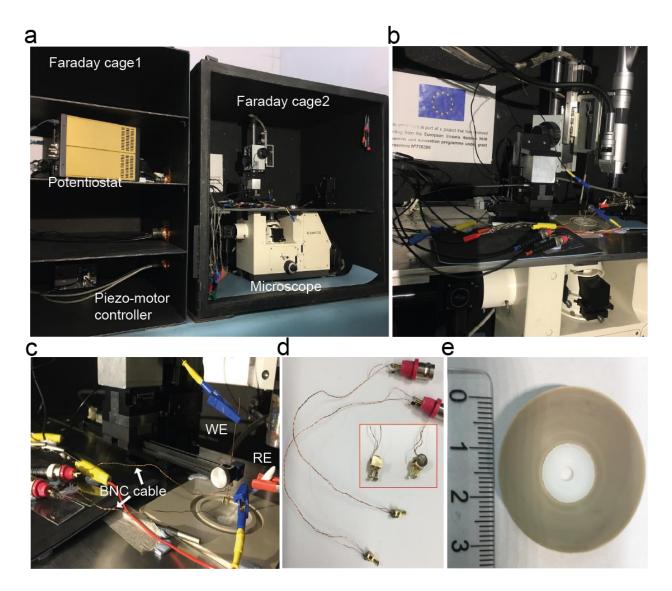
SUPPLEMENTARY INFORMATION FOR

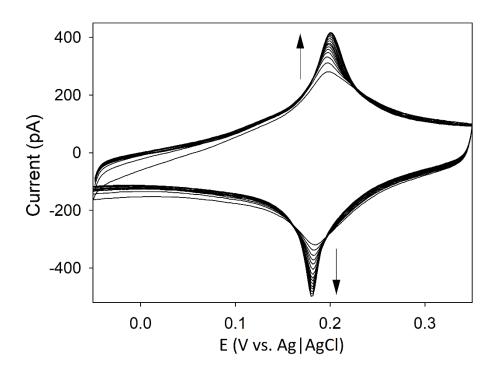
Investigating Lytic Polysaccharide Monooxygenase-assisted wood cell wall degradation with microsensors

Hucheng Chang¹, Neus Gacias Amengual¹, Alexander Botz¹, Lorenz Schwaiger¹, Daniel Kracher^{1,2}, Stefan Scheiblbrandner¹, Florian Csarman¹, Roland Ludwig¹*

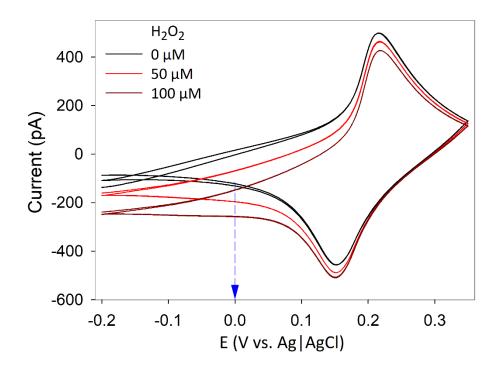
* Corresponding author: Roland Ludwig. Email: roland.ludwig@boku.ac.at

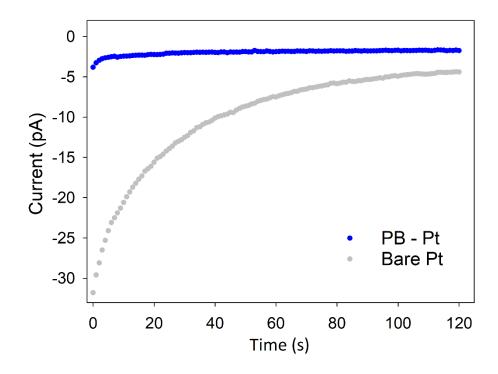

This file includes:

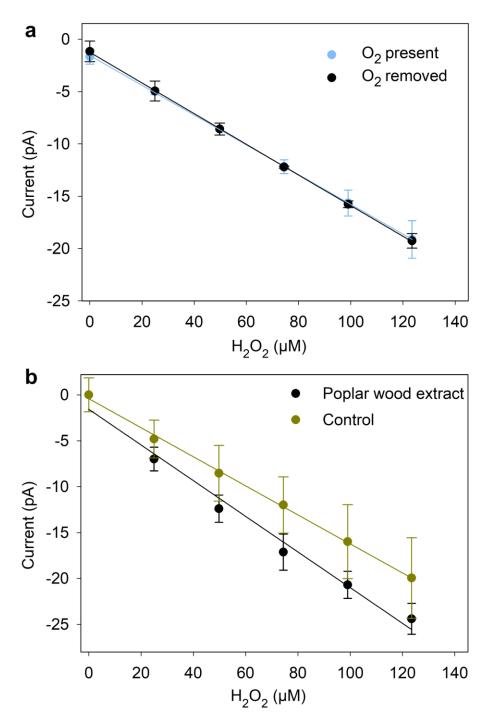
Supplementary Figures 1–8

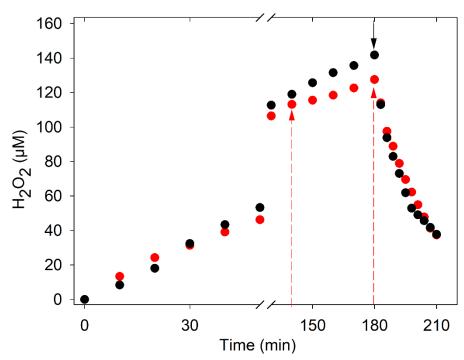

Supplementary Tables 1–2

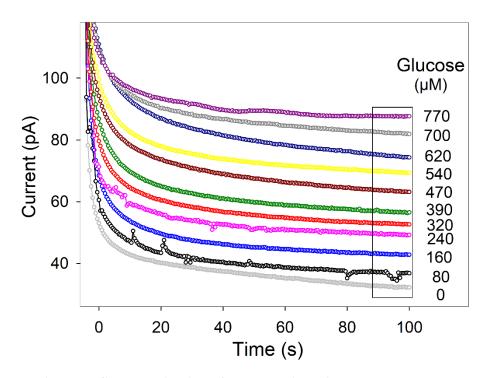
¹ Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria.

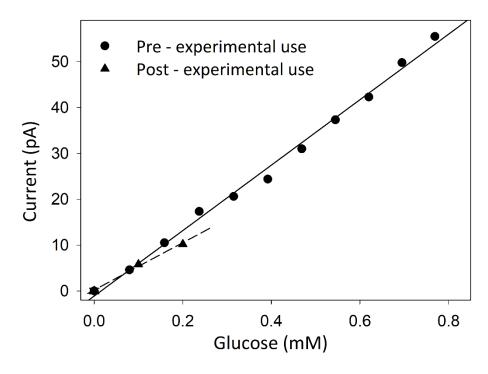

² Present Address: Institute of Molecular, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria.


Supplementary Figure 1. The experimental setup of the SECM system. (a) A potentiostat and a micromanipulator controller placed in a Faraday cage. A micromanipulator, a sample holder (electrochemical cell), the top digital microscope and the inverted optical microscope are placed in the second Faraday cage. The micromanipulator is placed on the level stainless-steel board, and the circle sample holder is inlaid in the middle hole of this stainless-steel board. The distance (b) and close (c) view of the two-electrode electrochemical setup and the circle sample holder as an electrochemical cell. A micro(bio)sensor mounted on the cantilever of the micromanipulator is used as a working electrode, and a miniaturized Ag|AgCl is used as reference and counter electrode. (d) The combination of a piezo ceramic plate and a brass holder is connected with cables. (e) The circle sample holder (\emptyset : 32 mm) with an embedded Teflon ring (\emptyset _{out}: 12 mm, \emptyset _{in}: 3 mm,) serves as an electrochemical cell.


Supplementary Figure 2. Electrochemical activation of Prussian blue film. Cyclic voltammograms during electrochemical activation of the Prussian blue on a Pt ultramicroelectrode at a scan rate of 50 mV s⁻¹ in 0.1 M HCl with 0.1 M KCl. The arrows showed the trend of current peak change with continued scanning (15 cycles). The scanning was started at -0.05 V.


Supplementary Figure 3. Voltammetry characterization of an H_2O_2 microsensor. Cyclic voltammograms of a Prussian blue modified Pt ultramicroelectrode in 50 mM air-saturated acetate buffer, pH 5.5 in the absence (black line) and presence of 50 (red line) or $100 \,\mu\text{M}$ (dark red line) H_2O_2 . The scan rate is $50 \,\text{mV s}^{-1}$. The blue arrow indicates the potential $(0.0 \,\text{V})$ selected for all amperometric measurements using H_2O_2 microsensors.


Supplementary Figure 4. Low activity of the Prussian blue for reducing O₂. Amperometric response of a Prussian blue modified (blue dots) and a bare (gray dots) Pt ultramicroelectrode in 50 mM air-saturated acetate buffer, pH 5.5 at an applied potential of 0.0 V vs. Ag|AgCl.


Supplementary Figure 5. Test the interference effect of O_2 and poplar wood extract on the H_2O_2 microsensors. a Calibration plots of H_2O_2 microsensors in 50 mM sodium acetate buffer, pH 5.5, in the presence (light blue: $0.142~\mu A~\mu M^{-1}$) and absence (black: $0.147~\mu A~\mu M^{-1}$) of O_2 . b Calibration plots of H_2O_2 microsensors in 50 mM sodium acetate buffer, pH 5.5, in the presence (dark green: $0.158~\mu A~\mu M^{-1}$) and absence (black: $0.194~\mu A~\mu M^{-1}$) of poplar wood extract. Data in panels (a) and (b) are shown as mean values, and error bars show SD (n = 3, independent experiments). Extraction was performed for 16 h in ultrapure water at 22 °C using 20 % (w/w) freshly ground powder obtained from debarked poplar wood (particle size < 250 μm) and the solution was clarified by filtration prior to use.

Supplementary Figure 6. The effect of reductant N. crassa CDHIIA on the localized H_2O_2 concentration. C. hotsonii CDH (1 μ M) and 2 mg mL⁻¹ cellobiohydrolases were applied for continual production of H_2O_2 during the whole time-course. The red arrows indicate the addition of LPMO and NcCDHIIA in sequence, and the black arrow indicates the addition of LPMO and NcCDHIIA together.

Supplementary Figure 7. Characterization of glucose microbiosensors. Amperometric response of a glucose microbiosensor to varying concentrations of glucose measured in 50 mM phosphate buffer solution of pH 6.0, at an applied potential of 0.55 V vs. Ag|AgCl.

Supplementary Figure 8. Stability of glucose microbiosensors. Calibration plots of a glucose microbiosensor in Supplementary Figure 6 before (sensitivity: 71.4 pA mM⁻¹) and after (sensitivity: 51.0 pA mM⁻¹) 2 h of experimental use.

Supplementary Table 1. Analytical parameters of three independent H_2O_2 microsensors. The amperometric measurements were performed in 50 mM sodium acetate buffer, pH 5.5, at 20 °C in the presence of different concentrations of H_2O_2 .

Parameter	Sensor 1	Sensor 2	Sensor 3	Average
Sensitivity [pA µM ⁻¹]	0.093	0.088	0.083	0.088 ± 0.005
Electrode diameter [µm]	1.13	1.27	1.22	1.21 ± 0.07
Electrode area [µm²]	1.00	1.26	1.17	1.15 ± 0.13
Sensitivity [pA μM ⁻¹ μm ⁻²]	0.093	0.069	0.071	0.078 ± 0.130
Noise [pA]	0.19	0.15	0.14	0.16 ± 0.03
Limit of detection LOD [µM]	6.3	5.2	5.0	5.5 ± 0.7
Limit of quantitation LOQ [µM]	21.0	17.3	16.7	18.3 ± 2.3
Linear range [µM]	25–200	25–200	25–200	25–200
Correlation coefficient R ²	0.998	0.999	0.999	-

Supplementary Table 2. Analytical parameters of three independent glucose microbiosensors. The amperometric measurements were performed in 50 mM potassium phosphate buffer, pH 6.0, at 20 °C in the presence of different concentrations of glucose.

Parameter	Sensor 1	Sensor 2	Sensor 3	Average
Sensitivity [pA µM ⁻¹]	0.064	0.045	0.043	0.051 ± 0.012
Electrode diameter [µm]	1.50	1.42	1.56	1.50 ± 0.07
Electrode area [µm²]	1.77	1.58	1.91	1.75 ± 0.16
Sensitivity [pA μM ⁻¹ μm ⁻²]	0.036	0.029	0.023	0.029 ± 0.007
Noise [pA]	0.22	0.24	0.2	0.22 ± 0.02
Limit of detection LOD [µM]	10.3	16.0	14.0	13.4 ± 2.9
Limit of quantitation LOQ [µM]	34.3	53.3	46.7	44.8 ± 9.6
Linear range [µM]	80–400	80–400	80–400	80–400
Correlation coefficient R ²	0.988	0.992	0.993	-