Supplementary data

Targeting virulence regulation to disarm *Acinetobacter baumannii* pathogenesis

Vincent Trebosc^{1,a}, Valentina Lucchini^{1,a,b}, Mohit Narwal^{1,c}, Basil Wicki^a, Sarah Gartenmann^a, Birgit Schellhorn^a, Julian Schill^a, Marilyne Bourotte^c, Daniel Frey^d, Jürgen Grünberg^e, Andrej Trauner^a, Livia Ferrari^f, Antonio Felici^f, Olivia L. Champion^g, Marc Gitzinger^a, Sergio Lociuro^a, Richard A. Kammerer^c, Christian Kemmer^a, Michel Pieren^{*a}

^a BioVersys AG, Basel, Switzerland

^b Biozentrum, University of Basel, Basel, Switzerland

^c BioVersys SAS, Lille, France

^d Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer

Institute, Villigen, Switzerland

^e Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland

^f Aptuit Srl, an Evotec Company, Verona, Italy

^g Biosystems Technology Ltd, Exeter, UK

¹ Contributed equally

* Corresponding author: Michel Pieren, michel.pieren@bioversys.com

Supplementary Figures

Figure S1: Phosphorylation of OmpR variants.

The OmpR variants from *A. baumannii* were phosphorylated *in vitro* and the phosphorylation was analyzed used Phos-tag SDS gel. Protein retention is significative of protein phosphorylation. Denatured OmpR (OmpRd, 5 min at 95°C) was used as control.

Figure S2: Confirmation of OmpR regulated genes using qRT-PCR on the chromosomal mutants and the complemented strain.

A) The transcript levels of OmpR upregulated genes encoding small hypothetical protein were determined in *A. baumannii* AB5075 wildtype, AB5075 $\Delta ompR$ (white), AB5075 OmpR D71E (light grey), AB5075 OmpR D71A (dark grey) and AB5075 OmpR R198L (black) mutants by quantitative real-time PCR and the expression level was normalized to the expression of the AB5075 wildtype strain (means \pm SEM of 2 technical replicates). B) The transcript levels of *ompR*, *ABUW_RS13110* and *ABUW_RS02965* were determined in *A. baumannii* AB5075 wildtype, AB5075 $\Delta ompR$ (white) and AB5075 OmpR complemented (black) strains by quantitative real-time PCR and the expression level was normalized to the expression level was normalized to the expression explored to the expression level and the expression level is a strain (means \pm SEM of 2 technical replicates). B) The transcript levels of *ompR*, *ABUW_RS13110* and *ABUW_RS02965* were determined in *A. baumannii* AB5075 wildtype, AB5075 $\Delta ompR$ (white) and AB5075 OmpR complemented (black) strains by quantitative real-time PCR and the expression level was normalized to the expression level was normalized to the expression level by a strain (means \pm SEM of 2 technical replicates). Horizontal dotted lines depict a 2-fold up- or downregulation.

Figure S3: OmpR DNA binding motif and method to study OmpR-DNA binding in vitro.

(A) *E. coli* OmpR DNA binding Weblogo determined by Seo et al [18] (B) DNA binding enzyme-linked immunosorbent (D-ELISA) sandwich method to quantify OmpR-DNA binding: a) coating of D-ELISA plate with streptavidin followed by immobilization of biotinylated oligonucleotides, b) OmpR His-tag protein binding to immobilized oligonucleotides, c) anti-His-HRP antibody binding to bound OmpR and d) HRP-based enzymatic quantification of bound OmpR.

Figure S4: Sequence of the intergenic region upstream of the OmpR-regulated genes.

The intergenic region upstream of *ABUW_RS02965* has been divided in three to design the oligo ABUW_RS02965_A, ABUW_RS02965_B and ABUW_RS02965_C for D-ELISA assay with OmpR_{ABA} (Figure 4E). The start codon is underlined and the OmpR DNA binding sequence motifs identified with the MEME suite are highlighted in red (Figure 4D). The motifs for ABUW_RS02985 and ABUW_RS13110 were identified on the minus strand.

Figure S5: OmpR-regulated genes in the AYE efflux depleted mutant using qRT-PCR.

A) The transcript levels of *ABUW_RS02965* (white) and *ABUW_RS13110* (black) were determined in the $\Delta ompR$ mutants of the *A. baumannii* AYE wildtype and efflux depleted ($\Delta adeABC \Delta adeFGH \Delta adeIJK$) mutant and normalized to the transcript levels of their respective wildtype strains (mean \pm SEM of 2 technical replicates). B) The transcript levels of *ABUW_RS02965* and *ABUW_RS13110* were determined in the single ($\Delta adeABC$), double ($\Delta adeABC \Delta adeIJK$) and triple ($\Delta adeABC \Delta adeFGH \Delta adeIJK$) efflux deletion mutant of *A. baumannii* AYE in the presence of VSIS_039 at 20 μ M (white), 40 μ M (grey) and 80 μ M (black). The transcripts levels were normalized to those of the DMSO control (mean \pm SEM of 2 technical replicates). Horizontal dotted lines depict a 2-fold up- or downregulation.

Figure S6: Swarming motility of *A. baumannii* AYE wildtype and *ompR* deleted ($\Delta ompR$) strains. Swarming motility was evaluated for the wildtype / $\Delta ompR$ pair of strains of AYE and AYE efflux depleted strain ($\Delta adeABC\Delta adeIJK\Delta adeFGH$). The graph reports the swarming diameter while the picture illustrates the swarming of the *A. baumannii* efflux depleted AYE wildtype (up) and $\Delta ompR$ (down) strains (mean ± SEM of at least 2 replicates).

Supplementary Tables

Table S1: List of the 65 downregulated genes in $\Delta ompR$ (<-2 log2 fold change, $\Delta ompR/WT$) and

71 upregulated genes in $\Delta ompR$ (>2 log2 fold change, $\Delta ompR/WT$).

ID	log2FoldChange (∆ <i>ompR</i> /WT)	Product	
ABUW_RS08030	-5.152963056	TetR family transcriptional regulator	
ABUW_RS11870	-4.368892816	hypothetical protein	
ABUW_RS12725	-4.305329643	hypothetical protein	
ABUW_RS07965	-4.24527092	pilus assembly protein	
ABUW_RS07960	-3.949138706	hypothetical protein	
ABUW_RS18635	-3.79767744	UDP-N-acetyl-D-mannosamine dehydrogenase	
ABUW_RS07145	-3.705203924	hypothetical protein	
ABUW_RS07970	-3.698264692	fimbrial protein	
ABUW_RS01495	-3.552227695	prepilin-type cleavage/methylation domain-containing protein	
ABUW_RS13690	-3.354991113	TetR family transcriptional regulator	
ABUW_RS03355	-3.354416154	hybrid sensor histidine kinase/response regulator	
ABUW_RS11875	-3.227852494	hypothetical protein	
ABUW_RS01430	-3.199573033	membrane protein	
ABUW_RS09450	-3.191789235	ribose-phosphate pyrophosphokinase	
ABUW_RS13040	-3.179126428	hypothetical protein	
ABUW_RS10420	-3.144814662	hypothetical protein	
ABUW_RS15455	-3.03176635	hypothetical protein	
ABUW_RS13110	-3.01221703	transporter MatE	
ABUW_RS09455	-2.98832666	nicotinate phosphoribosyltransferase	
ABUW_RS07975	-2.905653226	hypothetical protein	
ABUW_RS07785	-2.888583284	hypothetical protein	
ABUW_RS13815	-2.887412345	hypothetical protein	
ABUW_RS18630	-2.835136126	polysaccharide biosynthesis protein	
ABUW_RS07255	-2.828869248	protein CsuA	
ABUW_RS03350	-2.808936997	chemotaxis protein	
ABUW_RS01440	-2.792972915	hypothetical protein	
ABUW_RS06270	-2.743514067	hypothetical protein	
ABUW_RS11790	-2.725242202	amino acid ABC transporter permease	
ABUW_RS01290	-2.703419778	hypothetical protein	
ABUW_RS03345	-2.667668241	twitching motility protein PilT	
ABUW_RS07800	-2.661221571	membrane protein	
ABUW_RS01435	-2.650341865	hypothetical protein	
ABUW_RS14740	-2.573108743	hemerythrin	
ABUW_RS03335	-2.45451199	response regulator	
ABUW_RS17270	-2.451241573	type IV-A pilus assembly ATPase PilB	
ABUW_RS17275	-2.448651293	type II secretion system protein F	
ABUW_RS00895	-2.447969798	hypothetical protein	
ABUW_RS06590	-2.431786046	type II secretion system protein E	
ABUW_RS09960	-2.390032425	hypothetical protein	
ABUW_RS07250	-2.386735092	protein CsuA/B	

ABUW_RS08615	-2.384859643	hypothetical protein		
ABUW_RS03360	-2.348787548	hypothetical protein		
ABUW_RS00795	-2.347192551	MBL fold metallo-hydrolase		
ABUW_RS16790	-2.287666781	hypothetical protein		
ABUW_RS01465	-2.282931643	glutamate synthase large subunit		
ABUW_RS02875	-2.272260195	two-component sensor histidine kinase		
ABUW_RS01550	-2.26632454	pilus assembly protein PilW		
ABUW_RS14710	-2.262323809	twitching motility protein PilT		
ABUW_RS01425	-2.231965395	pilus assembly protein PilM		
ABUW_RS03365	-2.21954724	coproporphyrinogen III oxidase		
ABUW_RS14715	-2.211650472	twitching motility protein PilT		
ABUW_RS05525	-2.208639151	hypothetical protein		
ABUW_RS11235	-2.195499967	ferrous iron transporter B		
ABUW_RS13105	-2.191786023	hypothetical protein		
ABUW_RS09530	-2.181595516	TetR family transcriptional regulator		
ABUW_RS01555	-2.167614921	hypothetical protein		
ABUW_RS18625	-2.16215534	hypothetical protein		
ABUW_RS18640	-2.161371559	UDP-N-acetylglucosamine 2-epimerase (non-hydrolyzing)		
ABUW_RS17370	-2.157315431	peptidoglycan hydrolase		
ABUW_RS13035	-2.115209735	hypothetical protein		
ABUW_RS11850	-2.095210977	NAD(P)-dependent oxidoreductase		
ABUW_RS01445	-2.069233992	membrane protein		
ABUW_RS07980	-2.041806136	glutathione S-transferase		
ABUW_RS11425	-2.008071889	tautomerase		
ABUW_RS01275	-2.00763149	fatty acyl-CoA reductase		
ABUW_RS15165	2.002104113	trehalose-6-phosphate synthase		
ABUW_RS04980	2.005017416	hypothetical protein		
ABUW_RS11915	2.006015486	SAM-dependent methyltransferase		
ABUW_RS07905	2.02022884	ethanolamine permease		
ABUW_RS08920	2.044784618	3-oxoadipyl-CoA thiolase		
ABUW_RS11925	2.052534622	2 TetR family transcriptional regulator		
ABUW_RS14335	2.07063006	(2Fe-2S)-binding protein		
ABUW_RS12645	2.07683365	acetyl/propionyl-CoA carboxylase subunit alpha		
ABUW_RS09050	2.110067963	hypothetical protein		
ABUW_RS07625	2.111922975	luciferase family oxidoreductase		
ABUW_RS03655	2.114704215	hypothetical protein		
ABUW_RS03690	2.115251333	DNA replication protein DnaD		
ABUW_RS11950	2.143126695	hydroxymethylglutaryl-CoA lyase		
ABUW_RS09360	2.149858781	hydrolase		
ABUW_RS03205	2.152831275	RNA-splicing ligase RtcB		
ABUW_KS05450	2.154458373	aromatic amino acid transporter AroP		
ABUW_KS13610	2.180/5/921	gamma-aminobutyraldenyde dehydrogenase		
ABUW_KS09260	2.19/89/889	sorbosone dehydrogenase		
ABUW_KS09060	2.204598518	(2Fe-2S)-binding protein		
ABUW_KS08205	2.215393814			
ABUW_KS11920	2.23118/048	Tatty acidCoA ligase		
ABUW_RS02945	2.251007273	hypothetical protein		

ABUW_RS11940	2.253834891	enoyl-CoA hydratase		
ABUW_RS15140	2.27409912	malonyl-[acyl-carrier protein] O-methyltransferase BioC		
ABUW_RS09065	2.275172651	aromatic-ring-hydroxylating dioxygenase subunit beta		
ABUW_RS11945	2.275395335	3-methylcrotonyl-CoA carboxylase subunit alpha		
ABUW_RS08915	2.310124094	3-oxoadipate CoA-transferase subunit B		
ABUW_RS12665	2.319789099	hypothetical protein		
ABUW_RS12650	2.406656548	allophanate hydrolase		
ABUW_RS11935	2.416654319	methylcrotonoyl-CoA carboxylase		
ABUW_RS15145	2.425254961	8-amino-7-oxononanoate synthase		
ABUW_RS17915	2.42534756	ATPase		
ABUW_RS12660	2.454310317	hypothetical protein		
ABUW_RS14330	2.470163045	hypothetical protein		
ABUW_RS03685	2.504196589	hypothetical protein		
ABUW_RS15150	2.525208161	adenosylmethionine8-amino-7-oxononanoate aminotransferase BioA		
ABUW_RS11930	2.528314598	isovaleryl-CoA dehydrogenase		
ABUW_RS19690	2.549252604	hypothetical protein		
ABUW_RS00325	2.5730652	4-hydroxyphenylpyruvate dioxygenase		
ABUW_RS08910	2.575615162	3-oxoadipate CoA-transferase subunit A		
ABUW_RS04555	2.616247733	ABC transporter substrate-binding protein		
ABUW_RS08055	2.625805749	hypothetical protein		
ABUW_RS01745	2.628652304	hypothetical protein		
ABUW_RS07295	2.675155384	proline/betaine transporter		
ABUW_RS05445	2.689329246	pyruvate decarboxylase		
ABUW_RS12655	2.695847506	DUF1445 domain-containing protein		
ABUW_RS11470	2.707164847	glutamate symport protein		
ABUW_RS18865	2.739894706	hypothetical protein		
ABUW_RS09045	2.743885166	acyl-CoA dehydrogenase		
ABUW_RS07640	2.825507594	hypothetical protein		
ABUW_RS13855	2.889418797	amino-acid transporter Mb2008		
ABUW_RS09040	2.903434927	Glu-tRNA amidotransferase		
ABUW_RS07910	2.972202959	aldehyde dehydrogenase		
ABUW_RS10360	3.120148412	lipoyl synthase		
ABUW_RS10340	3.331455667	dihydrolipoyl dehydrogenase		
ABUW_RS00825	3.394383298	outer membrane protein		
ABUW_RS15475	3.503486865	hypothetical protein		
ABUW_RS02985	3.673087414	hypothetical protein		
ABUW_RS01270	3.746149042	sulfate permease		
ABUW_RS06025	3.783910616	membrane protein		
ABUW_RS07925	4.027868667	alcohol dehydrogenase		
ABUW_RS07950	4.186229554	hypothetical protein		
ABUW_RS18750	4.279546979	hypothetical protein		
ABUW_RS10345	4.313013618	diaminohydroxyphosphoribosylaminopyrimidine deaminase		
ABUW_RS07630	4.328430911	hypothetical protein		
ABUW_RS01140	4.375161033	hypothetical protein		
ABUW_RS10355	4.750588843	ABC transporter substrate-binding protein		
ABUW_RS10350	4.809402495	pyruvate dehydrogenase subunit beta		

ABUW_RS02965	5.333078805	hypothetical protein
ABUW_RS14395	5.540563984	hypothetical protein
ABUW_RS18870	6.084762391	hypothetical protein

Table S2: List of the 19 OmpR-activated candidate genes and 12 OmpR-repressed candidate genes

ID	log2FoldChange	Read Ratio	Product	
	(∆ <i>ompR</i> /WT)	(G. mellonella/LB) ¹		
ABUW_RS08030	-5.152963056	0.043739863	TetR family transcriptional regulator	
ABUW_RS11870	-4.368892816	0.058780238	hypothetical protein	
ABUW_RS07965	-4.24527092	0.052994378	pilus assembly protein	
ABUW_RS18635	-3.79767744	0.053481349	UDP-N-acetyl-D-mannosamine dehydrogenase	
ABUW_RS07145	-3.705203924	0.054538365	hypothetical protein	
ABUW_RS07970	-3.698264692	0.139174375	fimbrial protein	
ABUW_RS11875	-3.227852494	0.195565828	hypothetical protein	
ABUW_RS13040	-3.179126428	0.184394736	hypothetical protein	
ABUW_RS13110	-3.01221703	0.141217409	transporter MatE	
ABUW_RS07975	-2.905653226	0.120654172	hypothetical protein	
ABUW_RS07785	-2.888583284	0	hypothetical protein	
ABUW_RS09960	-2.390032425	0.132031752	hypothetical protein	
ABUW_RS03365	-2.21954724	0.190465744	coproporphyrinogen III oxidase	
ABUW_RS11235	-2.195499967	0.158606732	ferrous iron transporter B	
ABUW_RS09530	-2.181595516	0.14107257	TetR family transcriptional regulator	
ABUW_RS18625	-2.16215534	0.08692852	352 hypothetical protein	
ABUW_RS13035	-2.115209735	0.004379322	hypothetical protein	
ABUW_RS11850	-2.095210977	0.121539888	NAD(P)-dependent oxidoreductase	
ABUW_RS11425	-2.008071889	0.008644153	tautomerase	
ABUW_RS04980	2.005017416	1.085639579	hypothetical protein	
ABUW_RS11925	2.052534622	0.934376763	TetR family transcriptional regulator	
ABUW_RS15140	2.27409912	0.968768335	malonyl-[acyl-carrier protein] O- methyltransferase BioC	
ABUW_RS15150	2.525208161	1.53242563	adenosylmethionine8-amino-7-oxononanoate aminotransferase BioA	
ABUW_RS00325	2.5730652	1.125844462	4-hydroxyphenylpyruvate dioxygenase	
ABUW_RS01745	2.628652304	1.162884654	hypothetical protein	
ABUW_RS18865	2.739894706	2.040619566	hypothetical protein	
ABUW_RS02985	3.673087414	1.582951167	hypothetical protein	
ABUW_RS18750	4.279546979	1.001278226	hypothetical protein	
ABUW_RS01140	4.375161033	1.509661043	hypothetical protein	
ABUW_RS02965	5.333078805	0.991747211	hypothetical protein	
ABUW_RS18870	6.084762391	1.271610231	hypothetical protein	

potentially relevant for A. baumannii pathogenesis.

¹ Values derived from Gebhardt, M. J. et al. 2015 [1]

Strain	Description				Reference
	ST	Origin	Source	Year	
AB5075	1	USA	osteomyelitis	2008	[2]
AB5075 $\Delta ompR$	ompR d	ompR deletion in the AB5075 strain			
AB5075 OmpR complemented	chromo	chromosomal insertion of $ompR$ in the AB5075 $\Delta ompR$ strain			this study
AB5075 OmpR D71A	chromosomal mutagenesis to introduce OmpR D71A in AB5075		this study		
AB5075 OmpR D71E	chromo	chromosomal mutagenesis to introduce OmpR D71E in AB5075			
AB5075 OmpR R198L	chromo	somal muta	genesis to introduce OmpR R198L in	AB5075	this study
AYE	1	France	urinary tract sample	2001	[3]
AYE $\Delta ompR$	<i>ompR</i> deletion in the AYE strain			this study	
AYE $\triangle adeABC$	adeABC efflux pump deletion in the AYE strain		this study		
AYE ΔadeABCΔadeIJK	<i>adeIJK</i> efflux pump deletion in the AYE $\triangle adeABC$ strain			this study	
AYE ∆adeABC∆adeIJK∆adeFGH	adeFGH efflux pump deletion in the AYE ∆adeABC∆adeIJK strain			this study	
HUMC1	2 USA blood isolate 2009		[4]		
HUMC1 $\triangle ompR$	ompR deletion in the HUMC1 strain		this study		
LAC-4	10	USA	clinical outbreak	1997	[5]
LAC-4 $\Delta ompR$	ompR deletion in the LAC-4 strain			this study	
ATCC-17978	77	France	fatal meningitis	1951	[6]
ATCC-17978 ∆ompR	ompR d	eletion in th	ne ATCC-17978 strain		this study
BV191	2	China	respiratory endotracheal aspirate	2013	[7]
BV191 $\triangle ompR$	ompR deletion in the BV191 strain			this study	

Table S3: Overview of the A. baumannii strains used in this study.

Table S4: Primers used in this study.

Name	Sequence	Description				
Genetic engineering						
ompR dele	tion					
oVT170	tgaggcctctcgaggaattcGCGGATGGCAGCTTCTAC	<i>ompR</i> -up F				
oVT171	aacaaacacgagctcGATGTACTCCCTTTTAAAGTCATAATTTATATATATTATTG	ompR-up R				
oVT172	gagtacatcgagctcGTGTTTGTTCCGGATGGTG	ompR-down F				
oVT173	aggateccegggtaceATTCGTTGGCAGCATTTTG	<i>ompR</i> -down R				
oVT179	ACCTTTTCACGGCGCTCATA	ompR deletion verification F				
oVT180	TCCCGCTAGCATGATTCGTC	ompR deletion verification R				
ompR chro	omosomal complementation					
oVT425	caggggagaattgaggcctctcgagTATCGTCAAGCTCAGCGC	<i>ponA</i> -up F				
oVT426	gtaccgagctcgaattcATCTCCAGAACGTCGTATGC	ponA-up R				
oVT427	ggagatgcctgaattcgagctcggtacccgggactagtggatcctctagagcctgcagCACCTCCAGCG	<i>rrm</i> -down F				
oVT428	ctatcaacaggagtccaagggtcgaccatggTGTGGCGAGGGCTATTAC	rrm-down B				
oVT630	catacgacgttetggagatgaatteTCGTGTTTGATCCCACAAG	ompR complementation F				
oVT631	tcatcoctogagotoctocagGCAACGTAGTCGGTAAAGG	ompR complementation R				
oVT430	TGCTCCTGAGACAACTGACG	complementation verification F				
oVT431	GTGTGAACAGGGCCATAGCT	complementation verification R				
omnR alle	lic exchange	complementation vermeation it				
oVT634	agaattgagggeetetegaggaatteTGGGCCTTTAAGCTAGCC	ompR-D71 F				
oVT635	tetagaggateceegggtaceTTGCGGTGGTATTGGCTC	ompR-D71 R				
oVT636	CTTATCGTGCTCGAGTTTATGTTGCCCG	ompR-D71E mutagenesis F				
oVT637	CGGGCAACATAAACTCGAGCACGATAAG	ompR-D71E mutagenesis R				
oVT638	CTTATCGTGCTAGCCTTTATGTTGCCCG	ompR-D71A mutagenesis F				
oVT639	CGGGCAACATAAAGGCTAGCACGATAAG	ompR-D71A mutagenesis R				
oVT642	agaattgaggcetetegaggaatteTACTGAGGGCTTGTTGGC	ompR-R198 F				
oVT643	tctagaggatccccgggtaccCAACCCAGCCTACCAGTAG	ompR-R198 R				
oVT644	CGTGAACCTTTAACTCTAGACAAGCTCATGAAC	ompR-R198L mutagenesis F				
oVT645	GTTCATGAGCTTGTCTAGAGTTAAAGGTTCACG	ompR-R198L mutagenesis R				
Efflux pur	np deletions					
oCK558	ggaattcGTCAGCGTCAGATTAAGCAAG	adeABC-up F				
oCK559	cccgggCCAAACCTAGTGAGTTTTTGATG	adeABC-up R				
oCK560	ACTCACTAGGTTTGGcccgggGCTGATAGAGGTATTCCAAATC	adeABC-down F				
oCK561	gctctagaGCGTGAAGATTACCATGCAGC	adeABC-down R				
oCK564	GGCCAGCTCATTACTATTCC	adeABC deletion verification F				
oCK565	GGCATCGTCGACAATAATCC	adeABC deletion verification R				
oCK584	aaggcctgaattcGGCAAGTACACTTTCAACGG	<i>adeIJK</i> -up F				
oCK585	<u>cccggg</u> GACATCATTGTTCCACCTCG	<i>adeIJK</i> -up R				
oCK586	CGAGGTGGAACAATGATGTCCCCGGGTGGTACATCAACCATCTAGTG	<i>adeIJK</i> -down F				
oCK587	cgggatccggtaccGGCCTAACTGATCACTTGTG	adeIJK-down R				
oCK590	CAACAGGTGCTAACGCACTC	adeIJK deletion verification F				
oCK591	AAAGTGCCGGTGTGAACGTC	adeIJK deletion verification R				
oCK627	agaattgaggcctctcgaggaagaattcAGCGGTTGCACACTGGAAAG	adeFGH-up F				
oCK628	ttgtcccgggGAGGTGCTCCTAGTTATTTGG	adeFGH-up R				
oCK629	ggagcacctccccgggACAAATTATTTTGCATATACAGGG	adeFGH-down F				
oCK630	ccgcaagcttcctgcaggctctaGACATCGCGGACAAAGTTGG	adeFGH-down R				
oCK633	GAAGATGTACAGCGCTTAGG	adeFGH deletion verification F				
oCK635	AGCTCCTTCATTGTGCTACG	AdeFGH deletion verification R				
qRT-PCF						
oVT572	TGCGATGGCCGATTCAAATC	ABUW_RS02965 F				
oVT573	TCATIGCGGIGGICATAACG	ABUW RS02965 R				
oVT683	ATGGGTAGTTTGGCTGCTTG	<i>ABUW_RS02985</i> F				
oVT684		ABUW RS02985 R				
oV1661		ABUW_KSU//85 F				
oV1662		ABUW RS07785 R				
oV1582		ABUW_RS13110 F				
oVT583	ATAAAGCCCGCACTCATCAG	ABUW RS13110 R				
oV1687		ABUW_KS01140 F				
0V1688		ABUW_KS01140 K				
ov1697		ABUW_KS18/50F				
ov 1698	IGGAIGUIGGTATIGAIGUG	ABUW_RS18/50 R				

oVT681	TAGTGAGTGGGAACGCAAAC	<i>ABUW_RS18865</i> F
oVT682	TCACGACGATCCTTTTGCTG	<i>ABUW_RS18865</i> R
oVT689	ACAGCTGTTGGTTGTGCATC	<i>ABUW_RS18870</i> F
oVT690	ACACCAACACCAGCTTGTAC	<i>ABUW RS18870</i> R
oBV79	GAGTCTAATGGCGGTGGT	<i>rpoD</i> F
oBV80	ATTGCTTCATCTGCTGGT	rpoD R
D-ELISA		
oCK430	CCCCTTTACTTTTGGTTACATATTCCCC	F1aF1b F
0011150		5' biotinylated
oVT279	GGGGAATATGTAACCAAAAGTAAAGGGG	F1aF1b R
oVL147	TTGAAAAATGCTAATGGTAGCACAGATACAGATTCTTCATATTT	ABUW_RS02965 A F
		5' biotinylated
oVL148	AAAATATGAAGAATCTGTATCTGTGCTACCATTAGCATTTTCAA	ABUW RS02965 A R
oVL149	TTTTCTTTATAGTCATTACAAACAATATCAATCAAAGCCATTTT	ABUW_RS02965 B F
		5' biotinylated
oVL150	AAAATGGCTTTGATTGATATTGTTTGTAATGACTATAAAGAAAA	<i>ABUW_RS02965 B</i> R
oVL151	TTTTATTCATGGTTTCTCCTTGACTCTCTCTTAATCTAGCTTCAGATCA	<i>ABUW_RS02965 C</i> F
	AGAT	5' biotinylated
oVL152	ATCTTGATCTGAAGCTAGATTAAGAGAGAGAGTCAAGGAGAAACCATGA	<i>ABUW_RS02965 C</i> R
	ATAAAA	
-	ATTTGTATTTAATATTTTAACATAAA	SarA binding site F
		5' biotinylated
-	TTTATGTTAAAATATTAAATACAAAT	SarA binding site R

PDB entry	67.WT		
Beamline	SLS (PXIII)		
wavelength (Å)	1 00003		
no. of images	720		
exposure time (s)	0.1		
oscillation range (deg)	0.5		
transmission (%)	100		
Detector	PILATUS 2M		
space group	P1		
a, b, c (Å)	48.5, 49.7, 52.7		
α, β, γ (deg)	90.1, 99.0, 103.9		
resolution (Å)	48.2-2.2 (2.3-2.2)		
$R_{\text{merge}}(\%)$	15.4 (85.3)		
$I/\sigma(I)$	6.1 (1.5)		
completeness (%)	98.1 (97.3)		
Redundancy	3.6 (3.7)		
CC _{1/2}	98.8 (73.5)		
resolution (Å)	48.2–2.2		
no. of unique reflections	23437 (1999)		
$R_{ m work}, R_{ m free}$	24.2, 27.3		
no. of atoms			
Protein	3259		
other ligands	34		
Water	37		
<i>B</i> factor (Å ²)			
Protein	35.2		
other ligands	47.5		
Water	25.1		
root-mean-square deviation			
bond lengths (Å)	0.009		
bond angles (deg)	1.6		
Ramachandran plot (%)			
residues in most favorable regions	94.6		
residues in additional allowed regions	5.2		

Table S5. Crystallographic data-collection and refinement statistics

References

- 1. Gebhardt MJ, Gallagher LA, Jacobson RK, Usacheva EA, Peterson LR, Zurawski DV, et al. Joint Transcriptional Control of Virulence and Resistance to Antibiotic and Environmental Stress in Acinetobacter baumannii. mBio. 2015;6: e01660-15. doi:10.1128/mBio.01660-15
- Jacobs AC, Thompson MG, Black CC, Kessler JL, Clark LP, McQueary CN, et al. AB5075, a Highly Virulent Isolate of Acinetobacter baumannii, as a Model Strain for the Evaluation of Pathogenesis and Antimicrobial Treatments. mBio. 2014;5: e01076-14. doi:10.1128/mBio.01076-14
- Fournier P-E, Vallenet D, Barbe V, Audic S, Ogata H, Poirel L, et al. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet. 2006;2: e7. doi:10.1371/journal.pgen.0020007
- 4. Bruhn KW, Pantapalangkoor P, Nielsen T, Tan B, Junus J, Hujer KM, et al. Host fate is rapidly determined by innate effector-microbial interactions during Acinetobacter baumannii bacteremia. J Infect Dis. 2015;211: 1296–1305. doi:10.1093/infdis/jiu593
- Valentine SC, Contreras D, Tan S, Real LJ, Chu S, Xu HH. Phenotypic and Molecular Characterization of Acinetobacter baumannii Clinical Isolates from Nosocomial Outbreaks in Los Angeles County, California. J Clin Microbiol. 2008;46: 2499–2507. doi:10.1128/JCM.00367-08
- 6. Piechaud M, Second L. [Studies of 26 strains of Moraxella Iwoffi]. Ann Inst Pasteur. 1951;80: 97–99.
- Trebosc V, Gartenmann S, Royet K, Manfredi P, Tötzl M, Schellhorn B, et al. A Novel Genome-Editing Platform for Drug-Resistant Acinetobacter baumannii Reveals an AdeR-Unrelated Tigecycline Resistance Mechanism. Antimicrob Agents Chemother. 2016;60: 7263–7271. doi:10.1128/AAC.01275-16