

Figure S1. Ae. aegypti AaCAT1 is a transmembrane protein that localizes to the plasma

membrane. a. Tertiary structure of the AaCAT1 protein was visualized using PyMOL (https:// pymol.org/2/). **b.** The TMHMM transmembrane prediction tool, Krogh et al. [39] was used to predict the transmembrane domains, and intracellular and extracellular regions of AaCAT1 to design the bait fragment for yeast two-hybrid analysis. **c.** AaCAT1 is predicted to localize to the plasma membrane as determined by the DeepLoc-1.0 subcellular localization tool, Almagro Armenteros et al. [52].

Entrez ID	Annotation	Organism	Proposed re- annotation	Source
VD 001662272 1		1 a gammati		Hansen et al. 2011,
XP_001662273.1	AaCATT	Ae. aegypti		Carpenter et al. 2012
XP_001659995.1	AaCAT2	Ae. aegypti		Carpenter et al. 2012
XP_001662274.1	AaCAT3	Ae. aegypti		Carpenter et al. 2012
XP 001659990.1	AaCAT4	Ae. aegypti		Carpenter et al. 2012
XP 001661832.1	AaCAT5	Ae. aegypti		Carpenter et al. 2012
5575859	Cationic amino acid transporter 2	Ae. aegypti	Cationic amino acid transporter 1	
5571884	Cationic amino acid transporter 2	Ae. aegypti		
5575863	Cationic amino acid transporter 3	Ae. aegypti		
5575110	Cationic amino acid transporter 3	Ae. aegypti	Cationic Amino acid transporter 5	
5575860	Cationic amino acid transporter 4	Ae. aegypti		
AAT73699.1	Cationic amino acid transporter slimfast	Ae. aegypti		Attardo et al. 2006
AKN80692.1	Slimfast	Ae. aegypti		Boudko et al. 2015
AAZ07714.1	iCAT2	Ae. aegypti		Attardo et al. 2006
5568181	Probable cationic amino acid transporter	Ae. aegypti		
35370	Torn and diminished rhabdomeres	D. melanogaster		
40510	Slimfast	D. melanogaster		
39622	CG7255	D. melanogaster		
39990	CG5535	D. melanogaster		
40254	CG13248	D. melanogaster		
32986	CG12531	D. melanogaster		

Table S1. Annotations of all CAT entries used for CAT annotation tree.

Entrez gene IDs are provided for all current gene annotations, and protein IDs are provided for previous annotations. Proposed re-annotations are based on MEGA, Tamura et al. [38] multiple sequence alignment and neighbor-joining tree analysis presented in Fig. 1a.

Identified potential prey	Number	NCBI Accession	Location in the cell
interactors	of hits	number	
eIF-2-alpha kinase activator GCN1	3	XP_001651826.2	Cytoplasm/ Ribosome
Sodium/potassium-transporting ATPase subunit beta-2	3	XP_001654893.1	Plasma membrane
PREDICTED: Aedes aegypti long-chain-fatty-acidCoA ligase 4 (LOC5574220), transcript variant X4, mRNA	2	XM_021849348.1	Peroxisome/ Mitochondria/ Plasma membrane/ Endoplasmic reticulum
Serine protease SP24D	2	XP_001659969.2	Cytoplasm/ Extracellular region
Protein dj-1beta	2	XP_001648396.2	Cytoplasm/ Mitochondria/ Nucleus
Serine/threonine-protein phosphatase 6 catalytic subunit	1	XP_001648846.1	Cytoplasm/ Mitochondria
14-3-3 protein zeta isoform X1	1	XP_001652301.1	Cytoplasm/ Endosome
PREDICTED: Aedes aegypti prostatic acid phosphatase (LOC5563717), transcript variant X3, mRNA	1	XM_021837530.1	Cytoplasm
Chymotrypsin-like protein	1	AAL85585.1	Cytoplasm
trypsin 3A1 isoform X1	1	XP_001652943.1	Cytoplasm
PREDICTED: Aedes aegypti serine protease easter (LOC5569890), mRNA	1	XM_001658734.3	Cytoplasm
Annexin B9 isoform X5	1	XP_021708898.1	Cytoplasm/ Endomembrane system
Guanine nucleotide-binding protein subunit beta-like protein	1	XP_001663282.1	Cytoplasm

 Table S2. Potential protein interactors identified from AaCAT1 yeast two-hybrid screen.

cNLS Mapper Result

Predicted NLSs in query sequence

MADAELGKALKDLPNRVLNVSLEERPELFRNVIDVLPNPGINATIVRGIC	50
KVIGTTLTKYKDPVSQGLVRELLVALLKQHPDLAYEHFNNVLKALVTKDL	100
AAAPPLKGAQAAVLALGWANLVALHGNHESDVGKKEFPKLIEIQAGLYQL	150
SLTSGIQKVSDKAYSFLKEFFAKKEDIDKVYFKKLIAMEPSSSGILLMSA	200
ILNYNKEEFEDHTLLDQNKAKLLDHVVKGLVTVKTKPHASDVTGCSILLS	250
AITKDEFKATILPALQRSMLRSPEVILRAVGAMVSEIPVDVSDFAMDLGK	300
TLVQNLASKDETVRQEAVESLKQVAMKCSAPKAVEALLKEVFAVFNGSGG	350
KITVVELRINLLQGAGNLSNNQIKPEDIVTIMPTVTDLFIKALETETQEK	400
VLCHALEMFGLWSVNFRGEIPTKIVQTFKKGLDVKAQVLRTSYLQWFLAC	450
LQNGKLPSGSDFTAPLSKIVEKAAQNPTQTPAVSEGVGAACIVLLTNPKV	500
SDQLKDFWNVVLDMNKKVFLGEKFLSATAPETLCYVMQFCERILLNHLDD	550
LKGSPEPLFKTVIHCVNSPHKKVRKYCLPLLKKIVNSPNGINLAKSLLLE	600
LTNFVENTKILNEGEQEEGVVPAQAIVDTVMSVTDIESIQISDAQTIALS	650
VLLCAHHPAPVSVQSDLWESILKRYELDGKYFISMNTSHIKEVFFNGYKA	700
TAMYENTLATLSHISPEVILPVLVKNVTDQLNNSKMSNVTDEEYFTYLTP	750
DGELYDKSVIPNSEEQTNTAHLKRENKAYSYKEQLEELTLRREIEEKRRK	800
EGKSKPPQLTPKQKEAIEKQTEKEKAIKTRLRELNSIITTLISQIEGAAK	850
GTPRELSLFFPTLLPAILRVFSSPLAAPSMVKLYLRLRETCFSGELVETG	900
RDVAIATIRLSKPHCDLEESWCTENLLELVSDILVSIYDETIDKYNVHIE	950
EDGAKNFLLNAPAFSYTFEFLKRAMVLPEAAKDESLLINGIQIIAYHAQI	1000
KGDTVDGQDFEDLYHPKYMPRLEMIKLLLNLIQHHRGRVQTQSVAALLDV	1050
AESSSGKEYTAKADTREVECLLVALQDELDAVRDVALRALAIMIKVLPSI	1100
SDDYELGLRLTRRLWVAKHDVCEDTKQLAENVWIQGNFEVPIVMADELLK	1150
DIIHPEPCIQKAASFALVSILAEDSSIIDSILEQLLEIYQDKLTMIPAKL	1200
DQFDREIEPAIDPWGPRRGVAIALSHVAPFLTEELVNSLTQFMVSTGLRD	1250
REEIVHKEMLAASLAIVEHHGKVSVSYLLPTFEKFLDEAPNNSDYDNIRQ	1300
AVVILMGSLARHLDRDDERIQPIVNRLLTALSTPSQQVQESVANCIPYLI	1350
PSVKDQAPQMVKKMMQQLVKSEKYGVRRGAAYGIAGIVKGLGILSLKQLD	1400
IMTKLTNYIQDKKNFKSREGALFAFEMLCSTLGRLFEPYIVHVLPHLLQC	1450
FGDSSSYVREAADECAKTVMAKLSAHGVKLILPSLLNALDEDSWRTKTAS	1500
VELLGAMAFCAPKQLSSCLPSIVPKLMEVLGDSHIKVQEAGATALKMIGS	1550
VIKNPEIQAIVPVLLRALENPSSKTSLCLQSLLETKFVHFIDAPSLALIM	1600
PVVQRAFMDRSTETRKMAAQIIGNMYSLTDQKDLTPYLPNIIPGLKTSLL	1650
DPVPEVRAVSARALGAMVRGMGESSFEDLLPWLMQTLTSESSSVDRSGAA	1700
QGLSEVVGGLGVEKLHKLMPEIIATAERTDIAPHVKDGYIMMFIYMPSAF	1750
PNDFTPYIGQIINPILKALADENEYVRDTALKAGQRIVNLYAESAIALLL	1800
PELEKGLFDDNWRIRYSSVQLLGDLLYKISGVSGKMTTQTASEDDNFGTE	1850
QSHKAIIRSLGAERRNRVLAGLYMGRSDVSLMVRQAALHVWKVVVTNTPR	1900
TLREILPTLFSLLLGCLASTSYDKRQVAARTLGDLVRKLGERVLPEIIPI	1950
LERGLNSDQADQRQGVCIGLSEIMASTSRDMVLTFVNSLVPTVRKALADP	2000
LPEVRQAAAKTFDSLHTTVGTRALDDILPSMLESLSDPDPDVAEWTLDGL	2050
RQVMAIKSRVVLPYLIPQLTANPVNTKALSILASVAGEALTKYLPKILPA	2100
LLSALAAAQGTPEEAQELEYCQAVILSVSDEVGIRTIMDTVMESTKSEIP	2150
ETRKAAATLLCAFCTHSPGDYSQYVPQLLRGLLRLLADGDRDVLQRSWDA	2200
LNAVTKTLDSAQQIAHVTDVRQAVKFASSDLKGAELPGFCLPKGITPLLP	2250
VFREAILNGLPEEKENAAQGLGEVIQLTSASSLQPSVVHITGPLIRILGD	2300
RFNAGVKAAVLETLAILLHKVGIMLKQFLPQLQTTFLKALHDPSRIVRIK	2350
AGHALAELIVIHTRPDPLFVEMQNGIKNTDDSTIRETMLQALRGILTPAG	2400
DKMTEPLKKQIYSMLSGMLGHPEDVTRAAAAGCLGALCRWLNPDQLDDAL	2450
NSHMLNEDYGDDAALRHGRTAALFVALKEYPSAIFTDKYEAKICKTIASS	2500
LISDKIPVALNGVRAAGYLLQYGMCSDDVKLPQQIIGPFVKSMNHTSNEV	2550
KQLLAKTCLYLAKTVPAEKTAPEYLRLVIPMLVNGTKEKNGYVKSNSEIA	2600
LVYVLRLREGDEVHQKCIALLEPGARDSLSEVVSKVLRKVAMQPVGKEEE	2650
LDDTILT	2657

Figure S2. In silico predictions of GCN1 subcellular localization. a. GCN1 is predicted to

localize to the cytoplasm, but also may localize to the nucleus. **b.** Predicted nuclear localization sequences (NLS) found in GCN1 reveal several NLS with scores indicating a mixed nuclear-cytoplasmic localization pattern. **c.** Result from part b showing location of predicted NLS within the context of the GCN1 amino acid sequence.

Subcellular localization prediction was performed using the DeepLoc-1.0 subcellular localization tool, Almagro Armenteros et al. [52]. NLS prediction was performed using the cNLS Mapper prediction tool, Kosugi et al. [54].

Survival of GCN1 dsRNA-injected and GFP dsRNA-injected control mosquitoes was not significantly different up to five days post-injection. A log-rank Mantel-Cox test was used to test for significant differences between the two treatments. **b.** qRT-PCR analysis of *vg* transcription in GCN1 dsRNA-injected and GFP dsRNA-injected control mosquitoes. Three biological replicates were analyzed per treatment at each time point and *vg* mRNA levels were normalized to β -actin mRNA prior to calculating fold-change in *vg* expression through the first 24 hr PBM. Paired t-tests were used to test for significant differences between the two treatments at each time point.

Figure S4. The following pages contain Western blot and Coomassie blue images used in main figures without cropping, color removal, and brightness/ contrast correction. The label above each image contains a reference to the main text figure where the image is included.

Figure S4a. Cross-link Coomassie stain gel (Fig. 1e).

Figure S4b. Pulldown Western Blot (Fig. 1f).

Figure S4c. GCN1 expression in adult tissues (Fig. 2a bottom).

Figure S4d. Confirmation of GCN1 dsRNA knockdown (Fig. 2b).

Figure S4e. Phospho-eIF2α Western blots (Fig. 2d top).

Figure S4f . eIF2 α Western blots (Fig. 2d middle).

Figure S4g. Actin Western Blots (Fig. 2d bottom).

