA.4, and BA.5 escape anti-

bodies elicited by Omicron infection.45 BA.2 has numerous

changes relative to BA.1 and BA.1.1 but is closely related to

BA.2.12.1 and BA.4/BA.5 (Figure 2B).
Cell Host & Microbe 30, 1745–1758, December 14, 2022 1749
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Sera after two or three doses with an mRNA COVID-19
vaccine show distinct antigenic relationships among
Omicron variants
We next measured the neutralization titers for sera collected

from 39 healthcare workers after two and three doses of an

mRNA COVID-19 vaccine (Pfizer/BNT162b2) as part of the Pro-

spective Assessment of SARS-CoV-2 Seroconversion (PASS)

study (see STARMethods; Table S1E). Sera were titrated against

D614G, BA.1, BA.2, BA.2.12.1, and BA.4/BA.5 and Beta, Mu,

and Delta. The last three were chosen because they represented

the most distant clusters on the convalescent map in Figure 2A.

After two doses, titers were highest for the ancestral strain and

low against all Omicron variants (Figure 3A). Both BA.1 and

BA.4/BA.5 had the fewest titers above the assay cutoff (<40).

By contrast, the third vaccine dose significantly boosted GMTs

to all variants compared with the second vaccine dose

(p < 0.0001), with BA.2 having the highest titers among the Om-

icron-lineage variants (GMT 831), followed by BA.1 (GMT 700),

BA.2.12.1 (GMT 395), and BA.4/BA.5 (GMT 355) (Figure 3B).

We also used antigenic cartography to interpret neutralization

titers for sera collected after two and three vaccine doses. Titers

were accurately represented as antigenic distances on antigenic

maps in either one or two dimensions (Figure S1), but coordina-

tion was less accurate than for the natural infection map (Fig-

ure S2). We found that the antigenic distances between D614G

and other variants (fold difference in neutralization between

these variants) on the two doses vaccine antigenic map were

smaller but had a similar pattern to the natural infection map

(Figures 2A, 2C, and S3A), with Beta, Mu, and Delta closer

(smaller fold difference) to the ancestral strain and BA.1 furthest

from the ancestral strain, followed by the other Omicron variants

with more intermediate antigenic distances. By contrast, sera

from the same vaccinated individuals after their third vaccine

dose recognized the Omicron variants differently than sera after

the second vaccine dose (Figures 2D, S3B, and S3C). This is

evident in the antigenic difference between the ancestral strain

and BA.1 and BA.2, which dropped to 7.1- and 6-fold, respec-

tively, whereas BA.2.12.1 and BA.4/BA.5 remained more

distinct, at 12.9- and 14.5-fold difference (Figure 2E), consistent

with the changes in neutralization titers against the variants after

the second and third vaccine dose (Figures 3A and 3B). These

changes in neutralization patterns and consequent antigenic re-

lationships among the variants suggest that booster vaccination

with the ancestral variant selectively boosts titers to some vari-
Figure 3. Neutralization titers (ID50 values) against variant pseudoviru

infection (PVI)

(A–G) Sera are from individuals who received (A) two doses of an mRNA COVID-

were obtained about 5–6weeks following the last vaccine dose. PVI neutralization

with the (C) pre-Delta wave (Alpha or Gamma or others), (D and E) Delta, or (F and

sample. GMT is listed for each variant. Significance values for each antigen are

samples in (D) weremeasured at multiple time points, shown in (E), from 1month a

from individuals with an Omicron (BA.1 or BA.1.1) PVI 2–10 months after the seco

BA.1.1) PVI 1–5 months after the third vaccine.

(H) The GMT of individual variants after vaccination with or without PVI by timelin

serial dilutions. Neutralization assays were performed twice, each with an intra-as

regression. Titers measuring below the lowest serum dilution of 1:40 were treated

samples using the Friedman test, followed by post hoc Dunn’s multiple compariso

0.05, **p % 0.01, ***p % 0.001, and ****p % 0.0001. NS, no significance; vx, vacc

(1:40). Numbers in parentheses indicate fold reduction in titer relative to D614G.
ants more than others in a way that is distinct from neutralization

responses after primary infection or two vaccine doses.

Two or three doses with an mRNA COVID-19 vaccine
followed by an Omicron PVI increased the neutralization
of variants more than three vaccine doses alone
Although there are important differences between vaccination

and infection, comparing differences in antibody neutralization

of variants by individuals with Omicron PVIs to those with only

three vaccine doses may be considered useful for comparing

different antigen-boosting strategies.Wemeasured neutralization

titers for individuals with PVIs and compared their responses to

those with only two or three vaccine doses (Tables S1A and

S1E). Individualswith pre-DeltawavePVIs approximately 1month

after two doses of vaccines generally had lower titers against all

variants compared with other PVI groups (p < 0.0001) but higher

titers than those in the two-dose vaccine group (Figure 3C,

p < 0.0001). Individuals with Delta PVIs 3–6 months after two

doses of vaccines generally had the highest titers against all var-

iants (Figure 3D). Even if the neutralization titers dropped to the

background (<40) after the second vaccine, the Delta PVI boosted

high neutralization titers against all variants (Figure 3E).

In agreement with a previous report,46 individuals with two

vaccine doses followed by an Omicron (BA.1 or BA.1.1) PVI

had high titers against previously circulating variants (GMTs

12,399–5,090) but lower titers against the early Omicron variants

BA.1 and BA.2 (GMTs 3,253 and 2,587, respectively) and signif-

icantly lower titers for the later variants BA.2.12.1 and BA.4/BA.5

(GMTs 1,486 and 1,009, respectively) relative to BA.1 (p = 0.0009

and < 0.0001, respectively) and BA.2 (p = 0.0946 and 0.0028,

respectively), though all but one titer was well above the assay

cutoff (Figures 3F and 3G). Individuals with three vaccine doses

followed by Omicron (BA.1 or BA.1.1) PVI also had high titers

against BA.1 or BA.1.1 (GMTs 4135 and 3842, respectively), fol-

lowed by BA.2, BA.2.12.1, and BA.4/BA.5 (GMTs 3,237, 1,755,

and 1,238, respectively). Unexpectedly, titers after two or three

vaccine doses followed by an Omicron PVI were not significantly

different (p = 0.5013), suggesting that titers may approach a

plateau with the primary vaccination series followed by an Omi-

cron PVI. Overall, individuals who had three vaccine doses and

an Omicron PVI had higher titers than those who had three vac-

cine doses alone (p < 0.0001).

We next compared how neutralization differs across variants

for sera following exposures with a single antigen versus sera
ses from post-vaccination sera with and without post-vaccination

19 vaccine or (B) three doses of an mRNA COVID-19 vaccine. Serum samples

titers after 2 doses of wild-typemRNACOVID-19 vaccine in individuals infected

G) Omicron (BA.1 or BA.1.1) variants. Each gray line corresponds to one serum

shown relative to the titer against D614G. Two of the Delta wave PVI serum

fter the second vaccine dose and 1month before and after PVI. (F) Shows titers

nd vaccine, whereas (G) shows titers from individuals with an Omicron (BA.1 or

e. For all neutralization assays, the serum was diluted 1:40 followed by 3-fold

say duplicate. Neutralization curves were fitted using nonlinear dose-response

as 20 for statistical analysis. Statistical analysis was performed on the paired

n tests. p values for comparisons between the groups are shown, where *p %

ine. Pie charts indicate the percent of serum samples above the lowest tested
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following exposures with multiple antigens using antibody land-

scapes. Antibody landscapes can be used to evaluate both the

neutralization titer magnitude and the breadth of recognition

across the variants. Each serum sample has an associated

three-dimensional landscape. The x and y dimensions corre-

spond to the original two-dimensional antigenic map made

with primary natural infection sera (i.e., the map in Figure 2A).

In the third dimension, at each virus position on the map, the

height of the landscape corresponds to the measured neutral-

ization titer for that serum against that virus. A surface, or

‘‘landscape,’’ can then be fit to these data, summarizing how

an individual’s neutralization titer varies as a function of the

location of the infecting antigen on the two-dimensional anti-

genic map. Here, we use the method developed by Rössler29

that fits cone-shaped antibody landscapes, where we estimate

the peak position and slope from the measured titers. Our vali-

dation analyses demonstrated that the height of the antibody

landscape accurately represented titer values that were not

used in making the landscape, indicating that the landscape

can be used to predict titers based on their position in antigenic

space (mean RMSE 1.9 versus 2.4 without information on

variant antigenic relationships, Mann-Whitney, p %.001, further

details are provided in the STAR Methods and further results in

Table S3A).

We first analyzed whether infection with an antigenically

distinct variant, such as BA.1 in those with prior vaccination,

induced broader recognition across variants than a third dose

with the ancestral strain. The slope of the landscape is a useful

metric for evaluating the breadth of neuralization across

measured antigens: slopes greater than 1 indicate larger fold

differences between variants than after primary infection,

whereas smaller slopes correspond to even neutralization

across variants. We found individual antibody landscapes

from those with two or three vaccine doses followed by Omi-

cron (BA.1 or BA.1.1) PVI had landscapes with significantly

more gradual slopes (means: 0.32 and 0.30, respectively), indi-

cating relatively even neutralization titers across variants, than

landscapes for individuals who received three doses of ances-

tral vaccine alone (mean: 0.45, Tables S3B and S3C, one-sided

Mann-Whitney test, p < 0.001 and p < 0.002, respectively).

Average antibody landscapes for each serum group are shown

in Figures 4A–4C. Notably, individuals with two or three doses

of vaccine and Omicron PVIs had a larger gain in titer against

Delta as well as Omicron variants BA.1, BA1.1, BA.2,

BA.212.1, and BA.4/BA.5 than those with only three doses of

vaccine (Tables S3D–S3F). Overall, as we observed in the

raw neutralization titer data (Figures 3F–3H), antibody land-

scapes demonstrated similar breadth and magnitude of

neutralization titers across variants between those with two

versus three doses prior to Omicron PVI (Figures 4B and 4C).

Thus, an additional boost with the ancestral-based vaccine

did not appear to substantially improve antibody titer and

breadth against the variants in Omicron PVI sera.

Omicron PVI results in the greatest breadth, although
with slightly lower recognition to BA.2.12.1 and
BA.4/BA.5
To further evaluate how antibody recognition of variants

changed between first and subsequent exposures, we devel-
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oped a method called the ‘‘breadth gain’’ plot (Figures 4D and

4E; Tables S3D–S3H). The x axis shows the primary antigenic

map distances from Figure 2. The y axis shows the average

gain in titer to each variant following secondary exposure above

what was observed after primary infection. If no increase in

recognition is observed against any variant, the plot shows a

flat line across the x axis. Boosting that leads to breadth, i.e.,

similar titers across all variants, results in a straight diagonal

line (see Figure S4A for further explanation). This plot aids the

interpretation of whether gains in recognition are greatest

against antigens that are most distant on the antigenic map.

The breadth gain statistic can be directly estimated from primary

and secondary titer data (if both are available) and yields similar

results, but that analysis loses the comparison to antigenic dis-

tances (STAR Methods; Figure S4B; Tables S3I and S3J).

We used this method to quantify and compare the breadth of

neutralization across the variants after Omicron PVIs and three

doses with the ancestral vaccines. The breadth gain plots corre-

sponding to the landscapes are shown in Figure 4D and esti-

mated directly from the titer data in Figure 4E, with a fitted loess

line as a visual guide. In Figure 4E, Omicron PVIs following two or

three doses of vaccination provided significantly greater gain in

recognition than three vaccine doses alone against BA.1 (one-

sided Mann-Whitney: p < 0.003), BA.2 (p<0.04), as well as Delta

(p � 0.001, Table S3H). Compared with three vaccine doses

alone, three vaccine doses and Omicron PVI induced signifi-

cantly greater gain in the neutralization of BA.4/BA.5 (p < 0.03),

and two and three doses and Omicron PVI induced a greater

gain to BA.2.12.1 (p < 0.005). Interestingly, even for those with

two and three doses of vaccine and Omicron PVI, the gain in

recognition to BA.4/BA.5 and BA.212.1 was slightly lower

(Figure 4E: 6.51- and 6.71-fold gain for BA.4/BA.5 and 12.2

and 11.0 for BA.212.1) than expected if breadth increased

linearly across antigenic space, as represented by the landscape

(Figure 4D: 12.6 and 13.5 for BA.4/BA.5 versus 17.7 and 16.1 for

BA.212.1). This analysis suggests that specific epitopes were

boosted more than others in a way that only partially correlated

with the antigenic relationships observed after primary infection

and which was not fully captured by our antibody landscapes.

DISCUSSION

Critical public health decisions about whether and how to update

current COVID-19 vaccines are challenging because of the rapid

emergence of new SARS-CoV-2 variants, as well as the complex

immune histories induced by past antigenic exposures from

different waves of infections and vaccination campaigns. When

considering vaccine antigens for new COVID-19 vaccines, the

potential to elicit high neutralization titers to a broad range of

variants is desirable. In this study, wemeasured neutralization ti-

ters against 22 SARS-CoV-2 variants in serum samples from

well-characterized clinical cohorts with documented genotyped

infections and vaccination histories.We then applied established

and new methods for analyzing neutralization titers to quantify

and interpret complex antigenic relationships among variants.

We find differences in the antibody recognition of the Omicron

variants after two and three vaccine doses with ancestral anti-

gens and that Omicron PVI broadens neutralizing antibody

responses across the variants similarly after two and three
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Figure 4. Antibody landscapes and breadth gain plots show that individuals with PVIs have a large increase in both recognition and magni-

tude compared with those with three mRNA COVID-19 vaccine doses alone

(A–C) Antibody landscapes are shown for individuals with (A) three doses of an mRNA COVID-19 vaccine, (B) two doses of an mRNA COVID-19 vaccine followed

byOmicron PVI, and (C) three doses of anmRNACOVID-19 vaccine followed byOmicron PVI. The x and y axis on each landscape correspond to the 2D antigenic

map constructed from convalescent sera in Figure 2A, with colored points representing the locations of each measured antigen. The z axis in each landscape

represents the interpolated log titer for all individuals with that exposure history against each antigen. The average landscape for each serum group was con-

structed by fitting landscapes for each individual serum sample assuming that all landscapes with the same infection history have the same slope, with the peak

equal to the maximum observed titer value against any one of the measured antigens. The location of the peak titer value was fitted separately for each individual

and then subsequently averaged. The colored lines represent the expected average log GMT for individuals with a particular infection history against each

measured antigen. The color of the landscape, like the z axis, corresponds to the estimated log GMT across antigenic space.

(D) Breadth gain plots of the antibody landscapes in (A)–(C) for vaccinated individuals who received either a third mRNACOVID-19 vaccine dose, an Omicron PVI,

or both. The x axis represents the antigenic distance from the primary convalescent sera antigenic map (Figure 2A) between the primary exposure variant and

each measured antigen. Each unit on the y axis represents the gain in neutralization against a particular antigen beyond a primary infection response and is used

to compare the relative gain in neutralization under different secondary exposure histories.

(E) Same as (D), but showing neutralization gain for each set of sera with the same infection history estimated directly from the titer data, with an interpolated loess

fit to convey trends. Error bars represent the mean and 95% confidence intervals for each measured antigen. Shading colors denote the type of infecting variant

and the number of vaccine doses received.
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vaccine doses. These findings may have implications for

choosing new vaccine antigens.

Moving forward, judgments for vaccine strain selection need

to be made using the best available data and models, along

with other considerations. Although neutralizing antibody titers

against the variants provide critical information, it can be difficult

to interpret complex antigenic relationships among many vari-

ants in large one-dimensional titer tables and graphs. Antigenic

cartography, a method for interpreting antigenic relationships

among a set of variants using antibody titers, has proven to be

a useful framework for characterizing the antigenic evolution of
influenza47 and dengue viruses,48 among other pathogens. Our

antigenic maps of pre-Omicron variants using our primary infec-

tion sera agree with previously published antigenic maps of

SARS-CoV-2,9,29–34 likely due in part to the use of similar pseu-

dovirus assays across laboratories. We find strong clustering

of the original variants with shared amino acid positions, indi-

cating that specific amino acid changes determine antigenic

phenotype. The position of BA.2 on our map agreed with an

experimental animal antigenic map32 and a natural infection

sera map31 but differed from another natural infection map.29

Our antigenic maps also included BA.2.12.1 and BA.4/BA.5
Cell Host & Microbe 30, 1745–1758, December 14, 2022 1753
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and showed that they have shorter antigenic distances to the

Beta/Gamma/Mu cluster than BA.1 or BA.1.1, which may pro-

vide insight into related epitopes among these variants. Our

work extends the literature by describing the antigenic positions

of BA.1, BA.1.1, BA.2, BA.212.1, and BA.4/BA.5 along with other

major variants simultaneously, enabling direct comparison

within a single study.

We also evaluated the variants using well-characterized post-

vaccination sera to assess how antibody titers and variant recog-

nition after two and three vaccinations differed fromprimary infec-

tion. We found that three vaccinations with the ancestral variant

preferentially increased neutralization to some variants more

than others. Specifically, the antigenic distance from the ancestral

variant to BA.1, BA.2, Beta, andMu decreasedmore than the dis-

tance to BA.2.12.1, BA.4/BA.5, and Delta. Thus, although BA.1

andBA.1.1 are themost antigenically distinct variants for both pri-

mary infection and two-dose vaccine sera, the three-dose vac-

cine sera recognized BA.1 and BA.1.1 better than BA.4/BA.5

and BA.2.12.1. We note, however, that titers to all Omicron vari-

ants were still high after the third vaccine dose. A previous study

found that additional mutations in BA.2.12.1 (L452Q) and BA.4/

BA.5 (L452R, F486V, and the deletion in 69 and 70) help explain

antigenic differences relative to BA.2 for three-dose vaccinee

sera.4 However, that study only investigated Omicron variants

and D614G using only boosted vaccinee sera. The specific muta-

tions that explain why antigenic distances measured in sera

following primary infection or two vaccine doses differ from those

following three vaccine doses remain to be explained.

Importantly, the magnitude of antibody titer to the circulating

variants at the time of infection likely impacts the degree of pro-

tection. We also compared the effects of the number of vaccine

doses and Omicron PVIs on both neutralization titer magnitude

and the breadth of neutralization across the variants. In a direct

analysis of the titer data, we found that two or three doses of the

ancestral vaccine followed by an Omicron PVI induced higher

neutralization titers against more variants than three vaccine

doses alone (p < 0.0001). This suggests that individuals who

already received a third vaccine dose with the ancestral strain

could still potentially broaden their immunity by receiving anOm-

icron vaccine. However, neutralization titers against the panel of

variants were similar for those with two or three vaccine doses

followed by an Omicron PVI, at least in the short-term following

vaccination.

We further analyzed these data using a technique called an

antibody landscape, which graphs themagnitude of titers across

antigenic space as defined by the primary infection sera. This

analysis can help predict titers to variants on an antigenic map

that are not directly tested. Relative to individuals vaccinated

with only the ancestral variant, individuals with two or three vac-

cine doses followed by Omicron PVIs had flatter landscapes and

hence broader neutralization across all variants, including to

BA.2.12.1 and BA.4/BA.5 and Delta. Because Delta is in the

lower part of the antigenic map, distant from the Omicron

variants, this analysis shows that re-exposure with an antigeni-

cally distinct variant may provide a stronger boost in cross-

neutralizing antibodies to conserved epitopes, even against

unexposed, antigenically distinct variants, than boosting with

the ancestral strain. This observation may be useful in consider-

ations for updating vaccine antigen composition and demon-
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strates how antigenic cartography and landscapes can be

used to inform variant selection.

To evaluate whether Omicron PVI versus vaccination alone

differentially boosted neutralization for certain variants and

induced weaker-than-expected responses against other vari-

ants, we developed a new metric called the breadth gain plot.

These analyses compare gain in antigen recognition between

primary and subsequent exposure. We observed that the

fold change in neutralization titers increased most the further

the antigenic distance a variant was from the primary strain (in

our analyses, this was always the ancestral vaccine strain).

This finding is consistent with a broadening of titer responses,

as illustrated in Figure 4D. Notably, however, breadth was not

completely uniform across antigenic space. We find that for all

vaccinated and PVI groups, the gain in titer was smaller to

BA.2.12.1 and BA.4/BA.5 than expected based on their anti-

genic distance from the ancestral strain (Figure 4E). This finding

matches our antigenic analyses showing that three vaccine

doses preferentially boosted titers to BA.1 and BA.2 more than

BA.2.12.1 or BA.4/BA.5. Nonetheless, the absolute magnitude

of titers in both groups to BA.2.12.1 and BA.4/BA.5 was still

high (GMT > 1,000), a level that has been reported to be associ-

atedwith vaccine protection of 96%.49,50 However, a correlate of

protection against BA.4/BA.5 has not yet been reported, and

correlates of protection for vaccine approval purposes have

not yet been established for any variant. For this reason,

methods that enable the evaluation of relative differences in titer

magnitude between one variant or another may be useful.

Collectively, our results point to a complex immunodominance

pattern in which responses are boosted (whether by repeated

ancestral vaccination or Omicron PVI) against epitopes that pre-

sent to a lesser degree on BA2.12.1 and BA.4/BA.5 compared

with BA.1. The uneven boosting among the variants may indicate

lack of shared epitopes in some variants. Alternatively, it may

indicate immune imprinting by the first antigenic exposure, as

has been observed for influenza.51 For example, during the

2013–2014 flu season, the H1N1 virus infected large numbers

of middle-aged adults. Subsequent analyses showed that

several mutations in the virus occurred at epitopes that were

targeted by antibodies in middle-aged adults that were likely eli-

cited by prior antigenic exposures. Thus, although infection or

vaccination with BA.1 could increase immunity to current

Omicron variants, whether the use of BA.1 as a first Omicron

antigenic exposure could affect subsequent recognition of other

Omicron or future variants remains to be studied.

Overall, our results show how the antigenic co-evolution of the

SARS-CoV-2 and its immune response among the host human

population becomemore elaborate with time.We show that Om-

icron PVIs generally induce broader immunity than boosting with

the ancestral vaccine and additional exposure to both ancestral

and BA.1 antigens can increase neutralization across all variants,

although to a lesser extent to BA.4/BA.5. Understanding the

mechanism behind this differential boosting to distinct variants

and carefully quantifying immune recognition may become

increasingly important for developing vaccination strategies

against future SARS-CoV-2 variants. Further, scientific insights

into the evolution of antigenic diversity for SARS-COV-2 could

also shed light on how other antigenically complex pathogens

may have evolved.
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Limitations of the study
Our study used convalescent serum samples that were collected

at different time points post-COVID-19 diagnosis (2–59 days),

which could have affected measured antibody magnitude and

breadth to the variants. However, when we removed all samples

reported as <6 days post symptom onset, it had minimal effects

on the antigenic map (Figure S3D). To maximize serum coverage

of variants on the antigenic map, we included ten samples that

were not fully genotyped but assigned variant infections inferred

by known dates of dominant circulating variants at the time of

sample collection. Ideally, antibody landscapes are constructed

by fitting interpolated surfaces across antigenic space as

described by Fonville,28 but there are not yet enough distinct var-

iants for this method. The emergence of future variants, titration

with additional subvariants, or generation of mutant pseudovi-

ruses that probe unoccupied areas of antigenic space may

make more comprehensive antibody landscape analyses

possible. There were too few individuals with PVIs with variants

other than Omicron to evaluate statistical significance with land-

scapes and breadth gain plots. Future studies on larger numbers

of individuals or samples from clinical trials will provide further in-

formation on how sequential exposure to distinct antigens

covers antigenic space. Finally, although neutralization titers

measured with pseudovirus neutralization assays have been

correlated with protection, our study does not directly provide in-

formation on protection against variants. Further studies incor-

porating antibody landscapes with disease outcome data will

provide further insights into how immune breadth across anti-

genic space is associated with clinical protection.
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58. Freed, N.E., Vlková, M., Faisal, M.B., and Silander, O.K. (2020). Rapid and

inexpensive whole-genome sequencing of SARS-CoV-2 using 1200 bp

tiled amplicons and Oxford nanopore rapid barcoding. Biol. Methods

Protoc. 5, bpaa014. https://doi.org/10.1093/biomethods/bpaa014.

59. Aksamentov, I., Roemer, C., Hodcroft, E.B., and Neher, R.A. (2021).

Nextclade: clade assignment, mutation calling and quality control for viral

genomes. J. Open Source Software 6, 3773. https://doi.org/10.21105/

joss.03773.

60. R Core Team (2022). R: a language and environment for statistical

computing. R Foundation for Statistical Computing. https://www.R-

project.org/.

https://doi.org/10.1126/science.1154137
https://doi.org/10.1126/science.abk0058
https://doi.org/10.1126/science.abm3425
https://doi.org/10.1126/science.abm3425
https://doi.org/10.1101/2022.06.05.22275943
https://doi.org/10.1101/2022.06.05.22275943
https://doi.org/10.1073/pnas.1409171111
https://doi.org/10.1073/pnas.1409171111
https://doi.org/10.1371/journal.pone.0248348
https://doi.org/10.1186/s12879-021-06233-1
https://doi.org/10.1186/s12879-021-06233-1
https://doi.org/10.1101/2021.02.10.21251518
https://doi.org/10.1101/2021.02.10.21251518
https://doi.org/10.1093/ofid/ofab556
https://doi.org/10.1093/ofid/ofab556
https://doi.org/10.1038/nbt0997-871
https://doi.org/10.1126/science.272.5259.263
https://doi.org/10.1126/science.272.5259.263
https://doi.org/10.1093/biomethods/bpaa014
https://doi.org/10.21105/joss.03773
https://doi.org/10.21105/joss.03773
https://www.R-project.org/
https://www.R-project.org/


ll
OPEN ACCESSArticle
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESORCE SOURCE IDENTIFIER

Bacterial and virus strains

SARS-CoV-2 pseudoviruses

for variants

(Lusvarghi et al.9;

Neerukonda et al.34,52),

this manuscript

N/A

Virus spike sequence data This manuscript Tables S1B and S1D

Biological sample

Convalescent serum samples This manuscript Table S1A

Vaccinated, not boosted,

serum samples

This manuscript Table S1E

Vaccinated, boosted, serum samples This manuscript Table S1E

Vaccinated, not boosted, PVI,

serum samples

This manuscript Table S1A

Vaccinated, boosted,

PVI, serum samples

This manuscript Table S1A

Commercial convalescent

serum samples

Boca Biolistics

(Pompano Beach, FL),

this manuscript

Table S1C

Critical commercial assays

Luciferase Assay System Promega Cat # E4550

Experimental models: Cell lines

293T-ACE2-TMPRSS2 Neerukonda et al.52, BEI Cat # NR-55293

293T/17 ATCC Cat # CRL-11268

Recombinant DNA

pCMVDR8.2 VRC, USA N/A

pHR’CMV-Luc VRC, USA N/A

SARS-CoV-2 variants spike plasmids Lusvarghi et al.9;

Neerukonda et al.34,52,

this manuscript

Table S2

Software and algorithms

Racmacs package for

antigenic cartography

GitHub https://acorg.github.io/Racmacs/

R package stats Stats-package https://rdrr.io/r/stats/stats-package.html

GraphPad Prism 9 GraphPad https://www.graphpad.com

Antibody landscapes Rössler et al.29,

this manuscript

https://github.com/acorg/

roessler_netzl_et_al2022

Breadth Gain Plots This manuscript Zenodo: https://doi.org/10.5281/zenodo.7291034

Deposited data

Neutralization data This study Zenodo: https://doi.org/10.5281/zenodo.7291034

Supplementary data This study Zenodo: https://doi.org/10.5281/zenodo.7291034
RESOURCE AVAILABILITY

Lead contact
Further information and reasonable requests for resources and reagents should be directed to andwill be fulfilled by the lead contact,

Carol D. Weiss (carol.weiss@fda.hhs.gov).
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Materials availability
All unique plasmids generated in this study are available with an MTA from the lead contact. De-identified serum samples from the

PASS, EPICC, FDA, and HVTN protocols used in this study are subject to a materials transfer agreement and sample availability. The

commercial serum samples can be purchased from the suppliers as listed in the key resources table.

Data and code availability
d Neutralization data have been deposited and available on Zenodo: https://doi.org/10.5281/zenodo.7291034

d Additional Supplemental Items are available at Zenodo: https://doi.org/10.5281/zenodo.7291034

d This study uses publicly available code, which is listed in the key resources table. Original R code used to make the figures in

this manuscript are available on Zenodo: https://doi.org/10.5281/zenodo.7291034.

d Any additional information required to reanalyze the data reported in this work paper is available from the Lead Contact upon

request
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics
The PASS (Protocol IDCRP-126) and EPICC (Protocol IDCRP-085) studies were approved by the Uniformed Services University of

the Health Sciences Institutional Review Board (IRB) in compliance with all applicable Federal regulations governing the protection of

human participants. All PASS and EPICC study participants provided informed consent. The convalescent Beta sera, obtained froma

traveler who had moderate-severe COVID-19 in the Republic of South Africa during the peak of the Beta (B.1.351) wave in January

2021, was obtained with informed consent and covered under the U.S. Food and Drug Administration IRB approved expedited pro-

tocol (# 2021-CBER-045). Six additional convalescent Beta serum samples were obtained from the HVTN under an approval protocol

(237-EXS_Weiss_CoVPN5001), in which participants gave consent for future use of their specimens.

Gender of subjects
The genders of human subjects in this study were mixed. The influence of gender on the results of the study was not explicitly

measured.

Post-vaccination sera from the PASS study
Details of the Prospective Assessment of SARS-CoV-2 Seroconversion (PASS) study protocol, including details of the inclusion/

exclusion criteria, have been previously published.53 Inclusion criteria included being generally healthy, R 18 years old, and em-

ployed at theWalter Reed National Military Medical Center (WRNMMC), Bethesda as a healthcare worker. Exclusion criteria included

history of COVID-19, IgG seropositivity for SARS-CoV-2 (as determined by a binding antibody assay) and being severely immuno-

compromised at time of screening. The study was initiated in August 2020, with rolling enrollment andmonthly research clinic visits to

obtain serum for longitudinal SARS-CoV-2 antibody testing.

The subset of PASS uninfected vaccinee participants selected for analysis of sero-responses were those who received two doses

of Pfizer/BNT162b2 vaccine by January 26, 2021, had no serological or PCR evidence of SARS-CoV-2 infection prior to two doses of

vaccine, and had received a third dose of Pfizer/BNT162b2 vaccine by Nov 18, 2021 (see Table S1E). No subject included in this sub-

analysis of vaccinated participants had a clinically apparent PCR-confirmed SARS-CoV-2 infection during follow-up before sera

collection. Participants’ serum samples were collected monthly through September of 2021, and then quarterly.

For the antibody binding assay used for screening at enrollment, serum samples were diluted 1:400 and 1:8000 and screened for

immunoglobulin G (IgG) reactivity with SARS-CoV-2 spike protein and nucleocapsid protein (N), and four human coronavirus (HCoV)

spike proteins using a multiplex microsphere-based immunoassay, as previously described.54

Post-infection sera from the EPICC study
The Epidemiology, Immunology, and Clinical Characteristics of Emerging Infectious Diseases with Pandemic Potential (EPICC) study

is a cohort study of U.S. Military Health System (MHS) beneficiaries that includes enrollment and longitudinal follow up of those with a

history of SARS-CoV-2 infection.55 Eligibility criteria for enrollment included presenting to clinical care with COVID-19-like illness and

being tested for SARS-CoV-2 by polymerase chain reaction (PCR) assay (See Tables S1A and S1B). The EPICC study enrolled be-

tweenMarch 2020 andMay 2022. For this analysis derived from SARS-CoV-2 infections, EPICC enrollment occurred at eight Military

Treatment Facilities (MTFs): Brooke Army Medical Center, Fort Belvoir Community Hospital, Madigan Army Medical Center, Naval

Medical Center Portsmouth, Naval Medical Center San Diego, Tripler Army Medical Center, Walter Reed National Military Medical

Center, and William Beaumont Army Medical Center.

Study procedures for these participants with SARS-CoV-2 infection included collection of demographic data, and completion of a

clinical case report form (CRF) to characterize the acute SARS-CoV-2 infection. Biospecimen collection included serial serum sam-

ples for immune response analysis and upper respiratory specimen swabs for genotyping of SARS-CoV-2. For all enrolled partici-

pants, we also abstractedMHS-wide healthcare encounter data from theMilitary Health SystemData Repository (MDR) to determine

comorbidities. Vaccination status was ascertained by the MDR record, the CRF and self-reported questionnaire.
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In addition to convalescent sera from EPICC participants, we included convalescent sera from two PASS participants with SARS-

CoV-2 infection in August 2021 (during the Delta epidemic). Both participants were vaccinated with two doses of mRNA COVID-19

vaccine at the time of SARS-CoV-2 infection (Table S1A).

Post-Beta variant infection sera
Six serum samples were collection from adults following a diagnosis of COVID-19 during a period when the Beta variant was domi-

nant (Table S1A). These infections were not genotyped but were presumed to be due to the Beta variant. One convalescent serum

sample was collected under the FDA protocol (# 2021-CBER-045) from an unvaccinated adult whowas diagnosedwith COVID-19 by

PCR during travel to the Republic of South Africa during the SARS-CoV-2 Beta infection wave in January 2021. Five additional serum

samples were collected under the HVTN protocol (237-EXS_Weiss_CoVPN5001) from unvaccinated adults following a COVID-19

diagnosis during February–March 2021 in the Republic of South Africa.

Commercial post-infection sera
Convalescent sera from SARS-COV-2 infected donors were purchased from Boca Biolistics (Pompano Beach, FL). Samples were

selected from the SARS-CoV-2 sequence inventory for variant infections that were not represented in the samples from the other

protocols. Details about the serum donors are listed in Table S1C. Genotypes of the infecting viruses are listed in Table S1D.

Cell lines
293T/17 (ATCCCRL-11268) and 293T-ACE2-TMPRSS2 cells stably expressing human angiotensin-converting enzyme 2 (ACE2) and

transmembrane serine protease 2 (TMPRSS2) (BEI Resources, Manassas, VA, USA; Cat no: NR-55293)52 were maintained at 37�C in

Dulbecco’s modified eagle medium (DMEM) supplemented with high glucose, L-glutamine, minimal essential media (MEM) non-

essential amino acids, penicillin/streptomycin, HEPES, and 10% fetal bovine serum (FBS).

Plasmids
Codon-optimized, full-length open reading frames of the spike genes of SARS-CoV-2 variants in the study (Table S2) were synthe-

sized into pVRC8400 or pcDNA3.1(+) by GenScript (Piscataway, NJ, USA). The HIV gag/pol packaging (pCMVDR8.2) and firefly lucif-

erase encoding transfer vector (pHR’CMV-Luc) plasmids56,57 were obtained from the Vaccine Research Center (VRC, National In-

stitutes of Health, Bethesda, MD, USA).

Pseudoviruses generation
HIV-based lentiviral pseudoviruses with desired SARS-CoV-2 spike proteins were generated as previously described.52 Pseudovi-

ruses comprising the spike glycoprotein and a firefly luciferase (FLuc) reporter gene packaged within HIV capsid were produced in

293T cells by co-transfection of 5 mg of pCMVDR8.2, 5 mg of pHR’CMVLuc and 0.5 mg of pVRC8400 or 4 mg of pcDNA3.1(+) encoding

a codon-optimized spike gene. Pseudovirus supernatants were collected approximately 48 h post transfection, filtered through a

0.45 mm low protein binding filter, and stored at -80�C.

METHOD DETAILS

COVID-19 diagnosis and SARS-CoV-2 genotype
For EPICC participants, SARS-CoV-2 infection was determined by positive PCR clinical laboratory test performed at the enrolling

clinical MTF site, or a follow-up upper respiratory swab collected as part of the EPICC study procedures. The specific PCR assay

used at the MTF varied. The SARS-CoV-2 (2019-nCoV) CDC qPCR Probe Assay research-use-only kits (Integrated DNA Technolo-

gies, IDT, Coralville, IA) was used as the follow-up PCR assay (used for specimens collected as part of the EPICC study). This CDC

qPCR assay uses two targets of the SARS-CoV-2 nucleocapsid (N) gene (N1 and N2), with an additional human RNase P gene (RP)

control. We considered a positive SARS-CoV-2 infection as positive based on a cycle threshold value of less than 40 for both N1/N2

gene targets.

Whole viral genome sequencing was performed on extracted SARS-CoV-2 RNA from PCR positive specimens using a 1200bp

amplicon tiling strategy.58 Amplified product was prepared for sequencing using NexteraXT library kits (Illumina Inc., San Diego,

CA) and libraries were run on the Illumina NextSeq 550 sequencing platform. Genome assembly used BBMap v. 38.86 and iVar v.

1.2.2 tools. The Pango classification tool (version 4.0.6) was used for lineage classification.59 In a small minority of SARS-CoV-2 in-

fections (Table S1B), a Pangolin lineage was unable to be ascertained and either a Nextclade clade59 was used and/or a Pangolin

lineage was inferred bymanual inspection of key lineage-defining amino acid substitutions. Dates of infection were also used as sup-

plementary information to ascertain infecting genotype in such instances where spike sequence quality was lower.

Additionally, we included 10 convalescent sera with infecting genotype inferred by date of collection. Convalescent sera from

seven vaccinated EPICC participants diagnosed with COVID-19 between 2/9/2021 and 4/2/2021 did not have corresponding viral

sequence data to confirm the infecting genotype and were categorized as presumptive ‘‘pre-Delta’’ infections based on historical

U.S. variant distributions (Figure 3C; Table S1A).6 The infecting genotype of two PASS participants with vaccine breakthrough infec-

tions were inferred by date of infection (late August 2021, annotated as presumptive Delta infections, Figures 3D and 3E; Table S1A).

Additionally, we included in all analyses sera from a traveler who had COVID-19 in the Republic of South Africa during the peak of the
Cell Host & Microbe 30, 1745–1758.e1–e7, December 14, 2022 e3
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Beta (B.1.351) wave in January 2021 (collected under a separate CBER protocol, 2021-CBER-045) (Table S1A) and this was anno-

tated as a presumptive Beta infection.

Pseudovirus Neutralization assay
Neutralization assays were performed using 293T-ACE2-TMPRSS2 cells in 96-well plates as previously described.52 Pseudoviruses

with titers of approximately 106 relative luminescence units per milliliter (RLU/mL) of luciferase activity were incubated with serially

diluted sera for two hours at 37�C prior to inoculation onto the plates that were pre-seeded one day earlier with 3.0 3 104 cells/well.

Pseudovirus infectivity was determined 48 h post inoculation for luciferase activity by luciferase assay reagent (Promega) according

to the manufacturer’s instructions. The inverse of the sera dilutions causing a 50% reduction of RLU compared to control was re-

ported as the neutralization titer (ID50). Titers were calculated using a nonlinear regression curve fit (GraphPad Prism Software

Inc., La Jolla, CA, USA). The mean titer from at least two independent experiments each with intra-assay duplicates was reported

as the final titer.

QUANTIFICATION AND STATISTICAL ANALYSIS

Neutralization titer analysis
One-way analysis of variance (ANOVA) with Dunnett’s multiple comparisons tests (variants compared to D614G-, variants compared

to BA.1), two-way ANOVA for the comparison of different groups (i.e., two-dose vaccine vs three-dose vaccine) and geometric mean

titers (GMT) with 95% confidence intervals were performed using GraphPad Prism software. The p values of less than 0.05 were

considered statistically significant. All neutralization titers were log2 transformed for analyses.

Antigenic cartography
We used the Racmacs package (https://acorg.github.io/Racmacs/) for antigenic cartography analyses.30 Antigenic maps are quan-

titative visualizations that fit antibody titers as Euclidean distances between primary infection sera and variants. Datasets with diverse

variants and primary infection sera to each variant are best for making meaningful geometric interpretations, i.e., antigenic maps.

Racmacs implements a modified multi-dimensional scaling approach as previously described.27 Briefly, the virus best neutralized

by each serum j, is defined as bj. Nij is the neutralization titer for serum j against virus i. The antigenic distance, Dij, for serum j to

each virus i is defined relative to bj: Dij =log2(bj)-log2(Nij). The map Euclidean distance dij for each virus and serum is that

which best fits the measured antigenic distance Dij in each number of dimensions. The optimal set of map coordinates for

each serum and virus is identified by minimizing the stress function E=
P

ije(Dij, dij) thousands of times from random starting coordi-

nates using a conjugate gradient optimization. For titers above the assay lower limit of quantitation, the stress function minimized

is (Dij - dij).
2 For titers below the assay lower limit of quantitation, the stress function minimized is (Dij - dij -1)

2g(Dij - dij - 1), where

gðxÞ = 1
1+ 10� x A unit of antigenic distance is equivalent to a two-fold dilution in neutralization titers.

We performed various quality assessments for antigenic maps including evaluation of goodness of fit and error, cross-validation,

dimensionality testing (Figure S1), confidence in coordination on the map, and robustness of the map to assay error and outlier

viruses and sera (Figure S2). The average absolute difference between a measured titer and its estimated map distance was only

0.50 map units, which corresponds to less than a 2-fold titer difference. Using cross-validation methods in which we made distinct

antigenic maps using 90%of titers (training set) to predict the excluded 10% titers (test set), the average absolute difference between

the measured titer and the predicted map distance was 1.21 map units (2.3-fold titer difference, Table S3K). In contrast, the average

absolute difference between each titer and the geometric mean for the corresponding serum group and variant (as shown in Figure 1)

was 1.45 map units (2.7-fold titer difference). Thus, the antigenic map is significantly more accurate at representing and predicting

individual neutralization titers than can be represented by geometric mean titers alone (t-test, means of 1.21 and 1.45 antigenic units,

p < 2.2e-16). We performed dimensionality testing to confirm that two dimensions were sufficient to accurately fit the data; additional

goodness of fit tests and 3D maps are shown in Figure S1. Points on the antigenic map were well coordinated and robust to mea-

surement error in the assay as well as bootstrapping of individual viruses and sera (Figure S2).

Antibody landscapes
We generated antibody landscapes for all serum samples with same overall infection history (e.g. three doses of ancestral vaccine,

three doses of ancestral + Omicron PVI etc.), following the general approach of Roessler and Netzel et al.,29 using code from the

repository associated with that manuscript (https://github.com/acorg/roessler_netzl_et_al2022) accessed on May 22, 2022. We

fitted three parameters for each landscape: the x and y coordinates of the landscape peak, xp and yp, and the landscape slope,

sk . We first assume that all serum samples within the same serum group have the same slope. Fitted values for those parameters

for each landscape are listed in Table S3D. Let cj represent the column basis titer, i.e. the highest titer for each serum sample j.

We assume that for each serum sample, the height of the landscape at the peak is equal to column base titer of the serum. Let

Aip represent the antigenic distance between the peak and a particular measured antigen i. The predicted titer against measured an-

tigen i for serum sample j is given by:

Zij = cj � skAip
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Let Tij denote the observed titer for serum sample j against measured antigen i. We use the function optim() in the R package stats

to minimize the square error E, which is the sum of the difference between observed and predicted titers across all measured anti-

gens and serum samples within the serum group:

E =
X
j

X
i

ðTij � ZijÞ2

We hypothesized that re-exposure (vaccine and/or PVI) would increase neutralization breadth among variants in a way that is

correlated with antigenic distances among variants. To test this hypothesis, we generated 100 bootstrap replicates in which 90%

of serum-variant pairs were selected at random to be included in the training set, with the remaining 10% allocated to the test

set. For each bootstrap replicate, we fit a landscape using the training set and calculated the RMSE for the 10% of the pairs in

the test set comparing the measured titers with the predicted titers from the fitted landscape. As a comparison, we estimated the

RMSE that would be observed if each predicted serum-variant pair were randomly assigned a variant position on the antigenic

map, i.e. if we lacked information on antigenic distances. Given that there is already broad recognition across variants in our datasets,

even the ‘shuffled’ landscape only had an average RMSE of 2.4 antigenic units (equivalent to 5.3-fold error) but a wide distribution of

error. In contrast, the model-fitted landscapes had an error of less than 1.9 antigenic units (�3.7 fold) indicating a better fit (see

Table S3A). The distributions are significantly different (Mann-Whitney, p = < 2e-16, mean difference: 0.55 antigenic units). This result

indicates that the landscapes are informative, as antigenic distances measured in the primary infection map correlated with variant

recognition after multiple exposures.

We next quantify whether individuals with Omicron PVI have significantly broader landscapes (i.e. landscapes with a gentler slope)

than individuals with only three doses of ancestral vaccination. To conduct this comparison and obtain confidence intervals for land-

scape slopes, we perform a second set of landscape fits, this time allowing each individual serum sample to have a separate slope.

The results of those fits including slopes and peak locations for each landscape are shown in Table S3L.

We then calculate the mean and standard error for the landscape slope across all serum samples with the same exposure history.

We obtain confidence intervals for the landscape slope by adding/subtracting twice the standard error from the mean. Those sum-

mary statistics are shown in Table S3B. We performed a one-sided Mann-Whitney test using individual slopes grouped by exposure

history, with the alternate hypothesis that two or three dose Omicron PVIs have smaller slopes than three doses with the ancestral

vaccine. Those results can be found in Table S3C.

Breadth gain plots
We next develop a metric, the ‘‘breadth gain’’, that can be used to quantify the relative fold gain in neutralization against a particular

measured antigen from sera following a secondary exposure relative to the response against that antigen that would be expected

following primary exposure when both groups had the same primary exposure antigen.

The breadth gain metric is a complementary approach to the antibody landscape that avoids the assumptions made when fitting a

cone-like landscape. The breadth gain against a particular measured antigen requires only the observed antibody titers from second-

ary exposure sera against that antigen, and a 2D antigenic map previously generated from primary convalescent sera.

Below we describe how the breadth gain can be computed from secondary exposure titer data and a primary infection antigenic

map (such as the one shown in Figure 2A).

Let t(s,a) represent the log titer of serum s against each antigen a. Let k(s) represent the peak log titer for serum s across all antigens

a. Let d(s,a, k(s)) denote the "drop" in log titer for serum s against antigen awith respect to the peak log titer k(s). Mathematically, this is

equal to the log titer of serum s against each antigen a:

dðs; a; kðsÞÞ = kðsÞ � tðs; aÞ
Multiple sera can have the same exposure history H. For example, these could be sera that have all had two doses of ancestral

strain vaccination followed by a BA.1 breakthrough infection. Let dðH; aÞ represent the average drop in log titer against antigen a rela-

tive to the peak titer for each serum, averaging across all S sera with infection history H. We calculate the mean by averaging over all

sera with the same exposure history:

dðH; aÞ =
1

S

X
s˛H

dðs; a; kðsÞÞ

Just as d(H,a) represents the average drop in log titer against antigen a relative to the peak (d(s,a, k(s))) averaged across all sera with

the same exposure history, let ðH; aÞ represent the lower confidence interval bound of d(s,a, k(s)), and qd97:5
ðH; aÞ the upper confidence

interval bound, which are obtained by adding/subtracting two times the standard error of d(s,a, k(s)) from the mean, d(H,a).

Let dPWT ðaÞ represent the average drop in log titer against antigen a among individuals whose exposure history is only a primary

wild type infection. We estimate this quantity by assuming that it is equal to the antigenic distance between the ancestral strain and

the measured antigen a on the convalescent sera map (i.e., the map Figure 2A). Mathematically:

dPWTðaÞ = DaWT

where DaWT is the antigenic distance between antigen a and the ancestral strain in the convalescent sera antigenic map.
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Let g(H,a) denote the average recognition gain for all sera with exposure history H against antigen a. This represents the difference

between the average drop in log titer against antigen a for all serum samples with common exposure history H (dðH;aÞ) compared to

individuals whose only exposure is a primary ancestral infection dPWTðaÞ.
gðH; aÞ = dPWTðaÞ � dðH; aÞ

For the 95 percent confidence interval bounds, we again have:

qgf2:5g ðH; aÞ = dPWTðaÞ � qdf2:5g ðH; aÞ
qgf97:5g ðH; aÞ = dPWTðaÞ � qdf97:5g ðH; aÞ
We then convert this average gain in recognition to units of fold-titer difference. Let f(H,a) represent the average gain in recognition

from exposure historyH against antigen a in terms of the fold change in the titer, where a fold change of 1 represents no gain in recog-

nition with respect to primary ancestral infection. Mathematically:

fðH; aÞ = 2gðH;aÞ

We also convert the quantiles to the same units:

qf2:5
ðH; aÞ = 2

qg2:5ðH;aÞ
qf97:5
ðH; aÞ = 2

qg97:5ðH;aÞ

These quantiles correspond to the points and error bars in the recognition gain plot in Figure 4E and printed in Table S3G. The lines

shown in Figure 4E are interpolated Loess curves connecting the measured antigens. These lines are included for visualization pur-

poses. Loess fits were conducted using the loess() function in the R package stats with the default span setting of 0.75, and antigenic

map coordinates were extracted using the R package Racmacs. All analyses for the breadth gain plots were performed using the

statistical software R version 4.2.0.60

Statistical tests of gain

We use a one-sided Mann-Whitney test (the wilcox.test function in the R package stats) to determine if the individuals with exposure

histories H with two or three-dose omicron PVI have significantly larger fold recognition gains against antigen a than exposure his-

tories with only ancestral vaccination. We calculate the recognition gain separately for each secondary exposure serum sample s:

gðs; a; kðsÞÞ = dPWTðaÞ � dðs; a; kðsÞÞ
We then convert to fold units:

fðs; a; kðsÞÞ = 2gðs;a;kðsÞÞ

We then compare the distributions of the fold recognition gain f(s, a, k(s)), grouping by secondary exposure historyH andmeasured

antigen a. The results where breadth gain is estimated from the titer data is shown in Table S3H.

Empirical neutralization gain calculation

We validate the breadth gain analysis by constructing a completely empirical version of the metric that does not rely on cartography

and is calculated directly from titer titer data for both primary and secondary responses. In the mainmethods, the average drop in log

titer against antigen a among individuals whose exposure history is only a primary ancestral infection dPWT ðaÞwas estimated from the

2D antigenic map of convalescent primary infection sera (Figure 2A). This quantity is the only component of the breadth gain metric

that utilized cartography. In this study, because wemeasure titers in individuals with ancestral primary infection, we canmeasure this

quantity directly from the data. A plot of the fold neutralization gain (a completely empirical version of Figure 4E) is shown in

Figure S4B, and in Table S3I. We again used a one-sided Mann-Whitney test to assess whether individuals with two or three

dose Omicron PVI had larger neutralization gains against measured antigens compared to individuals with only 3 doses of wild

type vaccination. Those results are shown in Table S3J.

Breadth gain plots for antibody landscapes

We also calculate the neutralization gain using the secondary exposure titers inferred by the fitted landscape (rather than using the

observed secondary titers). For these calculations, we use the landscapes fitted earlier, which have shared slopes for all serum sam-

ples with the same infection history. However, the landscape corresponding to each serum sample has an individual peak location

and height. The peak height is fixed to be equal to the highest observed titer for that serum sample (k(s)). The x and y-coordinates of

the peak, however, are fit during the inference of the antibody landscape. Let the points (xLAND, yLAND) represent those fitted values for

the location of the landscape peak. Furthermore, just as t(s,a) represents the observed log titer for serum s against antigen a, let l(s,a)

represent the titer against antigen a inferred from the fitted landscape for serum s.

Based on the way landscapes are fitted, the location of the peak is allowed to be offset from the location of the observed titer peak.

We adjust for this offset when calculating the neutralization gain from the landscape. For all the secondary infection serum groups in

Figure 4, the serum samples had their highest titers against the ancestral strain (out of all antigensmeasured with those sera). We use

this observation to calculate an offset term bH which represents the average drop in log titer (across all serum landscapes with the
e6 Cell Host & Microbe 30, 1745–1758.e1–e7, December 14, 2022
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same exposure historyH) between the peak titer of the fitted landscape and the predicted titer from the landscape against the ances-

tral strain. We can express this quantity mathematically as:

bH =
1

s

X
s˛H

lðs; ðxLANDyLANDÞÞ � lðs; ðxWTyWTÞÞ

If the location of the peak of the fitted landscape was identical to the location of the peak of the observed data (the ancestral strain),

the offset term would be equal to 0 since the log titer of the fitted landscape peak would be equal to the log titer against the ancestral

strain.

We follow the same procedure used to generate the original breadth gain plot, except that we replace the observed titer for serum s

against antigen a, (tðs;aÞ, with the estimated titer against antigen a from the fitted landscape for serum s, lðs;aÞ. As before, we calcu-

late the drop in log titer d(s,a, k(s)) for serum s against antigen a relative to the peak titer k(s):

dðs; a; kðsÞÞ = kðsÞ � lðs; aÞ
We then calculate the gain as before. However, here we add in the offset term:

gðs; a; kðsÞÞ = dPWTðaÞ � dðs; a; kðsÞÞ+bH

For the points and confidence intervals in Figure 4D, we first calculate the mean and standard error of the neutralization gains

gðs; a; kðsÞÞ for all serum samples s with the same exposure history H. For example:

gðH; aÞ =
1

S

X
s˛ H

g

 
s; a; k

 
s

!

We construct confidence intervals corresponding to the mean +/- 2 times the standard error, and then convert the mean and con-

fidence interval bounds into units of fold neutralization gain. For example,

fðH; aÞ = 2gðH;aÞ

The mean and confidence intervals in units of fold neutralization gain are plotted in Figure 4D and are listed in Table S3E.

We likewise again perform one-sided Mann Whitney tests to assess whether omicron PVI have larger fold gains in neutralization

(when estimated from the fitted antibody landscapes) than individuals with only three doses of ancestral vaccination. For those cal-

culations, we convert the gain into units of fold neutralization gain and then group by secondary exposure history H and measured

antigen a. For example:

fðs; a; kðsÞÞ = 2gðs; a; kðsÞÞ

Results of those tests can be found in Table S3F.

Datasets
Datasets are available at Zenodo: https://doi.org/10.5281/zenodo.7291034.
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Figure S1. Evaluation of goodness of fit and dimensionality for antigenic maps made 
with primary infection sera (left column), two doses vaccine sera (middle column), and 
three dose svaccine sera (right column), related to Figure 2.  Sera are shown as small 
colored squares, viruses as large circles.  The grid corresponds to a two-fold dilution in the 
neutralization assay. (A) antigenic map with error lines. The distance between the ends of error 
lines indicates the measured titer: red lines indicate that the map distance is less than the 
measured titer, blue l nes that the map distance is greater than the measured titer. 
(B) difference between the table distance (estimated from the measured titer) and the fitted 
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map distance. The dotted horizontal line shows what would be perfect a perfect fit of the data.  
(C) results of dimensionality testing. Cross-validation (excluding 10% of titers as a test set in 
100 independent repeats) was used to determine the optimal number of dimensions.  Lower 
root mean squared error (RMSE) for both detectable titers (above the assay limit of detection) 
and undetectable (below the assay limit of detection) indicate the optimal number of 
dimensions for fitting the antigenic map. 
(D) antigenic maps made in three dimensions. 



Figure S2. Evaluation of robustness in positioning for viruses and sera on antigenic 
maps made with primary infection sera (left column), two-dose vaccinee sera (middle 
column), and three-dose vaccinee sera (right column), related to Figure 2. Sera are 
shown as open shapes, viruses as colored shapes. The grid corresponds to a two-fold 
dilution in the neutralization assay. (A) Triangulation/coordination confidence intervals, 
indicating confidence in positioning of points. Each shape marks the area that the point can 
occupy before increasing the total map error by more than 1 antigenic unit. 
(B) Bootstrapped maps considering titer error for the neutralization assay. The shapes 
correspond to the positions of points on resampled maps assuming titers have random 
noise added with the measured assay standard deviation of log2 0.29 (1.2-fold).
(C) Confidence in coordination of points following bootstrapping of the sera and viruses. 
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Figure S3. Comparison of virus positions between antigenic maps, related to Figure 2.
Arrows point to virus positions from one map to another: 
(A) primary infection to 2 dose vaccine, 
(B) primary infection to 3 doses vaccine, 
(C) 2 doses to 3 doses vaccine 
(D) primary infection map excluding sera collected <6 days post symptom onset (n=21 of 83 
sera excluded) to the full primary infection map. 
Sera are shown as small squares, viruses as colored circles.  The grid corresponds to a 
two-fold dilution in the neutralization assay.  
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Figure S4. Explanation of the neutralization gain plot, related to Figure 4.  
(A) Explanation and intuition of the neutralization gain plot. Top panel: Example neutralization 
titers following primary and secondary infection.  The x-axis shows antigenic distance of the 
tested antigen from the first infecting antigen.  The y-axis shows the titer (in antigenic units, 
i.e. log2(titer/10)) for each group.  Across all examples, the same response for primary 
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infection and different secondary infection responses is shown. The titles of these plots 
indicate the kind of secondary neutralization titers shown. Middle panel:  for primary and 
secondary responses, the difference in titer between the first infecting antigen and each 
other antigen is plotted. Bottom panel: The neutralization gain plot, i.e. how much additional 
neutralization is observed after secondary infection compared to primary infection. 
(B) Empirical neutralization gain plot, where the primary infection differences are estimated 
directly from the data instead of from the antigenic map. For each secondary exposure serum, 
the fold neutralization gain (y-axis) against each measured antigen (shown on the x-axis) 
relative to the average response amongst primary wild-type sera against that measured 
antigen is calculated. For summary statistics and comparisons, sera are grouped by exposure 
history (denoted by colors). Points denote the mean fold neutralization gain, while error bars 
denote confidence interval bounds (mean +/- 2 times the standard error).
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