Supplementary Information for

Construction of a bioluminescence-based assay for bitter taste receptors (TAS2Rs)

Shi Min Tan, Wei-Guang Seetoh*

Taste Receptors Platform, Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673

> Corresponding author *Email: seetoh_wei_guang@sifbi.a-star.edu.sg

Supplementary Table S1. Amino acid sequences of the SST₃-TAS2Rs used in this study.

SST₃ signal sequence (underlined) Linker (in italics) Flag tag (in bold)

Bitter taste receptor	Amino acid sequence
TAS2R3	MAAVTYPSSVPTTLDPGNASSAWPLDTSLGNASAGTSLAGLAVSGLEMGLTEGVFLILSGTQFTLGILVNCFI
	ELVNGSSWFKTKRMSLSDFIITTLALLRIILLCIILTDSFLIEFSPNTHDSGIIMQIIDVSWTFTNHLSIWLATCLG
	VLYCLKIASFSHPTFLWLKWRVSRVMVWMLLGALLLSCGSTASLINEFKLYSVFRGIEATRNVTEHFRKKRS
	EYYLIHVLGTLWYLPPLIVSLASYSLLIFSLGRHTRQMLQNGTSSRDPTTEAHKRAIRIILSFFFLFLLYFLAFLI
	ASFGNFLPKTKMAKMIGEVMTMFYPAGHSFILILGNSKLKQTFVVMLRCESGHLKPGSKGPIFS DYKDDDD
	K
TAS2R4	$\underline{MAAVTYPSSVPTTLDPGNASSAWPLDTSLGNASAGTSLAGLAVSG} LE LRLFYFSAIIASVILNFVGIIMNLFIT$
	VVNCKTWVKSHRISSSDRILFSLGITRFLMLGLFLVNTIYFVSSNTERSVYLSAFFVLCFMFLDSSSVWFVTLL
	NILYCVKITNFQHSVFLLLKRNISPKIPRLLLACVLISAFTTCLYITLSQASPFPELVTTRNNTSFNISEGILSLVV
	SLVLSSSLQFIINVTSASLLIHSLRRHIQKMQKNATGFWNPQTEAHVGAMKLMVYFLILYIPYSVATLVQYLP
	FYAGMDMGTKSICLIFATLYSPGHSVLIIITHPKLKTTAKKILCFKK DYKDDDDK
TAS2R5	<u>MAAVTYPSSVPTTLDPGNASSAWPLDTSLGNASAGTSLAGLAVSG</u> LELSAGLGLLMLVAVVEFLIGLIGNGS
	LVVWSFREWIRKFNWSSYNLIILGLAGCRFLLQWLIILDLSLFPLFQSSRWLRYLSIFWVLVSQASLWFATFL
	SVFYCKKITTFDRPAYLWLKQRAYNLSLWCLLGYFIINLLLTVQIGLTFYHPPQGNSSIRYPFESWQYLYAFQ
	LNSGSYLPLVVFLVSSGMLIVSLYTHHKKMKVHSAGRRDVRAKAHITALKSLGCFLLLHLVYIMASPFSITS
	KTYPPDLTSVFIWETLMAAYPSLHSLILIMGIPRVKQTCQKILWKTVCARRCWGP DYKDDDDK
TAS2R7	<u>MAAVTYPSSVPTTLDPGNASSAWPLDTSLGNASAGTSLAGLAVSG</u> LEADKVQTTLLFLAVGEFSVGILGNA
	FIGLVNCMDWVKKRKIASIDLILTSLAISRICLLCVILLDCFILVLYPDVYATGKEMRIIDFFWTLTNHLSIWFA
	TCLSIYYFFKIGNFFHPLFLWMKWRIDRVISWILLGCVVLSVFISLPATENLNADFRFCVKAKRKTNLTWSCR
	VNKTQHASTKLFLNLATLLPFCVCLMSFFLLILSLRRHIRRMQLSATGCRDPSTEAHVRALKAVISFLLLFIAY
	YLSFLIATSSYFMPETELAVIFGESIALIYPSSHSFILILGNNKLRHASLKVIWKVMSILKGRKFQQHKQI DYKD
	DDDK

TAS2R8	MAAVTYPSSVPTTLDPGNASSAWPLDTSLGNASAGTSLAGLAVSG <i>LE</i> FSPADNIFIILITGEFILGILGNGYIAL
	VNWIDWIKKKKISTVDYILTNLVIARICLISVMVVNGIVIVLNPDVYTKNKQQIVIFTFWTFANYLNMWITTC
	LNVFYFLKIASSSHPLFLWLKWKIDMVVHWILLGCFAISLLVSLIAAIVLSCDYRFHAIAKHKRNITEMFHVS
	KIPYFEPLTLFNLFAIVPFIVSLISFFLLVRSLWRHTKQIKLYATGSRDPSTEVHVRAIKTMTSFIFFFLYYISSI
	LMTFSYLMTKYKLAVEFGEIAAILYPLGHSLILIVLNNKLRQTFVRMLTCRKIACMIDYKDDDDK
TAS2R9 (A187)	MAAVTYPSSVPTTLDPGNASSAWPLDTSLGNASAGTSLAGLAVSGLEPSAIEAIYIILIAGELTIGIWGNGFIV
	LVNCIDWLKRRDISLIDIILISLAISRICLLCVISLDGFFMLLFPGTYGNSVLVSIVNVVWTFANNSSLWFTSCLS
	IFYLLKIANISHPFFFWLKLKINKVMLAILLGSFLISLIISVPKNDDMWYHLFKVSHEENITWKFKVSKIPGTFK
	QLTLNLGAMVPFILCLISFFLLLFSLVRHTKQIRLHATGFRDPSTEAHMRAIKAVIIFLLLLIVYYPVFLVMTSS
	ALIPQGKLVLMIGDIVTVIFPSSHSFILIMGNSKLREAFLKMLRFVKCFLRRRKPFVP DYKDDDDK
TAS2R10	MAAVTYPSSVPTTLDPGNASSAWPLDTSLGNASAGTSLAGLAVSGLELRVVEGIFIFVVVSESVFGVLGNGFI
	GLVNCIDCAKNKLSTIGFILTGLAISRIFLIWIIITDGFIQIFSPNIYASGNLIEYISYFWVIGNQSSMWFATSLSIF
	YFLKIANFSNYIFLWLKSRTNMVLPFMIVFLLISSLLNFAYIAKILNDYKTKNDTVWDLNMYKSEYFIKQILL
	NLGVIFFFTLSLITCIFLIISLWRHNRQMQSNVTGLRDSNTEAHVKAMKVLISFIILFILYFIGMAIEISCFTVRE
	NKLLLMFGMTTTAIYPWGHSFILILGNSKLKQASLRVLQQLKCCEKRKNLRVT DYKDDDDK
TAS2R13	MAAVTYPSSVPTTLDPGNASSAWPLDTSLGNASAGTSLAGLAVSGLEESALPSIFTLVIIAEFIIGNLSNGFIVL
	INCIDWVSKRELSSVDKLLIILAISRIGLIWEILVSWFLALHYLAIFVSGTGLRIMIFSWIVSNHFNLWLATIFSIF
	YLLKIASFSSPAFLYLKWRVNKVILMILLGTLVFLFLNLIQINMHIKDWLDRYERNTTWNFSMSDFETFSVSV
	KFTMTMFSLTPFTVAFISFLLLIFSLQKHLQKMQLNYKGHRDPRTKVHTNALKIVISFLLFYASFFLCVLISWI
	SELYQNTVIYMLCETIGVFSPSSHSFLLILGNAKLRQAFLLVAAKVWAKR DYKDDDDK
TAS2R14	<u>MAAVTYPSSVPTTLDPGNASSAWPLDTSLGNASAGTSLAGLAVSG</u> LEGGVIKSIFTFVLIVEFIIGNLGNSFIA
	LVNCIDWVKGRKISSVDRILTALAISRISLVWLIFGSWCVSVFFPALFATEKMFRMLTNIWTVINHFSVWLAT
	GLGTFYFLKIANFSNSIFLYLKWRVKKVVLVLLLVTSVFLFLNIALINIHINASINGYRRNKTCSSDSSNFTRFS
	SLIVLTSTVFIFIPFTLSLAMFLLLIFSMWKHRKKMQHTVKISGDASTKAHRGVKSVITFFLLYAIFSLSFFISV
	WTSERLEENLIILSQVMGMAYPSCHSCVLILGNKKLRQASLSVLLWLRYMFKDGEPSGHKEFRESSDYKDD
	DDK
TAS2R16	MAAVTYPSSVPTTLDPGNASSAWPLDTSLGNASAGTSLAGLAVSGLEIPIQLTVFFMIIYVLESLTIIVQSSLIV
	AVLGREWLQVRRLMPVDMILISLGISRFCLQWASMLNNFCSYFNLNYVLCNLTITWEFFNILTFWLNSLLTV
	FYCIKVSSFTHHIFLWLRWRILRLFPWILLGSLMITCVTIIPSAIGNYIQIQLLTMEHLPRNSTVTDKLENFHQY

	QFQAHTVALVIPFILFLASTIFLMASLTKQIQHHSTGHCNPSMKARFTALRSLAVLFIVFTSYFLTILITIIGTLF
	DKRCWLWVWEAFVYAFILMHSTSLMLSSPTLKRILKGKC DYKDDDDK
TAS2R20	MAAVTYPSSVPTTLDPGNASSAWPLDTSLGNASAGTSLAGLAVSGLEMSFLHIVFSILVVVAFILGNFANGFI
	ALINFIAWVKRQKISSADQIIAALAVSRVGLLWVILLHWYSTVLNPTSSNLKVIIFISNAWAVTNHFSIWLATS
	LSIFYLLKIVNFSRLIFHHLKRKAKSVVLVIVLGSLFFLVCHLVMKHTYINVWTEECEGNVTWKIKLRNAMH
	LSNLTVAMLANLIPFTLTLISFLLLIYSLCKHLKKMQLHGKGSQDPSTKIHIKALQTVTSFLILLAIYFLCLIISF
	WNFKMRPKEIVLMLCQAFGIIYPSFHSFILIWGNKTLKQTFLSVLWQVTCWAKGQNQSTPDYKDDDDK
TAS2R30	MAAVTYPSSVPTTLDPGNASSAWPLDTSLGNASAGTSLAGLAVSGLEITFLPIIFSILIVVIFVIGNFANGFIAL
	VNSIEWVKRQKISFVDQILTALAVSRVGLLWVLLLHWYATQLNPAFYSVEVRITAYNVWAVTNHFSSWLA
	TSLSMFYLLRIANFSNLIFLRIKRRVKSVVLVILLGPLLFLVCHLFVINMDETVWTKEYEGNVTWKIKLRSAM
	YHSNMTLTMLANFVPLTLTLISFLLLICSLCKHLKKMQLHGKGSQDPSTKVHIKALQTVTSFLLLCAIYFLSM
	IISVCNFGRLEKQPVFMFCQAIIFSYPSTHPFILILGNKKLKQIFLSVLRHVRYWVKDRSLRLHRFTRGALCVF
	DYKDDDDK
TAS2R31 (WMVI)	MAAVTYPSSVPTTLDPGNASSAWPLDTSLGNASAGTSLAGLAVSGLETTFIPIIFSSVVVVLFVIGNFANGFIA
, , ,	LVNSIEWVKRQKISFADQILTALAVSRVGLLWVLLLNWYSTVFNPAFYSVEVRTTAYNVWAVTGHFSNWL
	ATSLSIFYLLKIÄNFSNLIFLHLKRRVKSVILVMLLGPLLFLACQLFVINMKEIVRTKEYEGNMTWKIKLRSA
	VYLSDATVTTLGNLVPFTLTLLCFLLLICSLCKHLKKMQLHGKGSQDPSTKVHIKVLQTVIFFLLLCAIYFLSI
	MISVWSFGSLENKPVFMFCKAIRFSYPSIHPFILIWGNKKLKQTFLSVLRQVRYWVKGEKPSSP DYKDDDDK
TAS2R38 (PAV)	MAAVTYPSSVPTTLDPGNASSAWPLDTSLGNASAGTSLAGLAVSGLELTLTRIRTVSYEVRSTFLFISVLEFA
	VGFLTNAFVFLVNFWDVVKRQPLSNSDCVLLCLSISRLFLHGLLFLSAIQLTHFQKLSEPLNHSYQAIIMLWM
	IANQANLWLAACLSLLYCSKLIRFSHTFLICLASWVSRKISQMLLGIILCSCICTVLCVWCFFSRPHFTVTTVL
	FMNNNTRLNWQNKDLNLFYSFLFCYLWSVPPFLLFLVSSGMLTVSLGRHMRTMKVYTRNSRDPSLEAHIK
	ALKSLVSFFCFFVISSCAAFISVPLLILWRDKIGVMVCVGIMAACPSGHAAVLISGNAKLRRAVMTILLWAQS
	SLKVRADHKADSRTLC DYKDDDDK
TAS2R39	MAAVTYPSSVPTTLDPGNASSAWPLDTSLGNASAGTSLAGLAVSGLELGRCFPPDTKEKQQLRMTKLCDPA
	ESELSPFLITLILAVLLAEYLIGIIANGFIMAIHAAEWVQNKAVSTSGRILVFLSVSRIALQSLMMLEITISSTSLS
	FYSEDAVYYAFKISFIFLNFCSLWFAAWLSFFYFVKIANFSYPLFLKLRWRITGLIPWLLWLSVFISFSHSMFCI
	NICTVYCNNSFPIHSSNSTKKTYLSEINVVGLAFFFNLGIVTPLIMFILTATLLILSLKRHTLHMGSNATGSNDP
	SMEAHMGAIKAISYFLILYIFNAVALFIYLSNMFDINSLWNNLCQIIMAAYPASHSILLIQDNPGLRRAWKRL

	QLRLHLYPKEWTL DYKDDDDK
TAS2R43	<u>MAAVTYPSSVPTTLDPGNASSAWPLDTSLGNASAGTSLAGLAVSG</u> LEITFLPIIFSSLVVVTFVIGNFANGFIA
	LVNSIEWFKRQKISFADQILTALAVSRVGLLWVLLLNWYSTVLNPAFNSVEVRTTAYNIWAVINHFSNWLA
	TTLSIFYLLKIANFSNFIFLHLKRRVKSVILVMLLGPLLFLACHLFVINMNEIVRTKEFEGNMTWKIKLKSAM
	YFSNMTVTMVANLVPFTLTLLSFMLLICSLCKHLKKMQLHGKGSQDPSTKVHIKALQTVISFLLLCAIYFLSI
	MISVWSFGSLENKPVFMFCKAIRFSYPSIHPFILIWGNKKLKQTFLSVFWQMRYWVKGEKTSSP DYKDDDD
	K
TAS2R46	<u>MAAVTYPSSVPTTLDPGNASSAWPLDTSLGNASAGTSLAGLAVSG</u> LEITFLPIIFSILIVVTFVIGNFANGFIAL
	VNSIEWFKRQKISFADQILTALAVSRVGLLWVLVLNWYATELNPAFNSIEVRITAYNVWAVINHFSNWLAT
	SLSIFYLLKIANFSNLIFLHLKRRVKSVVLVILLGPLLFLVCHLFVINMNQIIWTKEYEGNMTWKIKLRSAMY
	LSNTTVTILANLVPFTLTLISFLLLICSLCKHLKKMQLHGKGSQDPSMKVHIKALQTVTSFLLLCAIYFLSIIMS
	VWSFESLENKPVFMFCEAIAFSYPSTHPFILIWGNKKLKQTFLSVLWHVRYWVKGEKPSSS DYKDDDDK
TAS2R50	<u>MAAVTYPSSVPTTLDPGNASSAWPLDTSLGNASAGTSLAGLAVSG</u> LEITFLYIFFSILIMVLFVLGNFANGFIA
	LVNFIDWVKRKKISSADQILTALAVSRIGLLWALLLNWYLTVLNPAFYSVELRITSYNAWVVTNHFSMWLA
	ANLSIFYLLKIANFSNLLFLHLKRRVRSVILVILLGTLIFLVCHLLVANMDESMWAEEYEGNMTGKMKLRNT
	VHLSYLTVTTLWSFIPFTLSLISFLMLICSLCKHLKKMQLHGEGSQDLSTKVHIKALQTLISFLLLCAIFFLFLI
	VSVWSPRRLRNDPVVMVSKAVGNIYLAFDSFILIWRTKKLKHTFLLILCQIRC DYKDDDDK

Gene name	Protein name	Receptor	Putative signal sequence
ADRA2A	Alpha-2A adrenergic receptor	a _{2A}	MGSLQPDAGNASWNGTEAPGGGARATPYSLQVT
BDKRB2	B2 bradykinin receptor	B ₂	MLNITSQVLAPALNGSVSQSSGCPNTEWSGWLNVIQ
C5AR1	C5a anaphylatoxin chemotactic receptor 1	C5a1	MDSFNYTTPDYGHYDDKDTLDLNTPVDKTSNT
CCKBR	Gastrin/cholecystokinin type B receptor	CCK ₂	MDLLKLNRSLQGPGPGSGSSLCRPGVSLLNSSSAGNLSCETPRIRGTGTRELELTIR
CCR1	C-C chemokine receptor type 1	CCR1	METPNTTEDYDTTTEFDYGDATPCQKVNERAFGA
CCR10	C-C chemokine receptor type 10	CCR10	MGTEATEQVSWGHYSGDEEDAYSAEPLPELCYKADVQAFSRAFQPSVSLTVA
CCR2	C-C chemokine receptor type 2	CCR2	MLSTSRSRFIRNTNESGEEVTTFFDYDYGAPCH
CCR3	C-C chemokine receptor type 3	CCR3	MTTSLDTVETFGTTSYYDDVGLLCEKADTRALMA
CCR4	C-C chemokine receptor type 4	CCR4	MNPTDIADTTLDESIYSNYYLYESIPKPCTKEGIKAF
CCR6	C-C chemokine receptor type 6	CCR6	MSGESMNFSDVFDSSEDYFVSVNTSYYSVDSEMLLCSLQEVRQFSRL
CCR8	C-C chemokine receptor type 8	CCR8	MDYTLDLSVTTVTDYYPDIFSSPCDAELIQTNGK
CHRM3	Muscarinic acetylcholine receptor M3	M ₃	MTLHSNSTTSPLFPNISSSWVHSPSEAGLPLGTVTQLGSYNISQETGNFSSNDTSSDPLG
CX3CR1	CX3C chemokine receptor 1	CX ₃ CR1	MSTSFPELDLENFEYDDSAEACYLGDIVAFGT
CXCR1	C-X-C chemokine receptor type 1	CXCR1	MSNITDPQMWDFDDLNFTGMPPADEDYSPCMLETETLNK
CXCR2	C-X-C chemokine receptor type 2	CXCR2	MEDFNMESDSFEDFWKGEDLSNYSYSSTLPPFLLDAAPCEPESLEINK
CXCR3	C-X-C chemokine receptor type 3	CXCR3	MVLEVSDHQVLNDAEVAALLENFSSSYDYGENESDSCCTSPPCPQDFSLNFDR
CXCR5	C-X-C chemokine receptor type 5	CXCR5	MNYPLTLEMDLENLEDLFWELDRLDNYNDTSLVENHLCPATEGPLMASFKAVFV
CXCR6	C-X-C chemokine receptor type 6	CXCR6	MAEHDYHEDYGFSSFNDSSQEEHQDFLQFSKV
GALR1	Galanin receptor type 1	GAL ₁	MELAVGNLSEGNASWPEPPAPEPGPLFGIGVENFVT
GNRHR	Gonadotropin-releasing hormone receptor	GnRH ₁	MANNASLEQDPNHCSAINNSIPLIQGKLPTLTVSGKIR
GDED 1	G protain coupled estrogen recentor 1	GDED	MDVTSQARGVGLEMYPGTAQPAAPNTTSPELNLSHPLLGTALANGTGELSEHQQYVIG
ULKI	G-protein coupled estrogen receptor 1	ULK	LFLS
GPR12	G-protein coupled receptor 12	GPR12	MNEDLKVNLSGLPRDYLDAAAAENISAAVSSRVPAVEPEPELVVNPW
GPR182	G-protein coupled receptor 182	GPR182	MSVIPSSRPVSTLAPDNDFREIHNWTELLHLFNQTFSDCHMELNENTKQVVLF
GPR20	G-protein coupled receptor 20	GPR20	MPSALSMRPWDAALPNTTAAAWTNGSVPEMPLFHHFARLDEELQAT
GRPR	Gastrin-releasing peptide receptor	BB ₂	MAPNNCSHLNLDVDPFLSCNDTFNQSLSPPKMDNWFHPG
HCRTR1	Orexin receptor type 1	OX ₁	MEPSATPGPQMGVPTGVGDPSLVPPDYEEEFLSYLWRDYLYPKQYE
HRH3	Histamine H3 receptor	H ₃	MERAPPDGPLNASGALAGEAAAAGGARGFSAAWTAVLAA

Supplementary Table S2. Putative signal sequences of 55 non-olfactory Class A GPCRs used in the study.

HTR1A	5-hydroxytryptamine receptor 1A	5-HT _{1A}	MDVLSPGQGNNTTSPPAPFETGGNTTGISDVTVSYQ
HTR1B	5-hydroxytryptamine receptor 1B	5-HT _{1B}	MEEPGAQCAPPPPAGSETWVPQANLSSAPSQNCSAKD
HTR1D	5-hydroxytryptamine receptor 1D	5-HT _{1D}	MSPLNQSAEGLPQEASNRSLNATETSEAWDPRTLQAL
	5 hydroxyteming recentor 2A	5 UT	MDILCEENTSLSSTTNSLMQLNDDTRLYSNDFNSGEANTSDAFNWTVDSENRTNLSCE
HIK2A	5-nydroxytryptamine receptor 2A	3-H12A	GCLSPSCLSLL
HTR2B	5-hydroxytryptamine receptor 2B	5-HT _{2B}	MALSYRVSELQSTIPEHILQSTFVHVISSNWSGLQTESIPEEMKQIV
KISS1R	KiSS-1 receptor	kisspeptin	MAAEATLGPNVSWWAPSNASGCPGCGVNASDGPGSAPRPLDAWLVP
MAS1L	Mas-related G-protein coupled receptor	MAS1L	MVWGKICWFSQRAGWTVFAESQISLSCSLCLHSGDQEAQNPNLVSQLCGVFLQNETN
MC3R	Melanocortin receptor 3	MC ₃	MNSSCCLSSVSPMLPNLSEHPAAPPASNRSGSGFCEQ
MLNR	Motilin receptor	motilin	MGSPWNGSDGPEGAREPPWPALPPCDERRCSPFPL
MRGPRD	Mas-related G-protein coupled receptor member D	MRGPRD	MNQTLNSSGTVESALNYSRGSTVHTAYLVLSSL
MRGPRX2	Mas-related G-protein coupled receptor member X2	MRGPRX2	MDPTTPAWGTESTTVNGNDQALLLLCGKETLIP
MTNR1B	Melatonin receptor type 1B	MT ₂	MSENGSFANCCEAGGWAVRPGWSGAGSARPSRTPRPP
NPBWR1	Neuropeptides B/W receptor type 1	NPBW ₁	MHNLSLFEPGRGNVSCGGPFLGCPNESNPAPLPLPQPLA
NPSR1	Neuropeptide S receptor	NPS	MPANFTEGSFDSNGTGQMLDSSPVACTETVTFTEVVEGKEWGSFYYSFKTEQ
NPY1R	Neuropeptide Y receptor type 1	Y ₁	MNSTLFSKVENHSIHYNASENSPLLAFENDDCH
NPY2R	Neuropeptide Y receptor type 2	Y ₂	MGPIGAEADENQTVEEMKVEQYGPQTTPRGELVPDPEPELIDSTKLIEVQV
OPN5	Opsin-5	OPN5	MALNHTALPQDERLPHYLRDGDPFASKLSWEAD
OPRL1	Nociceptin receptor	NOP	MEPLFPAPFWEVIYGSHLQGNLSLLSPNHSLLPPHLLLNASHGAFLPL
OXGR1	2-oxoglutarate receptor 1	oxoglutarate	MIETLDSPANDSDFLDYITALENCTDEQISFKMQYLP
P2RY13	P2Y purinoceptor 13	P2Y ₁₃	MTAAIRRQRELSILPKVTLEAMNTTVMQGFNRSERCPRDTRIVQLVFPA
PRLHR	Prolactin-releasing peptide receptor	PrRP	MASLPTQGPAAPDFFNGLLPASSSPVNQSSETVVGNGSAAGPGSQAITPFQSLQLVHQL KGL
PROKR1	Prokineticin receptor 1	PKR ₁	METTMGFMDDNATNTSTSFLSVLNPHGAHATSFPFNFSYSDYDMPLDEDEDVTNSRTF FAAK
PROKR2	Prokineticin receptor 2	PKR ₂	MAAQNGNASFPANFSIPQEHASSLPFNFSYDDYDLPLDEDEDMTKTQTFFAAK
PTGDR2	Prostaglandin D2 receptor 2	DP ₂	MANITLKPLCPLLEEMVQLPNHSNSSLRYIDHVS
RHO	Rhodopsin	rhodopsin	MNGTEGPNFYVPFSNKTGVVRSPFEYPQYYLAE
S1PR1	Sphingosine 1-phosphate receptor 1	S1P ₁	MGPTSVPLVKAHRSSVSDYVNYDIIVRHYNYTGKLNISADKENSIK

SSTR3	Somatostatin receptor type 3	SST ₃	MAAVTYPSSVPTTLDPGNASSAWPLDTSLGNASAGTSLAGLAVSG
SSTR5	Somatostatin receptor type 5	SST ₅	MEPLSLTSTPSWNASAASSSSHNWSLVDPVSPMGA

Supplementary Table S3. Amino acid sequences of the HiBiT-tagged TAS2R constructs used in the cell surface expression study.

Signal sequence (underlined, where X denotes amino acid sequence of the signal sequence in Supplementary Table S2) Linker (in italics) HiBiT tag (in bold)

Bitter taste receptor	Amino acid sequence
TAS2R20	<u>X</u> EFGGGSGGSSSGGVSGWRLFKKISGGSGGGGGGGGGGGGGGSGGSSGGVDMSFLHIVFSILVVVAFILGNFANGFIALINFI
	AWVKRQKISSADQIIAALAVSRVGLLWVILLHWYSTVLNPTSSNLKVIIFISNAWAVTNHFSIWLATSLSIFYL
	LKIVNFSRLIFHHLKRKAKSVVLVIVLGSLFFLVCHLVMKHTYINVWTEECEGNVTWKIKLRNAMHLSNLT
	VAMLANLIPFTLTLISFLLLIYSLCKHLKKMQLHGKGSQDPSTKIHIKALQTVTSFLILLAIYFLCLIISFWNFK
	MRPKEIVLMLCQAFGIIYPSFHSFILIWGNKTLKQTFLSVLWQVTCWAKGQNQSTP
TAS2R38 (PAV)	XEFGGGSGGSSSGGVSGWRLFKKISGGSGGGGSGGSSSGGVDLTLTRIRTVSYEVRSTFLFISVLEFAVGFLT
	NAFVFLVNFWDVVKRQPLSNSDCVLLCLSISRLFLHGLLFLSAIQLTHFQKLSEPLNHSYQAIIMLWMIANQA
	NLWLAACLSLLYCSKLIRFSHTFLICLASWVSRKISQMLLGIILCSCICTVLCVWCFFSRPHFTVTTVLFMNNN
	TRLNWQNKDLNLFYSFLFCYLWSVPPFLLFLVSSGMLTVSLGRHMRTMKVYTRNSRDPSLEAHIKALKSLV
	SFFCFFVISSCAAFISVPLLILWRDKIGVMVCVGIMAACPSGHAAVLISGNAKLRRAVMTILLWAQSSLKVRA
	DHKADSRTLC
TAS2R50	<u>X</u> EFGGGSGGSSSGGV SGWRLFKKIS GGSGGGGGGGGGGGGGSGGSSSGGVDITFLYIFFSILIMVLFVLGNFANGFIALVNFI
	DWVKRKKISSADQILTALAVSRIGLLWALLLNWYLTVLNPAFYSVELRITSYNAWVVTNHFSMWLAANLSI
	FYLLKIANFSNLLFLHLKRRVRSVILVILLGTLIFLVCHLLVANMDESMWAEEYEGNMTGKMKLRNTVHLS
	YLTVTTLWSFIPFTLSLISFLMLICSLCKHLKKMQLHGEGSQDLSTKVHIKALQTLISFLLLCAIFFLFLIVSVW
	SPRRLRNDPVVMVSKAVGNIYLAFDSFILIWRTKKLKHTFLLILCQIRC

Dittor Decentor	Compound	EC50 values	Published EC50	
Bitter Receptor	Compound	293AD	AD-293	values
TAS2R3	Chloroquine diphosphate	$45\pm14\;\mu M$	-	$172\pm29\;\mu M^1$
TAS2R4	Stevioside	$7 \pm 2 \text{ mM}$	$7 \pm 3 \text{ mM}$	$341\pm34~\mu M^2$
TAS2R5	Epigallocatechin gallate	$47 \pm 11 \ \mu M$	-	$12.3 \pm 3.63 \ \mu M^3$
	Calcium chloride	$5\pm0.5\ mM$	$4 \pm 1 \text{ mM}$	$5.27\pm0.5\ mM^4$
TAS2R7	Magnesium chloride	-	$75 \pm 9 \text{ mM}$	$\begin{array}{c} 6.07 \pm 1.07 \ mM^4 \\ 10 \pm 19.6 \ mM^5 \end{array}$
	Zinc sulphate	-	$83 \pm 11 \text{ mM}$	$33.36 \pm 0.14 \text{ mM}^4$
	Manganese (II) chloride	-	$28 \pm 5 \text{ mM}$	$\begin{array}{c} 6.59 \pm 1.73 \ mM^4 \\ 10 \pm 1.7 \ mM^5 \end{array}$
TACODO	Chloramphenicol	$18\pm2.7\;\mu M$	$70 \pm 12 \ \mu M$	41 μM ⁶
TAS2K8	Denatonium benzoate	-	1 ± 0.1 mM	-
	Sucralose	-	$11 \pm 4 \text{ mM}$	-
TAS2R9	Pirenzepine	$4\pm0.4\ mM$	-	1.8 mM^7
TAS2R10	Brucine	$21 \pm 6.5 \ \mu M$	$42 \pm 3 \ \mu M$	-
TAS2R13	Oxyphenonium	$161 \pm 16 \ \mu M$	-	-
	Flufenamic acid	$422\pm96\ nM$	$1,490 \pm 481 \text{ nM}$	$\begin{array}{c} 137 \pm 17 \ nM^{1} \\ 238 \pm 12.9 \ nM^{8} \end{array}$
TAS2R14	Aristolochic acid	$2.2 \pm 1 \ \mu M$	-	-
	Picrotoxinin	$54\pm8.4~\mu M$	-	$\begin{array}{c} 2.6 \ \mu M^9 \\ 13.16 \pm 0.93 \ \mu M^{10} \\ 18 \ \mu M^{11} \end{array}$

Supplementary Table S4. EC₅₀ values of TAS2R agonists. Values indicate the mean \pm s.e.m. (n = 2-4).

	Salicin	$0.4 \pm 0.2 \text{ mM}$	2 ± 0.6 mM	$\begin{array}{c} 0.8 \pm 0.2 \ mM^{12} \\ 1.4 \pm 0.2 \ mM^{1} \\ 0.417 \ mM^{13} \\ 0.22 \ mM^{14} \end{array}$
	Helicin	-	$3 \pm 0.2 \text{ mM}$	$2.3 \pm 0.4 \text{ mM}^{1,15}$
TAS2R16	Arbutin	-	$5 \pm 1.2 \text{ mM}$	$\begin{array}{c} 5.5 \pm 1.9 \ mM^{12} \\ 5.8 \pm 0.9 \ mM^{1} \\ 1.34 \ mM^{14} \end{array}$
	Sinigrin	-	$70 \pm 18 \text{ mM}$	0.23 mM ¹⁶
	Phenyl β-D-glucopyranoside	-	$2 \pm 0.1 \text{ mM}$	$\begin{array}{c} 1.1 \pm 0.1 \ mM^{15} \\ 0.38 \ mM^{14} \end{array}$
TAS2R20	Cromolyn	$35\pm7\;\mu M$	$73\pm26~\mu M$	$\begin{array}{c} 45\pm 25 \ \mu M^{1} \\ 64.37\pm 13 \ \mu M^{17} \end{array}$
TAS2R30	Amarogentin	$3 \pm 1 \ \mu M$	-	-
TAS2R31	Aristolochic acid	$186 \pm 70 \text{ nM}$	-	$\begin{array}{c} 455 \pm 5.3 \ nM^{1} \\ 130 \pm 10 \ nM^{18} \\ 240 \ nM \ (WMVI)^{19} \\ 810 \ nM \ (RLAV)^{19} \end{array}$
	Propylthiouracil	$0.9\pm0.3\;\mu M$	$6 \pm 2 \ \mu M$	$\begin{array}{c} 2.1 \pm 0.9 \ \mu M^1 \\ 1.5 \ \mu M^{20} \\ 2.2 \ \mu M^{21} \end{array}$
TAS2R38	Phenylthiocarbamide	-	$2 \pm 0.4 \ \mu M$	$\begin{array}{c} 1.1 \pm 0.5 \ \mu M^1 \\ 6 \ \mu M^{22} \\ 4.5 \ \mu M^{20} \\ 2.3 \ \mu M^{21} \end{array}$
	N-acetylthiourea	-	$16 \pm 8 \ \mu M$	$25\pm16~\mu M^1$
	Dimethyl thioformamide	-	$79 \pm 12 \ \mu M$	$59\pm17\;\mu M^1$

	-		-	
TAS2R39	Epigallocatechin gallate	$141\pm44~\mu M$	$362\pm81~\mu M$	$\begin{array}{l} 8.50 \pm 2.84 \ \mu M^3 \\ 161 \ \mu M^{23} \\ 181.6 \ \mu M^{24} \end{array}$
	Aristolochic acid	$20 \pm 4 \ nM$	$26 \pm 3 \text{ nM}$	$\frac{8 \text{ nM}^{19}}{81 \pm 0.8 \text{ nM}^{1}}$
TAS2R43	Aloin	-	$5\pm3~\mu M$	$\begin{array}{c} 1.2 \ \mu M^{19} \\ 2.8 \pm 0.4 \ \mu M^{1} \\ 35 \ \mu M^{21} \end{array}$
	Caffeine	-	$0.39\pm0.12\ mM$	$0.94 \pm 0.14 \ mM^{25}$
TAS2R46	Strychnine	309 ± 73 nM	1,201 ± 433 nM	$\begin{array}{l} 0.39 \pm 0.08 \ \mu M^{26} \\ 0.43 \pm 0.02 \ \mu M^{27} \\ 3.47 \ \mu M^{28} \end{array}$
TAS2R50	Andrographolide	$2\pm0.3~\mu M$	$16 \pm 3 \ \mu M$	$22.9\pm4.9~\mu M^1$

Supplementary Table S5. Projected EC_{50} of compounds that produced a partial dose-response curve when tested in transfected cells expressing both Ga16-gust44 and mt-clytin II.

Compound	EC50 value
Brucine	2.3 M
Chloroquine diphosphate	> 5 M
Calcium chloride	34 mM
Zinc sulphate	2.8 M
Sinigrin	>5 M

UniProt ID	Bitter taste receptor	Predicted length of extracellular N-terminus (number of amino acid residues)	<i>N</i> -glycosylation sites (amino acid position)*
Q9NYW7	TAS2R1	9	163
Q9NYW6	TAS2R3	6	166
Q9NYW5	TAS2R4	9	164, 165, 169
Q9NYW4	TAS2R5	1	155
Q9NYW3	TAS2R7	9	167, 175
Q9NYW2	TAS2R8	7	167
Q9NYW1	TAS2R9	9	164
Q9NYW0	TAS2R10	6	92, 158
Q9NYV9	TAS2R13	7	162, 166
Q9NYV8	TAS2R14	7	153, 162, 171
Q9NYV7	TAS2R16	1	80, 163
P59542	TAS2R19	1	161
P59543	TAS2R20	6	161, 176
P59541	TAS2R30	1	161, 176
P59538	TAS2R31	2	161
P59533	TAS2R38	17	89, 178
P59534	TAS2R39	30	185, 194
P59535	TAS2R40	14	170, 179
P59536	TAS2R41	7	167
Q7RTR8	TAS2R42	7	163
P59537	TAS2R43	1	161, 176
P59539	TAS2R45	1	161
P59540	TAS2R46	1	161 , 176
P59544	TAS2R50	1	161
P59551	TAS2R60	7	179

Supplementary Table S6. Summary of the predicted length of extracellular N-terminus and *N*-glycosylation sites in TAS2Rs.

*Numbers in bold indicate Asn residues that were reported to be *N*-glycosylated.²⁹

Supplementary Figure S1. The TAS2R construct used in the cell surface expression HiBiT assay consists of an N-terminal signal sequence fused to a HiBiT peptide, which is flanked by EFGGGSGGSSSGG and GGSGGGGGGGGGSGGSSGGVD linkers. This figure was generated using Adobe Illustrator (Version 25.4.1).

Supplementary Figure S2. (continued)

Supplementary Figure S2. Concentration-response curves of TAS2Rs upon stimulation with their cognate agonists in the bioluminescence-based intracellular calcium release assay in 293AD cells. Data points are shown as mean \pm s.e.m. from a representative experiment out of three independent biological replicates performed in technical quadruplicates.

Supplementary Figure S3. Concentration-response curves of TAS2R4/7 upon stimulation with their agonists in the bioluminescence-based intracellular calcium release assay in AD-293 cells. The potency value of cromolyn (EC₅₀ = 7.4 mM) obtained was similar to that reported in literature (EC₅₀ = 5.9-6.67 mM).⁴ While no potency value was reported for quinine against TAS2R4, our experimentally derived potency value (EC₅₀ = 50 μ M) was close to its reported minimal effective concentration (10 μ M) that elicited response from TAS2R4-expressing cells.¹ Data points are shown as mean \pm s.e.m. from a representative experiment out of two independent biological replicates performed in technical quadruplicates.

Supplementary Figure S4. Concentration-response curves of TAS2R agonists in cells transfected to express either a) $G\alpha 16$ -gust44 and mt-clytin II, or b) solely mt-clytin II. Data points are shown as mean \pm s.e.m. from a representative experiment out of three independent biological replicates performed in technical quadruplicates.

a pHK-Gα16-gust44-mt-clytin II

Supplementary Figure S5. Activation of calcium responses by LB medium and HBSS in AD-293 cells transfected to express a) both G α 16-gust44 and mt-clytin II, or b) solely mt-clytin II. Data points are shown as mean \pm s.e.m. from a representative experiment out of two independent biological replicates performed in technical quadruplicates.

References

- 1. Meyerhof, W. *et al.* The molecular receptive ranges of human TAS2R bitter taste receptors. *Chem. Senses* **35**, 157–170 (2009).
- 2. Hellfritsch, C., Brockho, A., Sta, F., Meyerhof, W. & Hofmann, T. Human psychometric and taste receptor responses to steviol glycosides. *J. Agric. Food Chem.* **60**, 6781–6793 (2012).
- 3. Soares, S. *et al.* Human bitter taste receptors are activated by different classes of polyphenols. *J. Agric. Food Chem.* **66**, 8814–8823 (2018).
- 4. Wang, Y. *et al.* Metal ions activate the human taste receptor TAS2R7. *Chem. Senses* 44, 339–347 (2019).
- 5. Behrens, M., Redel, U., Blank, K. & Meyerhof, W. The human bitter taste receptor TAS2R7 facilitates the detection of bitter salts. *Biochem. Biophys. Res. Commun.* **512**, 877–881 (2019).
- 6. Fotsing, J. R. *et al.* Discovery and development of S6821 and S7958 as potent TAS2R8 antagonists. *J. Med. Chem.* **63**, 4957–4977 (2020).
- Dotson, C. D. *et al.* Bitter taste receptors influence glucose homeostasis. *PLoS One* 3, e3974 https://doi.org/10.1371/journal.pone.0003974 (2008).
- Di Pizio, A. *et al.* Rational design of agonists for bitter taste receptor TAS2R14: from modeling to bench and back. *Cell. Mol. Life Sci.* 77, 531–542 (2020).
- Yamazaki, T., Narukawa, M., Mochizuki, M., Misaka, T. & Watanabe, T. Activation of the hTAS2R14 human bitter-taste receptor by (-)epigallocatechin gallate and (-)-epicatechin gallate. *Biosci. Biotechnol. Biochem.* 77, 1981–1983 (2013).
- Nowak, S. *et al.* Reengineering the ligand sensitivity of the broadly tuned human bitter taste receptor TAS2R14. *Biochim. Biophys. Acta - Gen. Subj.* 1862, 2162–2173 (2018).
- 11. Behrens, M. *et al.* The human taste receptor hTAS2R14 responds to a variety of different bitter compounds. *Biochem. Biophys. Res. Commun.* **319**, 479–485 (2004).
- 12. Soranzo, N. *et al.* Positive selection on a high-sensitivity allele of the human bitter-taste receptor TAS2R16. *Curr. Biol.* **15**, 1257–1265 (2005).
- 13. Kim, M. J., Son, H. J., Kim, Y., Misaka, T. & Rhyu, M. R. Umami-bitter interactions: The suppression of bitterness by umami peptides via human bitter taste receptor. *Biochem. Biophys. Res. Commun.* **456**, 586–590 (2015).
- Sakurai, T. *et al.* Characterization of the β-D-glucopyranoside binding site of the human bitter taste receptor hTAS2R16. *J. Biol. Chem.* 285, 28373–28378 (2010).
- Bufe, B., Hofmann, T., Krautwurst, D., Raguse, J. D. & Meyerhof, W. The human TAS2R16 receptor mediates bitter taste in response to βglucopyranosides. *Nat. Genet.* 32, 397–401 (2002).
- 16. Ji, M. *et al.* Identification of novel compounds for human bitter taste receptors. *Chem. Biol. Drug Des.* **84**, 63–74 (2014).
- 17. Jaggupilli, A. *et al.* Chemosensory bitter taste receptors (T2Rs) are activated by multiple antibiotics. *FASEB J.* **33**, 501–517 (2019).
- 18. Slack, J. P. *et al.* Modulation of bitter taste perception by a small molecule hTAS2R antagonist. *Curr. Biol.* **20**, 1104–1109 (2010).
- 19. Pronin, A. N. *et al.* Specific alleles of bitter receptor genes influence human sensitivity to the bitterness of aloin and saccharin. *Curr. Biol.* **17**, 1403–1408

(2007).

- Behrens, M., Gunn, H. C., Ramos, P. C. M., Meyerhof, W. & Wooding, S. P. Genetic, functional, and phenotypic diversity in TAS2R38-mediated bitter taste perception. *Chem. Senses* 38, 475–484 (2013).
- 21. Sandau, M. M., Goodman, J. R., Thomas, A., Rucker, J. B. & Rawson, N. E. A functional comparison of the domestic cat bitter receptors Tas2r38 and Tas2r43 with their human orthologs. *BMC Neurosci.* **16**, 1–11 (2015).
- 22. Greene, T. A. *et al.* Probenecid inhibits the human bitter taste receptor TAS2R16 and suppresses bitter perception of salicin. *PLoS One* **6**, e20123 https://doi.org/10.1371/journal.pone.002012 (2011).
- 23. Roland, W. S. U. *et al.* Bitter taste receptor activation by flavonoids and isoflavonoids: Modeled structural requirements for activation of hTAS2R14 and hTAS2R39. *J. Agric. Food Chem.* **61**, 10454–10466 (2013).
- 24. Narukawa, M. *et al.* Evaluation of the bitterness of green tea catechins by a cell-based assay with the human bitter taste receptor hTAS2R39. *Biochem. Biophys. Res. Commun.* **405**, 620–625 (2011).
- 25. Suess, B., Brockhoff, A., Meyerhof, W. & Hofmann, T. The odorant (R)citronellal attenuates caffeine bitterness by inhibiting the bitter receptors TAS2R43 and TAS2R46. J. Agric. Food Chem. **66**, 2301–2311 (2018).
- 26. Brockhoff, A. *et al.* Receptor agonism and antagonism of dietary bitter compounds. *J. Neurosci.* **31**, 14775–14872 (2011).
- 27. Brockhoff, A., Behrens, M., Massarotti, A., Appending, G. & Meyerhof, W. Broad tuning of the human bitter taste receptor hTAS2R46 to various sesquiterpene lactones, clerodane and labdane diterpenoids, strychnine, and denatonium. *J. Agric. Food Chem.* **55**, 6236–6243 (2007).
- Kuroda, Y. *et al.* Activation of human bitter taste receptors by polymethoxylated flavonoids. *Biosci. Biotechnol. Biochem.* 80, 2014–2017 (2016).
- 29. Reichling, C., Meyerhof, W. & Behrens, M. Functions of human bitter taste receptors depend on N-glycosylation. *J. Neurochem.* **106**, 1138–1148 (2008).