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Proxy data compilation. The data used in this reconstruction derive primarily from the deepMIP compilation of pre-PETM and18

PETM proxy indicators for temperature (1). These data include the δ18O of well-preserved (“glassy”) planktic foraminifera,19

the Mg/Ca of foraminifera, TEX86, and the terrestrial MBT5′Me proxy. We targeted these particular proxies because we have20

previously developed Bayesian forward models for each of them, which facilitates the use in the data assimilation framework21

(2–5). Generally speaking, we followed deepMIP guidance for assessing which proxy values fell within the pre-PETM and22

PETM time periods; any adjustments to this assumption are documented in the “assessment” column of the proxy data file23

(Dataset S1). We also incorporated additional, more recently published studies (6–12), referring to the original publications24

when assigning data to each target time interval. δ18O and Mg/Ca analyses conducted on single foraminifera were pre-averaged25

within their respective core depths before calculating prePETM and PETM averages. The Otaio Gorge MBT5′Me data from the26

lignite and marine sediment beds, respectively, were treated as separate estimates given that there is a lithological offset (12).27

In the deepMIP compilation, TEX86 data with BIT index > 0.4 (an indicator of terrestrial GDGT input, c.f. (13)) and28

methane index (MI) > 0.5 (an indicator of GDGT input from methanotrophs, c.f. (14)) were excluded from the prePETM29

and PETM averages. ∆ Ring Index (RI) values were assessed and flagged if greater than 0.3, but data were not necessarily30

excluded on the basis of ∆RI alone. We follow this guidance with a few exceptions, noting that none of these quality indices31

have agreed-upon universal cut-off values and the decision of what to include/exclude can be site-specific. From the Harrell32

Core dataset, we opted to include three late Paleocene datapoints with a MI < 0.5 (in spite of BIT values of ca. 0.8) in the33

interest of having the prePETM represented at that site (otherwise, all prePETM data would be excluded). The average34

TEX86 value of these three datapoints is 0.738, which is similar to the prePETM values at other eastern North American sites35

(Bass River and Wilson Lake; 0.748 and 0.700, respectively), suggesting that the data are reasonable. From the ACEX dataset,36

we used the updated dataset of ref. (8) and the same PETM averaging interval as deepMIP, but, again in the interest of37

having the prePETM represented at this site, included two late Paleocene datapoints that had BIT < 0.4, MI < 0.5, and ∆RI38

< 0.35. At the Fur site, given that the recent study of ref. (6) measured TEX86 on the same section as the older study of39

ref. (15), largely replicating the original result but at higher resolution, the data from ref. (15) are excluded so as to avoid40

duplication. From ref. (6), we included all of the late Paleocene data (which have BIT values from 0.27–0.51 but normal MI41

and ∆RI values) except for four data points from the prePETM average that had more elevated BIT (0.54–0.81) and ∆RI >42

0.35 (labeled in red dots in Figure 5 of ref. (6)). At the Chicxulub crater drill site (M0077A) there is only one data point from43

the prePETM available. We included it, because in spite of a ∆RI of 0.7 it has low BIT (0.16) and MI (0.18).44

For the δ18O and Mg/Ca of foraminifera, we collected data measured on species thought have lived in the mixed layer, close45

to the ocean surface, namely Morozovella spp. and Acarinina spp.. However, we subsequently discovered that inclusion of46

Acarinina spp. in the data assimilation systematically reduced the change in global mean surface temperature (GMST) during47

the PETM (see further discussion below). Several previous studies have suggested that Acarinina spp. migrated to deeper48

waters during the PETM event, as its δ18O composition appears similar to that of the thermocline-dwelling Subbotina spp.49

(16–18). Our data compilation indicates that the δ18O of Acarinina spp. during the PETM is, on average, 0.36‰ higher (i.e.,50

cooler) than Morozovella spp. at the same sites, and likewise, that Mg/Ca values for Acarinina spp. are 0.31 mmol/mol lower.51

We therefore decided to exclude Acarinina spp. from our final reconstruction.52

The assimilation uses the average proxy value for each timeslice. The standard deviation of this value and number of53

datapoints contributing are documented in the proxy data file (Dataset S1).54

Climate model simulations. The prior climate simulations used the fully-coupled, isotope-enabled Community Earth System55

Model version 1.2 (iCESM 1.2) (19). iCESM simulates the transport and transformation of stable water isotopes (δ18O and δD)56

in all component models (20). All the iCESM simulations have a horizontal resolution of 1.9° × 2.5° (latitude × longitude) in57

the atmosphere and land, and a nominal 1° displaced-pole Greenland grid for the ocean. The simulations with 3X, 6X, and 9X58

preindustrial CO2 employed boundary conditions from deepMIP (21), which include reconstructions of Eocene paleogeography,59

land-sea mask, and vegetation distribution (22), and preindustrial non-CO2 greenhouse gas concentrations, solar constant,60

orbital parameters, soil properties, and natural aerosol emissions. Seawater δ18O and δD were initialized from constant values61

of -1‰ and -8‰, respectively (1). The 3X, 6X, and 9X simulations were integrated for 2,000 years and are described in62

refs. (23, 24). In addition, we extended each of these simulations for an additional 200 years using an updated formulation63

of the surface virtual salinity flux (see equation 7 from (25)), which better resolves the seawater salinity near river mouths64

and in the semi-enclosed Eocene Arctic Ocean. The 3X and 6X simulations were further branched into three experiments65

(respectively) with varying orbital parameters, including a minimum eccentricity and obliquity scenario (eccentricity = 0.0,66

obliquity = 22°), a high Northern Hemisphere seasonality scenario (eccentricity = 0.054, obliquity = 24.5°, perihelion during67

boreal summer), and a high Southern Hemisphere seasonality scenario (eccentricity = 0.054, obliquity = 24.5° perihelion68

during austral summer), following ref. (26). We also expanded the CO2 sensitivity simulations by adding runs with 10X and69

11X preindustrial CO2, which were initialized from the 9X simulation and each integrated for 500 years. We note that the70

10X simulation has not reached quasi-equilibrium and exhibits a trend in GMST of 0.3°C per century during the last 20071

years. Also, the 11X simulation becomes unstable after year ∼400 and a GMST of ∼43°C with the top-of-atmosphere net72

radiation increasing with warming, indicating a “runaway greenhouse” effect in the model (Fig. S10). Although the 10X73

and 11X simulations are not in equilibrium, we decided to include them in the data assimilation to sample the superwarm,74
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low-possibility climate states. Table S2 gives a summary of these simulations and their boundary conditions; Figure S1075

presents the time series of global mean surface temperature from all of these simulations.76

50-year monthly and annual averages were drawn from each of these 14 simulations to use as the model prior in the data77

assimilation for a total of 72 prior ensemble members. Specifically, we sampled the last 600 years of the 3X, 6X, and 9X78

simulations (36 priors); the last 150 years of the extended versions of these experiments with a different virtual salinity flux (979

priors); the last 100 years of each orbital experiment at 3X and 6X (12 priors); the last 450 years of the 10X simulation (980

priors); and years 51-350 from the 11X simulation (6 priors, avoiding the end of the simulation that is unstable). The prior81

sampling strategy was designed to ensure that all of the simulations were represented in the prior while also somewhat reducing82

over-representation of the longest simulations (Fig. S10). Previous work has shown that offline DA results on long timescales83

are not sensitive to the length of the time-average (27), thus we chose 50 years, consistent with our previous approach (27). We84

note that even though GMST may be relatively similar between consecutive 50-yr periods from the same model experiment,85

spatial patterns may differ in response to internal, multi-decadal variability. In addition to the model fields needed for proxy86

forward modeling (sea-surface temperature (SST), sea-surface salinity (SSS), δ18Osw; see below) we also included surface air87

temperature (SAT; at 2m), precipitation, evaporation, the isotopes of precipitation (δ18O and δD), snow thickness, and cloud88

cover in the model prior so that those fields were updated by the data assimilation.89

Data assimilation. The data assimilation method is an offline, ensemble square root Kalman filter approach, following the90

methodology developed in refs. (27, 28) using the MATLAB code package DASH version 4.0.0, Alpha Test 5.0.6 (https:91

//github.com/JonKing93/DASH). We refer the reader to these previous works for a full mathematical description. Briefly, the92

posterior climate state (Xpost, the reconstruction) is computed as a linear combination of the model prior states and the93

information from the proxies, with a mean update equation of:94

X̄post = X̄prior +K(yobs − Ȳest) [1]95

Xprior is a N ×M matrix containing the prior model states, where N contains all of the climate fields of interest (SST,96

SAT, δ18Osw, etc) collapsed into a “state vector”, and M is the number of ensemble members (72 in this case). yobs is a97

P × 1 vector containing the proxy data from each site at one point in time. Yest is a P ×M matrix of estimated proxy values,98

forward-modeled from the model priors using Bayesian proxy models (2–5), for each site with a proxy and for each ensemble99

member. To compute these values, we used the “analog mode” of the BAYSPAR calibration for TEX86 with a wide tolerance100

of 12°C, and the annual, “all-species” models for both δ18O and Mg/Ca, recognizing that the foraminifera are extinct species101

and their seasonality of production is unknown.102

Forward-modeling for TEX86 and MBT5′
Me is straightforward; only SST and SAT information from the model prior is103

required, respectively. The δ18O forward model requires SST and δ18Osw, which are taken directly from the model prior, but104

also requires constraints on surface ocean pH, which has been shown to influence foraminiferal δ18O in culture studies (29) and105

therefore is very likely to influence δ18O excursions during the PETM (30). To accommodate the “pH effect,” a function was106

added to the BAYFOX forward modeling package to adjust δ18O based on the theoretical equations provided by ref. (31). pH107

values were drawn from the cGENIE simulation of ref. (32) for each core site, for the PETM and prePETM states, respectively.108

The Mg/Ca proxy requires constraints on pH, bottom water saturation state (Ω), SSS, the Mg/Ca composition of seawater,109

and the laboratory cleaning method. SSS was drawn from the model prior and the cleaning method is provided in the source110

publications. The BAYMAG forward model has a built-in function to compute the Mg/Ca of seawater (4), which for the PETM111

time (56 Ma) is 2.2. As with δ18O, pH values were drawn from cGENIE (32), along with bottom water Ω, using a documented112

estimate of paleodepth for each core site.113

yobs − Ȳest is the “innovation”, the new information coming from the proxies, which is added to the prior state with a weight114

of K, the Kalman gain:115

K = cov(Xprior, Yest) × [cov(Yest, Yest) +R]−1 [2]116

where ‘cov’ denotes the covariance. The first term cov(Xprior, Yest) describes the relationship between the prior state and117

the forward-modeled proxy values, and effectively “spreads” the proxy information across the fields of interest. The second118

term [cov(Yest, Yest) +R]−1 contains the error terms, including the covariance of the estimated proxy values (Yest) and the119

proxy covariance (R). In this case, R is diagonal; i.e., the errors are assumed to be independent between proxies, following120

(27, 28). R is user-defined, and ideally reflects an estimate of the “true” uncertainties of the proxies in the environment. The121

Bayesian forward models provide a posterior value for proxy variance that represents the uncertainty associated with the122

global core-top regressions that underlie these models; these values can be used for R. This error estimate is conservative, and123

previous work applying data assimilation to Quaternary climate reconstruction found that posterior validation was improved124

by scaling the Bayesian-derived uncertainty by about 1/5, with slightly different factors for different proxies (27, 28). However,125

the climatic changes during the PETM are extreme; in the tropics, temperatures exceed the upper bounds of the modern126

calibration datasets, and the organisms recording the proxy values were experiencing biological stress. Thus, we opt to use127

values of R without any scaling. We make an exception to this for the δ18O proxy, because initial leave-one-out validation128

testing (see below) revealed no improvement in posterior RMSE for this proxy with R = 0.35 (a standard deviation of 0.59‰),129

the error associated with the annual “all-species” BAYFOX model. We therefore scaled the error by a factor of 0.75 to R = 0.26,130

the maximum value that produced improved internal validation in the posterior. The finding that δ18O error may be smaller131

than the BAYFOX estimate is qualitatively consistent with ref. (28), where validation exercises indicated that δ18O was more132

precise. The final R variances used for each proxy (in native proxy units) were 0.0045, 0.26, 0.046, and 0.0082 for TEX86, δ18O,133
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Mg/Ca (in log units), and MBT5′
Me, respectively. These translate into approximate 1σ SST uncertainties of 5.2°C for TEX86,134

2.2°C for δ18O, 3.3°C for Mg/Ca, and 3.5°C for MBT5′
Me.135

Validation. Given the limited proxy network, withholding 25% of the proxy data for internal validation, as was done in refs.136

(27, 28), was not practical. Instead, following ref. (33), we conducted leave-one-out experiments, in which each proxy was137

iteratively left out of the reconstruction and then the posterior result was used to forward-model the withheld proxy. Validation138

was assessed by comparing the root-mean-square-error (RMSE) of the posterior prediction against the prior prediction for the139

withheld proxies. For all four proxy types, RMSE improved in the posterior, indicating that the posterior solution represents a140

better match to the proxy information than the prior mean. RMSE improvement varied between proxy type with MBT5′
Me,141

δ18O, Mg/Ca, and TEX86 improving by 3%, 3%, 19%, and 20%, respectively.142

External validation is more useful and rigorous assessment of the reliability of the reconstruction. For this, we used estimates143

of PETM and prePETM temperatures in the deepMIP compilation (1) from terrestrial pollen, leaf-based, and clumped isotope144

proxies that were not assimilated (34–38). The posterior PETM-DA reproduces temperatures at these sites well (R2 = 0.95) as145

shown in Fig. 2d. Notably, this validation score is higher than that of the prior mean (R2 = 0.70, Fig. S5), indicating that146

the assimilation of the SST proxies resulted in a solution that is more consistent with the terrestrial proxy information. We147

also visually compared posterior P − E to independent qualitative hydrological indicators of the sign of change (wetter or148

drier) from the compilation of ref. (39) with addition of data from ref. (7) (Fig. 3a). Finally, we compared posterior δD of149

precipitation to leaf wax δDP proxies compiled in ref. (39) (Fig. 3c). These proxies provide an estimate of the change in the150

isotopes of precipitation, but at some sites the data do not indicate a clear excursion across the PETM. Thus, we plotted the151

average difference for sites where the PETM change exceeded 2× the standard error range with colors that represent the size of152

the excursion, and for sites that did not meet this criteria, we plotted smaller white circles to indicate no significant change153

(Fig. 3c). The temperature, P − E, and leaf wax δDP validation data may be found in Dataset S2.154

Sensitivity Testing. Since the δ18O and Mg/Ca proxy data require assumptions about the change in the ocean carbonate system155

during the PETM (see above) we investigated the sensitivity of the posterior PETM-DA GMST to these choices (Fig. S1). Our156

main result uses pH estimates from the cGENIE simulation of ref. (32), which simulates a drop in pH during the PETM of 0.3157

units (from ca. 7.7 in the prePETM to 7.4 during the PETM). However the pH drop during the PETM could have been larger158

or smaller than indicated by this study. We therefore conducted DA experiments in which the pH change was increased to 0.5159

units and decreased to 0.1 units, respectively, to assess whether the magnitude of this change affects our results. We found160

that GMST was not substantially affected by this choice (Fig. S1, “.5∆pH” and “.1∆pH”). Next, we tested the sensitivity of161

the DA to the choice of bottom water Ω (needed for forward modeling of Mg/Ca) by setting Ω to a value of 5 at each site,162

which effectively eliminates the impact of dissolution on the proxy (4). This resulted in slight lowering of absolute values163

of GMST (but still largely within error of the main results) and no change in ∆GMST (Fig. S1, “Omega5”). As discussed164

above, we discovered that inclusion of proxy data from Acarinina spp. lowers PETM GMST (but has little effect on prePETM165

GMST) thereby lowering ∆GMST to 4.4°C (Fig. S1, “Acarinina”). This is consistent with evidence that this species occupied166

a deeper part of the mixed layer during the PETM (16–18) and informed our decision to only use Morozovella spp. in our167

main PETM-DA result. To further test the sensitivity of the DA to the carbonate system assumptions, we conducted an168

experiment where values of ocean pH and Ω were held at modern values (drawn from the Global Ocean Data Analysis Project169

(GLODAP) version 2 (40), using the omgph.m function in BAYMAG). This choice lowers absolute GMST and ∆GMST, but not170

by much because the use of higher pH and lower Ω partly counteract each other (Fig. S1, “ModCarb”). We note that this is171

not realistic scenario, given that atmospheric CO2 concentrations were certainly much higher than present during the late172

Paleocene/early Eocene.173

Finally, we tested the sensitivity of the DA to assumptions surrounding the “pH effect” on foraminiferal δ18O by conducting174

a DA experiment with the pH correction set to the low sensitivity exhibited by the extant planktic species Orbulina universa175

(29) (“LowpHSens” in Fig. S1) and by removing the pH effect entirely (“nopHCorr” in Fig. S1). In both cases absolute176

GMST is lower, especially for the PETM, since the drop in pH has less effect on δ18O (Fig. S1). This results in a reduction177

of ∆GMST (Fig. S1). In our view, eliminating the pH correction entirely is not justified as culture studies of planktic and178

benthic foraminiferal species all show some sensitivity to changing pH (29, 41, 42). The reduced sensitivity of Orbulina179

universa (ca. 0.27‰ per pH unit) could conceivably be related to the fact that it is symbiont-bearing, with the photosynthetic180

symbionts acting to locally increase pH around the site of calcification (43). However, ref. (29) conducted experiments with181

Orbulina under both high light and dark conditions and there was no detectable difference in shell δ18O, seemingly ruling out a182

symbiont-related control. Morozovella spp. were also symbiont-bearing (44) which raises the possibility that they could have183

behaved like Orbulina, but given that, to the best of our knowledge, there are no additional published culture studies of other184

species of symbiont-bearing planktic foraminifera, and that ecology of Morozovella spp. is not precisely known, we prefer to185

use the thermodynamical pH effect correction (31) (ca. 1‰ per pH unit, between a pH of 7–8) in our main PETM-DA. This186

thermodynamical expectation also adequately explains the magnitude of the pH effect seen in cultures of the non-symbiont187

bearing G. bulloides (29) and symbiont-bearing benthic foraminifera (41, 42).188

Climate Sensitivity Calculations. Following the framework of (45), we calculated climate sensitivity during the PETM relative189

to the prePETM, assuming CO2 change is the sole forcing agent:190

ECSP ET M = ∆GMST / CO2 doublings [3]191
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where192

CO2 doublings = log2(PETMCO2) − log2(prePETMCO2) [4]193

An ensemble estimate of ∆GMST is derived from the PETM-DA posterior. prePETM and PETM CO2 concentrations194

were re-computed from the two available marine boron isotope (δ11B) records that cover the event in temporal detail, from195

ODP 1209 (46) and DSDP 401 (32). Besides these boron isotope data, two other high-resolution records of CO2 across the196

PETM exist. The reconstruction of (47) is based on B/Ca and δ11B and thus is not independent from the δ11B estimate we197

derive here; it also requires a double use of pH, hence the authors did not recommend its use for CO2 reconstruction. The198

reconstruction of ref. (48) is based on carbon isotope measurements on terrestrial bulk organic matter, and thus is independent199

from marine proxies. However, this reconstruction method is relative—it requires an assumption to be made about starting200

concentrations of CO2. ref. (48) assume that prePETM CO2 was 338 ppm, which is not physically realistic considering the201

prePETM GMST we derive here (28.5°C). Moreover, use of higher plant-derived carbon isotopes to infer CO2 is controversial,202

given evidence that plant carbon isotope fractionation also responds to aridity and that plants adapt to CO2 on long geological203

timescales (49). Hence, we limit our analysis to the boron isotope data.204

The δ11B of planktic foraminifera is a proxy for the pH of surface seawater, which, in regions where dissolved CO2 is in205

equilibrium with the atmosphere, is directly related to atmospheric CO2 concentration. The computation of pH from δ11B206

requires constraints on the δ11B composition of seawater (δ11Bsw), the equilibrium constant of boric acid (KB), and the207

equilibrium fractionation between boric acid and borate. For the latter, we use the value of 27.2‰ from ref. (50). For δ11Bsw,208

we use the estimate of 38.5‰ from ref. (51) with an uncertainty of 0.2‰ (1σ). KB is a function of seawater state (temperature,209

salinity, pressure). Pressure is assumed to be 0 db; SST and SSS for each core site are drawn from the ensemble posterior of210

the PETM-DA. Computation of the carbonate system equilibrium constants also requires estimates of [Ca2+] and [Mg2+];211

for these we use the estimate of [Mg2+] from ref. (52) for 56 Ma and compute [Ca2+] assuming a Mg/Casw ratio of 2.2, for212

consistency with the value used in the BAYMAG forward model for Mg/Ca.213

The calculation of CO2 from pH depends on SST and also requires an additional constraint on one other parameter of the214

ocean carbonate system. For SST, we use the posterior output from the PETM-DA at each core location, which is consistent215

with the estimate for GMST used for the climate sensitivity calculation. Moreover, computing SST from the raw proxy216

data at each site poses a circularity problem, since the Mg/Ca and δ18O proxies require assumptions about surface ocean217

pH. The PETM-DA is constrained not only by Mg/Ca and δ18O, but also by organic proxies that do not have a carbonate218

system dependency (TEX86 and MBT5′
Me), and is additionally subject to the constraints of the SST field covariance from the219

model prior. It is thus more independent from carbonate system assumptions (though not completely independent, since pH220

assumptions factor into forward modeling) and more robust than site-specific estimates.221

Common choices for the second carbonate system parameter include alkalinity (Alk) (i.e., ref. (53)) and surface ocean222

saturation state (Ω) (i.e., ref. (51)). For the prePETM, we use Ω, and randomly sample from a wide uniform distribution223

of physically plausible values (between 5–8 (54)). These values are then used to compute CO2 and Alk for the prePETM224

state. For the PETM, we leverage the carbonate chemistry solutions of the cGENIE simulations presented in ref. (32). These225

simulations were initialized with prePETM carbonate chemistry following refs. (55, 56), and then used both boron and carbon226

isotope constraints to fit the carbon emissions in the model to match the proxy-observed magnitude of the pH and carbon227

isotope excursion during the PETM. Although these results are partly fitted to the δ11B-derived pH from Site 401 (which228

is used here to compute the change in CO2) we use only the relative change in Alk simulated by ref. (32) which minimizes229

circularity. Alk is also a conservative property and thus not dependent on PETM ocean temperature. The simulated increase230

in Alk is 300 µmol kg−1; this value is added to the prePETM Alk and then used to compute CO2 during the PETM.231

This approach allows both Alk and Ω to change during the PETM, consistent with proxy evidence for undersaturation232

(57, 58) and carbon modeling results (32, 56, 59). However, as a sensitivity test, we also consider two end-member scenarios233

in which either Alk or Ω is held constant between the prePETM and PETM. Both scenarios compute prePETM Alk and234

CO2 using Ω, as described above. In the “Constant Alk” scenario, the prePETM Alk is then left unchanged and used to235

calculate PETM CO2. This effectively assumes that carbonate and silicate weathering on land is too slow to contribute to a236

significant rise in Alk during the body of the PETM, which given the estimated time span of the PETM body (70–80 kyr;237

(60)) is not realistic. In the “Constant Ω” scenario, we simply use the same Ω values for the prePETM and PETM. This238

scenario is the opposite of “Constant Alk”; it assumes that weathering rapidly results in higher Alk, completely mitigating a239

drop in saturation state. As with the “Constant Alk” scenario, this is also not realistic given widespread evidence for ocean240

undersaturation and carbonate dissolution (57, 58). However, ref. (47) argue that this solution is plausible if the marine sites241

from which the δ11B records derive are missing the peak of the event (and therefore the drop in Ω). Sedimentary loss has been242

reported at both of the sites with δ11B data (DSDP 401 and ODP 1209), the former due to incomplete rotary drilling recovery243

(61) and the latter due to syndepositional dissolution and burndown (62), so this remains a possibility (albeit perhaps unlikely).244

The “Constant Alk” scenario results in higher ECS (7.9°C; 6.9–9.3°C, 95% CI) (Fig. S6; Table S1) whereas “Constant Ω”245

results in the lower ECS (5.6°C; 4.8–6.7°C, 95% CI) (Fig. S9; Table S1). These results provide conservative upper and lower246

limits on what ECS could have been—i.e., it is unlikely to be either below 5 or above 9—and therefore support our conclusion247

in the main text that PETM ECS is higher than the IPCC AR6 90% CI range of 2–5°C.248

Recognizing that the value of δ11Bsw is not yet securely known for the PETM time period, we also conducted sensitivity249

tests with δ11Bsw set to a lower value (38‰) and a higher value (39‰). These experiments show that the choice of δ11Bsw250

mainly impacts the absolute values of CO2, with a lower δ11Bsw leading to lower CO2 and vice versa. The δ11Bsw value has251

less of impact on CO2 doublings and ECS, with the solutions for the latter only changing by 0.2–0.3°C (Table S1).252
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Since the calculation of climate sensitivity relies on the change in CO2 relative to the prePETM base concentration (CO2253

doublings, Eq. 3), some of the uncertainties associated with the estimation of absolute values of CO2 can be reduced by254

calculating the prePETM and PETM carbonate systems as a “pair”. For example, given the long residence time of boron in255

seawater, δ11Bsw can be assumed to not change through the event. Likewise, although the sampling of the carbonate system256

parameters is done separately for each site, the draws are carried through between the prePETM and PETM states, such257

that computation of ∆CO2 eliminates the absolute uncertainty in these values. In this way, the uncertainty surrounding the258

calculation of CO2 doublings is smaller than the uncertainties surrounding the absolute CO2 concentrations estimated for each259

time period (Table S1, Fig. S9), as previously shown by ref. (63).260

All calculations were conducted with 5,000 Monte Carlo simulations to fully sample the multiple sources of uncertainty261

(δ11Bsw, GMST, SST and SSS, and the second carbonate system parameter), following the methods in ref. (64). The code for262

these calculations is available on GitHub here: https://github.com/St-Andrews-Isotope-Geochemistry/PETM_deltaCO2.263
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Fig. S1. Sensitivity testing for the PETM-DA in which different assumptions are made about the carbonate system for forward modeling of foraminiferal δ18O and Mg/Ca.
“Main” presents the results shown in the main text, which use carbonate system parameters drawn from cGENIE (32). “.5∆pH” increases the pH drop during the PETM to 0.5;
“.1∆pH” decreases it to 0.1. “Omega5” sets the bottom water water saturation state (Ω) in the Mg/Ca forward model to 5 for all sites, effectively eliminating the influence of Ω on
the proxy. “Acarinina” includes Mg/Ca and δ18O data from Acarinina spp. (which are excluded from the Main result). “ModCarb” uses modern carbonate system parameters for
Mg/Ca and δ18O (drawn using the omgph.m function in BAYMAG). “LowpHSens” assumes that the δ18O sensitivity to pH is smaller than predicted by thermodynamics, following
experimental results with Orbulina universa. “nopHCor” assumes δ18O is not sensitive to ocean pH. Top panel shows differences in absolute values of GMST for the PETM and
prePETM respectively. Bottom panel shows differences in the change in GMST (∆GMST). For reference, light orange bands indicate Main values for PETM and prePETM
GMST, light blue band indicates Main values for ∆GMST. In all cases, error bounds represent the 95% confidence interval, dots show the median.
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Fig. S2. Comparisons between the model prior and the prePETM and PETM DA posterior means for mean annual surface air temperature. a) Model prior mean annual SAT. b)
Posterior mean annual SAT for the prePETM. c) Posterior mean annual SAT for the PETM. d) Zonal mean temperature for the full prior (in gray) vs. posterior means for the
prePETM (orange) and PETM (red). Modern zonal mean SAT shown for reference (based on 2m air temperature from the ERA 20th Century Reanalysis (65)). Values in
parentheses represent the meridional SAT gradient, calculated as average SAT between 30°S–30°N minus average SAT between 60–90°N and S. e) Difference plot between
the prePETM - prior mean SAT. f) Difference plot between the PETM - prior mean SAT.
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Fig. S3. Spring (MAM for the Northern Hemisphere, SON for the Southern Hemisphere) snow thickness from the PETM-DA, for the Northern Hemisphere (a and b) and the
Southern Hemisphere (c and d) and prePETM (a and c) and PETM (b and d) time periods, respectively.
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Fig. S4. Change in low cloud cover (%) in the PETM-DA, between the PETM and pre-PETM.
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Fig. S6. Winter surface air temperatures (DJF for the Northern Hemisphere, JJA for the Southern Hemisphere) from the PETM-DA for the Northern Hemisphere (a and b) and
the Southern Hemisphere (c and d) and prePETM (a and c) and PETM (b and d) time periods, respectively. Dots in panel b) show winter temperature estimates during the
PETM from the Bighorn basin (35), Faddeevsky Island (34), and the ACEX core (66). Thick black lines indicate the 0° C contour.
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Fig. S7. Relative contribution of precipitation (P ) and evaporation (E) to P − E change during the PETM. a) mean annual change in P (PETM − prePETM) b) mean annual
change in E (PETM − prePETM) c) zonal mean annual change in P d) zonal mean annual change in E.
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Fig. S8. Comparisons between the model prior and the prePETM and PETM DA posterior means for precipitation − evaporation (P −E). a) Model prior mean annual P −E.
b) Posterior mean annual P − E for the prePETM. c) Posterior mean annual P − E for the PETM. d) ITCZ width for the prior, prePETM, and PETM, calculated as the latitude
degrees between 30°S and 30°N where P − E > 0. Dots represent the mean, error bars show the 95% confidence interval. e) Difference plot between the prePETM − prior
mean P − E. f) Difference plot between the PETM − prior mean P − E.
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carbonate system scenarios. “Main” corresponds to the scenario shown in the main text. “Alk” and “Ω” correspond to the “Constant Alk” and “Constant Ω” end-member
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Fig. S10. Time series of global mean surface temperature (GMST) from all of the model experiments used as priors for the PETM-DA (Table S2). Boxes enclose the time
periods that were sampled to generate the model priors. NX denotes N times preindustrial CO2; NXf denotes extended runs with a modified surface virtual salinity flux; NXorb
denotes runs with different orbital configurations. Note that, although they are plotted as starting at Year 0, the 10X and 11X experiments were branched from the long 9X
experiment. The 11X experiment becomes unstable after ca. year 400 and a GMST of 43°C hence was not sampled during that interval. See the Supplementary text for details
of these simulations.
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Table S1. Median and 95% CI values (in parantheses) for prePETM and PETM CO2 concentrations (ppm), the change in CO2 (∆CO2), the
change in Alk (∆Alk; averaged between Sites 1209 and 401), the change in Ω (∆Ω; averaged between Sites 1209 and 401), CO2 Doublings,
and equilibrium climate sensitivity (ECS) under different carbonate system scenarios. * indicates prescribed values.

Scenario prePETM CO2 PETM CO2 ∆CO2 ∆Alk ∆Ω CO2 Doublings ECS

Main 1120 (850–1460) 2020 (1550–2630) 900 (690–1200) 300* −0.62 (−1.13–−0.19) 0.86 (0.76–0.97) 6.5 (5.7–7.4)
Constant Alk 1120 (850–1460) 1820 (1360–2410) 610 (380–940) 0* −1.22 (−1.68–−0.82) 0.70 (0.60–0.81) 8.0 (6.9–9.3)
Constant Ω 1110 (850–1460) 2220 (1650–3010) 1090 (760–1590) 700 (500–970) 0* 1.01 (0.85–1.17) 5.6 (4.8–6.7)
δ11Bsw = 38‰ 840 (650–1090) 1500 (1180–1900) 660 (510–850) 300* −0.33 (−0.79–0.07) 0.84 (0.74–0.94) 6.7 (5.9–7.7)
δ11Bsw = 39‰ 1520 (1150–2020) 2850 (2170–3790) 1330 (970–1820) 300* −0.96 (−1.54–−0.46) 0.91 (0.80–1.03) 6.2 (5.4–7.1)
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Table S2. Summary of the model simulations used to generate priors for the PETM-DA. Note that all simulations employed boundary con-
ditions from deepMIP (21), including Eocene paleogeography, land-sea mask, and vegetation distribution (22), and preindustrial non-CO2
greenhouse gas concentrations, solar constant, soil properties, and natural aerosol emissions. Orbital parameters used in the simulations
are listed, including the eccentricity (e), obliquity (o), and precession (in longitude of the perihelion, ω; for example, ω = 270◦ means that
perihelion occurs at the Northern Hemisphere solstice). See the “Supplementary text” for details of these simulations.

Experiment CO2 (ppm) Orbital Parameters Virtual Salinity Flux Length (yr) # of priors Citation

3X 854 preindustrial standard 2000 12 (23, 24)
3Xf 854 preindustrial adjusted 200 3 This study
3Xorbmin 854 e = 0; o = 22◦ adjusted 500 2 This study
3XorbmaxN 854 e = 0.054; o = 24.5◦; ω = 270◦ adjusted 500 2 This study
3XorbmaxS 854 e = 0.054; o = 24.5◦; ω = 90◦ adjusted 500 2 This study
6X 1708 preindustrial standard 2000 12 (23, 24)
6Xf 1708 preindustrial adjusted 200 3 This study
6Xorbmin 1708 e = 0; o = 22◦ adjusted 500 2 This study
6XorbmaxN 1708 e = 0.054; o = 24.5◦; ω = 270◦ adjusted 500 2 This study
6XorbmaxS 1708 e = 0.054; o = 24.5◦; ω = 90◦ adjusted 500 2 This study
9X 2562 preindustrial standard 2000 12 (23, 24)
9Xf 2562 preindustrial adjusted 200 3 This study
10X 2847 preindustrial adjusted 500 9 This study
11X 3132 preindustrial adjusted 500 6 This study
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SI Dataset S1 (DatasetS1.csv)264

Paleoclimate proxy data used in the PETM-DA, including metadata (site name, modern location, paleo-location, source265

references).266

SI Dataset S2 (DatasetS2.xlsx)267

Independent proxy data used to validate the PETM-DA, including the terrestrial temperature data shown in Figure 2d, the268

hydrological proxy data shown in Figure 3a, and the leaf wax δDP data shown in Figure 3c.269
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