Systems-biology analysis of rheumatoid arthritis fibroblast-like synoviocytes reveals cell

line-specific transcription factor function

Supplementary Discussion

E2F7/E2F1 antagonistic CL2 signature

The transcriptional repressor E2F7 is the rank 3 cluster-specific TF (Fig. 1c) (g-value = 7.1 x 10
%). This prediction is driven by it's differential expression (3.89-fold CL2, p-value = 4.2 x 10*) (a
factor in determining PPR via edge weight construction: see Methods) since the other important
metric governing PPR, network connectivity, is relatively low for E2F7, as illustrated by its
peripheral position and low out-degree in the CL2 TF-TF subnetwork (Fig. 3b). The
transcriptional activator E2F1 (2.83-fold CL2, p-value = 5.4 x 107%), and E2F7 are mutually
antagonistic and regulate proliferation, differentiation, apoptosis and responses to DNA-
damage.” However, we observe that they are both up-regulated in CL2. Paradoxically, some
cancers, such as head and neck squamous cell carcinomas (HNSCCs) also exhibit the
overexpression of both TFs. Mislocalization of E2F7 from the nucleus to the cytoplasm via
XPO1 nuclear export is a feature in 80% of HNSCCs leading to aberrant differentiation,
increased proliferation and drug resistance.? In our data, we observe a strong correlation
between E2F7 and XPO1 transcript levels (Pearson R = 0.92) indicating that, despite increased
transcription of E2F7 in CL2, there is also increased XPO1 available to potentially export the
E2F7 protein from the nucleus. Indeed, known transcriptional targets of E2F7 repression such
as Rac GTPase activating protein 1 (RACGAP1) (2.26-fold CL2, p-value = 1.4 x 10?) and DNA-
damage response genes such as RAD51° (2.51-fold CL2, p-value = 6.8 x 10°®) are significantly
more highly expressed in CL2 despite the approximately 4-fold higher mRNA levels of E2F7 in
CL2 compared to CL1. We regard these findings as observational and note that many other
mechanisms may also “inactivate” E2F7 transcriptional effects such as post-translational

modifications and mutations in the sequence of the E2F7 protein.
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Supplementary Figure 1

Computational and experimental pipeline overview.
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Supplementary Figure 2

Extended representation of the Taiji Integrative Pipeline for construction of patient-specific

global transcriptional gene regulation networks.
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OA RA
CL1 vs CL2 CL1 vs CL2

TFs TFs
Entities  Entities  Entities Entities Entities Reactions Reactions Reactions
Pathway name found Total ratio pValue FDR found total ratio Species name
Nuclear Receptor transcription pathway 10 86 0.006 2.43E-10 2.69E-8 2 2 0 Homo sapiens

Activation of anterior HOX genes in hindbrain development during

early embryogenesis 1" 116 0.008 2.47E-10 2.69E-8 21 43 0.003 Homo sapiens
Activation of HOX genes during differentiation 1" 116 0.008 2.47E-10 2.69E-8 21 43 0.003 Homo sapiens
Transcriptional regulation of pluripotent stem cells 7 45 0.003 1.89E-8 1.55E-6 11 35 0.003 Homo sapiens
Interleukin-4 and Interleukin-13 signaling " 21 0.015 1.1E-7 7.12E-6 19 47 0.003 Homo sapiens
Generic Transcription Pathway 26 1,555 0.107 2.6E-6 1.41E-4 71 824 0.061 Homo sapiens
STATS3 nuclear events downstream of ALK signaling 4 18 0.001 6.01E-6 2.77E-4 10 10 0.001 Homo sapiens
RNA Polymerase Il Transcription 26 1,694 0.116 1.23E-5 5.06E-4 71 885 0.065 Homo sapiens
Nuclear events stimulated by ALK signaling in cancer 4 27 0.002 3E-5 1.05E-3 4 9 0.001 Homo sapiens
PTK6 Expression 3 10 0.001 4E-5 1.25E-3 3 3 0 Homo sapiens
Gene expression (Transcription) 26 1,855 0.128 B6E-5 1.73E-3 73 1,000 0.074 Homo sapiens
FOXO-mediated transcription 6 110 0.008 7.66E-5 2.07E-3 13 85 0.006 Homo sapiens
Regulation of gene expression by Hypoxia-inducible Factor 3 15 0.001 1.29E-4 3.22E-3 7 7 0.001 Homo sapiens
Signaling by ALK 4 43 0.003 1.74E-4 3.99E-3 13 40 0.003 Homo sapiens
Interferon alpha/beta signaling 7 186 0.013 1.9E-4 3.99E-3 18 22 0.002 Homo sapiens
Signaling by Interleukins 13 643 0.044 2.08E-4 4.15E-3 102 493 0.036 Homo sapiens
Signaling by cytosolic FGFR1 fusion mutants 3 23 0.002 4.47E-4 7.27E-3 8 14 0.001 Homo sapiens
FOXO-mediated transcription of cell death genes 3 23 0.002 4.47E-4 7.27E-3 5 15 0.001 Homo sapiens
Cytokine Signaling in Immune system 17 1,092 0.075 4.62E-4 7.27E-3 141 708 0.052 Homo sapiens
NGF-stimulated transcription 4 56 0.004 4.7E-4 7.27E-3 6 37 0.003 Homo sapiens

Supplementary Figure 3

(a) Hierarchical clustering of 11 OA cell lines using the top 350 TFs ranked by variance in their
PPR leads to two clusters containing 7 OA patients and 4 OA patients, OA clusters 1 (OA CL1)
and 2 (OA CL2) respectively, at the first split in the dendogram. 62 TFs were found to have
significantly different (p-value <0.05) PPR values from a two-tailed Students t-test between OA
CL1 and OA CL2. Only 7 of which were common to the 65 differential TFs between RA CL1 and
CL2 illustrating disease specificity. (b) Functional enrichment analysis of the 62 OA cluster-
specific TFs results in developmental pathways including: Activation of HoX genes during

differentiation (p-value = 2.47 x 107'° from hypergeometric test).
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Supplementary Figure 4
Heatmap hierarchically clustering 245 EpiSig co-modified clusters derived from 78,598 signal-

enriched 5kbp regions based on Histone ChlP-seq data for six core histone modifications




(H3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K27me3 and H3K36me3). Each column
represents a single RA patient FLS cell line for a specific mark. Rows cluster into putative
regulatory regions (e.g. pale green is active promoter marked by H3K4me3 and H3K27ac).
Columns cluster by mark. Reading left to right, main heatmap is followed by columns: cluster id,
number of S5kbp regions, distance to TSS and inter-patient variance for each mark. 10 high
variance enhancer clusters marked, which map to 1,006 genes. Tables for the top significantly
enriched (using Mann-Whitney test) GO Biological Process’ and GO Molecular Function

categories for the 1,006 genes.
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Supplementary Figure 5
a. Western blot analysis of RARa knockdown efficiency in RA-FLS lines. 6 biologically
independent RA-FLS cell lines were transfected with 1ug of RARa siRNA (Human RARa siRNA
smartpool, Dharmacon) and control (Non-targeting Control Pool, Dharmacon) and plated for 3
days. The RARa protein expression was analyzed by Western blot, using 1:1000 dilution of
RARa mouse antibody (Santa Cruz) and normalized to GAPDH (Cell Signaling). The protein
level indicates 53% to 58% of RARa inhibition (p=0.004). Barplot centre line is mean and error
bars +/- 0.5 s.d. Band intensities were quantified using Versadoc Quantity One 4.6.6, and the

statistical significance was determined by two-tailed paired Student's t-test.

b. TGFB protein levels by Elisa in 1%FCS/DMEM and then treated with IL-1 (2ng/ml) for CL1

and CL2 lines with (siRARA) and without (CTL) RARA knockdown. CL1 n=4 and CL2 n=4



biologically independent cell lines. Red centre line for median, whiskers represent maximum
and minimum values, box width from quartile 1 to quartile 3.

c. CDKN2B western blot performed once for CL1 and CL2 (CL1 n=3 and CL2 n=3 biologically
independent cell lines) treated with IL1 IL-1 (2ng/ml) with (SIRARA) and without (CTL) RARA
knockdown.

d. Phospho SMADZ2/3 by Elisa with and without TGFB treatment for CL1 and CL2 lines. CL1
n=4 and CL2 n=4 biologically independent cell lines. Red centre line for median, whiskers
represent maximum and minimum values, box width from quartile 1 to quartile 3.

Source data are provided as a Source Data file.
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Supplementary Figure 6

The RARA ligand ATRA has differential effects on CL1 and CL2 FLS growth. CL1 at Day 7
exhibited increase in proliferation under ATRA (p=0.0315 by two-tailed paired Student’s t-test).
FLS were cultured with 1 uM of ATRA in either medium or 10 ng/ml of PDGF. Cell growth was

quantified using an MTT assay. *: p<0.05
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Supplementary Tables

Taiji prediction

Experimental validation

Molecular events

RARa binding CL1 > CL2 at RARa
binding motif

Confirmed with ChIP PCR at TCIRG1 promoter

RARa deficiency: differential effect
on CL1 and CL2 TGF3 mRNA
levels

Confirmed for TGFR by RT-gPCR

RARa deficiency: differential effect
on CL1 and CL2 TGFR regulatees

Confirmed for CDK2NB, ROCK1, CCND1 expression
by RT-qgPCR.

RARa deficiency: differential effect
on CL1 and CL2 TGFR regulatees

Confirmed for CDK2NB protein by Western Blot

Normal TGFR signaling in CL1 and
CL2

Confirmed using P-SMAD assay after stimulating cells
with TGFR. Showed that explanation for decreased
TGFR regulatee was not due to deficient signaling

RARa deficiency: differential
effects on EMT markers in CL1 and
CL2

Confirmed based on FN1 and VIM expression by RT-
gPCR

FLS functions

RARa deficiency: differential effect
on cell invasion in CL1 and CL2

Confirmed in Matrigel assay

RARa deficiency: differential effect
on cell proliferation in CL1 and CL2

Confirmed by MTT assay

CL1 and CL2 cells phenotypically
different.

Confirmed by cell size analysis using flow cytometry
and image analysis (data not shown)

Proliferation of CL1< CL2

Confirmed by cell counting in culture

RARa agonist (ATRA): differential
effects on CL1 and CL2
proliferation

Confirmed by MTT assay

Supplementary Table 1

Summary of computational predictions and experimental validation.




Marker % stdev
CD34+ 2.0 0.8
CD90+ 95.9 24
FAPa+ 90.5 4.9
CD14+ 2.0 1.1
PDPN+ 92.0 23
CD90+, FAPa+, PDPN+ 82.5 6.7
CD90+, CD14+, PDPN- 1.8 1.0

Supplementary Table 2

Flow data on FLS phenotype.



