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Supplementary Results 
GrimAge reliability is related to its two-step calculation 

GrimAge is a unique case because it is calculated from chronological age, sex, 
and 7 DNAm-based components in a two-step process1. Inclusion of age and sex 
bolsters reliability, because age and sex are the same for technical replicates but 
different between samples. To isolate the variation attributed to DNAm, we re-calculated 
GrimAge setting age to 50 and sex to female for all samples (GrimAge50F ICC 0.963, 
GrimAge50F acceleration ICC 0.959). GrimAge50F reliability was still significantly 
higher than most GrimAge components (Fig. 1g, Supplementary Tables 3-4), 
demonstrating that combining multiple epigenetic biomarkers can bolster reliability. 
 
Superior reliability of PC clocks is not related to use of new or substitute datasets, or 
number of CpGs or samples 

For PCHorvath1, PCHorvath2, and PCPhenoAge, we utilized new and/or 
substitute datasets for training (Supplementary Table 6). This was because our PC 
clocks could not use 27K array data, or because some original training data was not 
available. To ensure the superior reliability of PC clocks was not solely a result of using 
new training datasets, we retrained Horvath1, Horvath2, and PhenoAge in new training 
data using traditional clock methods (applying elastic net regression directly on CpGs). 
In the case of PCPhenoAge, we also trained a PC clock using only the original data. To 
ensure maximum comparability with the PC clocks, we also used the same starting set 
of 78,464 CpGs for these new CpG-based clocks. This analysis confirmed that PC clock 
reliability improvements were primarily due to the PC clock methodology (Extended 
Data Fig. 5a-d). 

We had added methylation and phenotypic data (N = 3593) from the Health and 
Retirement Study (HRS)2 to the original InCHIANTI training data (N = 912), as it 
became available after the original development of PhenoAge. Indeed, using this larger 
sample size to train a CpG version of PhenoAge was sufficient to raise ICC of age 
acceleration from 0.76 to 0.91, and to enhance mortality prediction (Extended Data Fig. 
5e). However, PCPhenoAge showed the same very high reliability whether it was 
trained in InCHIANTI or the combined dataset, suggesting CpG clock reliability is far 
more sensitive to training sample size than PC clock reliability. Thus, the improvement 
in reliability for PCPhenoAge was not due to increased sample size. 

We had pre-selected only CpGs that were present across all our training and test 
data sets, and this resulting set of 78,464 CpGs was larger than the ~21K CpGs used to 
train the original Horvath1 and PhenoAge. However, using 78,464 CpGs to train a CpG 
version of PhenoAge in InCHIANTI did not improve the ICC (Extended Data Fig. 5e). 
Conversely, using the original ~21K CpGs to train PCPhenoAge still led to very high 
reliability. Thus, PCPhenoAge’s superior reliability was not a result of considering more 
CpGs during training. 

 



 
 
 
Investigating alternative methods to training reliable clocks 

Traditional clocks utilize a subset of CpGs that provide information about a larger 
network of multicollinear CpGs but retain noise from individual CpGs. PC clocks show 
enhanced reliability due to two properties: 1) PCs incorporates information from many 
intercorrelated CpGs which dilutes noise, and 2) PCA tends to ignore noise which is not 
correlated between CpGs. To determine if one of these factors is more important, we 
investigated alternative methods to training reliable clocks that only share one of these 
properties. For this purpose, we trained variants of Hannum and PhenoAge to 
investigate how these methods affect age and mortality clocks respectively. 

To test if diluting noise across many CpGs is sufficient for high reliability, we 
trained CpG-based clocks by ridge regression which retains all CpGs but shrinks 
coefficients of correlated CpGs toward zero. Ridge regression may improve reliability if 
the sample size is low but has no effect at higher sample sizes (Extended Data Fig. 5e-
f). In all cases, the reliability of ridge regression clocks remains far below that of PC 
clocks trained from the same data. Mortality prediction is also not improved. This 
suggests that simply diluting noise by using many CpGs in the final model is not 
sufficient to improve reliability, and that the noise filtering properties of PCA are also 
required. 

Our proposed PC clock training procedure first defines PCs in an unsupervised 
manner, followed by supervised selection of PCs using elastic net regression. This 
results in relevant information being spread out across many PCs. An alternative is to 
try to capture this information in fewer PCs by using supervised PCA,3 a previously 
described method which pre-selects CpGs correlated with the outcome of interest (e.g. 
age or phenotypic age) and then performs PCA only on those CpGs. However, 
supervised PCA does not improve in reliability over traditional CpG clocks (Extended 
Data Fig. 5e-f), likely because this method can substantially limit how many CpGs are 
included. Supervised PCA PhenoAge predictors incorporated 50-500 CpGs, 
substantially less than the 8,000-50,000 CpGs that are needed for high reliability (Fig. 
4). Less restrictive filtering of CpGs may lead to better reliability of supervised PCA 
predictors, but this approach would be similar to the PC clocks method. Mortality 
prediction is also not improved by supervised PCA. Thus, many CpGs and PCs are 
needed to construct high reliability clocks. 

We also experimented with introducing a penalty factor for each CpG inversely 
proportional to ICC into elastic net regression, utilizing using M-values, or winsorizing 
beta-values (Supplementary Table 8). However, these did not yield better reliability than 
the CpG filtering approach. 

 
Low-variance PCs capture heterogeneity in aging 

We noted that adding progressively more PCs, in order from highest- to lowest-
variance, for consideration (but not necessarily inclusion) in elastic net regression in 
training data (HRS and InCHIANTI) led to PCPhenoAge models with improved mortality 



prediction in independent test data (FHS) (Fig. 4). This improvement is clear up to at 
least PC1000 with only minor gains beyond PC1000. Meanwhile, reliability and age 
prediction were maintained. This suggested that low-variance PCs contain some 
consistent mortality signals across multiple datasets, even if they may typically be 
discarded by scree plots or random matrix theory methods. We performed PCA on a 
random noise matrix of equal size to the original PCPhenoAge training data upon which 
PCA was performed (4505x78464). For each column of the matrix, 4505 random draws 
from a normal distribution were used to populate the matrix, using a normal distribution 
with mean and standard deviation calculated from the CpGs of the PCPhenoAge data 
matrix. This approximates a random structure while accounting for the fact that the 
CpGs themselves tend to be approximated by normal distributions of varying mean and 
variance. We find that in such a matrix, the mean and maximum eigenvalues of the 
principal components are 0.050 (corresponding to PC636) and 0.199 (corresponding to 
PC42) respectively (Extended Data Fig. 7a). We also show that the variance explained 
by the components of PCPhenoAge outpaces that of the random matrix PCA up to 
PC126. We note these methods are meant for dimensionality reduction and it is still 
possible that lower-variance PCs contain important signals. 

We tested if lower-variance PCs continue to introduce information from new 
CpGs. Due to the procedures of SVD/PCA, all CpGs used as inputs will have some 
weight across all PCs, but we determined which CpGs have a weight in the PC greater 
than expected to identify “driver” CpGs for each PC. We then determined, for each 
CpG, the first (highest-variance) PC where that CpG is identified as a driver CpG. This 
revealed that lower variance PCs throughout the entire range of PCs continue to 
contribute unique CpGs that are not significantly represented by high-variance PCs 
(Extended Data Fig. 7b-c). Interestingly, a spike in unique CpGs occurs after PC4037, 
the last PC incorporated into the PCPhenoAge model. These CpGs may primarily 
constitute noise and suggests that elastic net regression can efficiently exclude them 
from the PCPhenoAge model. 

We also sought to determine if lower-variance PCs contain useful information for 
prediction. Phenotypic age4, which PCPhenoAge is trained to predict, is a composite 
measure of chronological age and 9 clinical biomarkers for physiological dysregulation 
and age-related disease. Each biomarker is dysregulated in a different, limited subset of 
participants – for example, creatinine is above normal limits for 13.4% of HRS 
participants, C-reactive protein is elevated in 9.1%, and both are elevated in 2.8%. 
There may be even more heterogeneity within disease groups. We hypothesized that 
low-variance PCs, while not capturing much variance across the entire cohort, may 
capture variance relevant to these subsets.  

To test this hypothesis, we first categorized PCs according to the following 
criteria (Extended Data Fig. 7d): High-variance PCs were defined as PCs 1-126 where 
eigenvalues are larger than that of a randomized matrix. Medium-variance PCs were 
defined as the next-highest PCs up to PC1000 (each explaining less than 0.047% of the 
total variance), as we did not find that adding PCs beyond PC1000 significantly 
contributed to mortality prediction (Fig. 4). Low-variance PCs were defined as the 
remaining PCs (each explaining less than 0.016% of the total variance).  



We then calculated univariate associations between PCs and PhenoAge 
biomarkers in the training data (most biomarkers are not available in test data). Many 
medium- and low-variance PCs show associations with at least one biomarker 
(Extended Data Fig. 7e). The selected PhenoAge PCs are enriched in associations with 
at least one biomarker (50%) compared to the unselected PCs (25%) (Extended Data 
Fig. 7f-g). Interestingly, chronological age is mostly associated with top PCs – 
consistent with the chronological age predictors such as PCHorvath1 utilizing primarily 
the top 100-150 PCs. The notable biomarker that did not show any associations with 
low-variance PCs was lymphocyte percentage, demonstrating that low-variance PCs do 
not simply show spurious associations with any given variable. 

The relevant PC PhenoAge signal appears spread out across many PCs. Hence 
the advantage of elastic net regression: it can combine PCs (each with small signal) 
while using cross-validation to discard other PCs and prevent overfitting. Thus, we did 
not adjust the univariate associations for multiple testing, as the PCs are meant to be 
combined in a predictor. Instead, we split the PCPhenoAge summary score into the 
signal stemming from high-variance, medium-variance, and low-variance PCs. We 
found that in both training data and independent test data, many of the biomarkers and 
diseases, as well as mortality, show associations with the PCPhenoAge signal 
stemming from low- and medium-variance PCs (Extended Data Fig. 7h-j) in multivariate 
models.  

Thus, low-variance PCs likely capture mortality and morbidity risk. Aging 
increases heterogeneity across a population - different people age to varying degrees in 
different physiological systems, get different diseases, and get different treatments. 
Thus, any given mortality-related signature may only be present in a small subset of the 
population and are best captured by low-variance PCs. Our method utilizing elastic net 
regression can effectively identify useful combinations of low-variance PCs to improve 
mortality predictions, while filtering out other PCs to prevent overfitting and maintain 
high reliability. 
 
Additional longitudinal data reveals effects of cell composition shifts 

We examined two short-term longitudinal data sets for stress and schizophrenia 
which are associated with altered epigenetic aging5,6.  First, we replicated the increased 
stability of PC clock trajectories in short-term longitudinal data in a cohort of 13 
schizophrenia patients treated with clozapine, measured at 2-3 time points over 1 year 
including just prior to clozapine initiation (Extended Data Fig. 8c-d). DNAmTL increased 
rapidly during this period (p = 0.0077, 129 bp/year), but PCDNAmTL did not (p = 0.371, 
20 bp/year) (Supplementary Table 12). DNAmTL’s increase was likely due to a 
combination of noise and small sample size. Thus, the PC clocks may be useful in 
avoiding false positives in small pilot studies of interventions targeting epigenetic age. 

We also examined 132 combat-exposed military personnel (baseline age range 
18-54) from the Prospective Research in Stress-related Military Operations (PRISMO) 
study7 with 2-3 time points and up to 500 days follow-up. Again, longitudinal changes in 
PC clocks were far more intercorrelated than CpG clocks (Extended Data Fig. 9a), 
consistent with reduced noise. Interestingly, the PC clocks continued to show 



substantial fluctuations, possibly reflecting relevant biological variance (Extended Data 
Fig. 9b). We noted that longitudinal changes in both CpG and PC clocks were strongly 
correlated with shifts in DNAm-estimated cell proportions for granulocytes and 
lymphocytes (Extended Data Fig. 9a), more strongly than in the SATSA dataset (Fig. 
7g). Correcting for the within-individual longitudinal change in 5 cell types most 
associated with epigenetic age resulted in greatly improved stability for PC clocks but 
not CpG clocks (Extended Data Fig. 9b, Supplementary Table 11) 

Parameters from PRISMO were used to model trials to protect younger adults 
from pathological aging under stressful conditions (Extended Data Fig. 9c, 
Supplementary Table 13). Consistent with our findings of cell composition shifts, power 
only nominally improved (and worsened in the case of Horvath2) using the PC clocks 
alone. When PC clocks were adjusted for cell composition, the required sample size 
was substantially reduced (approximately Horvath1 3-fold reduction; Horvath2 1.5; 
Hannum 3; PhenoAge 6; DNAmTL 5; GrimAge 2.5). 

These results suggest short-term changes in epigenetic clocks may be affected 
by biological factors such cell composition shifts, but this phenomenon can only be 
corrected for after technical noise is minimized. Cell composition shifts may be 
magnified in the PRISMO dataset because of the exposure to stress and cortisol. 
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