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A1. PRIME-NTD table 
 
Table A1.1. PRIME-NTD (Policy-Relevant Items for Reporting Models in Epidemiology of Neglected Tropical 
Diseases) Summary Table 
 

Principle What has been done to satisfy the principle? Where in the 
manuscript is this 
described? 

1. Stakeholder 
engagement 

The work has been discussed at the following webinars:  
1. Neglected Tropical Diseases and COVID-19: Impact 

on Programme Implementation (WHO) May 2020. 
2. A Research Agenda for NTD Programmes Affected by 

the COVID-19 Pandemic (WHO) June 2020. 
3. Modelling the Impact of COVID-19 Interruptions on 

NTD Programmes (RSTMH) Sep 2021. 
The following stakeholders were also engaged throughout the 
study design and analysis: 

1. Control of Neglected Tropical Disease Team, WHO 
2. Sightsavers 
3. PATH India 
4. The Carter Center 
5. International Trachoma Initiative 

Acknowledgements 
and Supplementary 

2. Complete 
model 
documentation 

The scenarios modelled in this study are described in the 
manuscript. Transmission models used are described in the 
manuscript and fully documented in previous publications. 

Methods and 
References 

3. Complete 
description of 
data used 

No data was used explicitly. Parameters used are described in 
the manuscript and supplementary information. Where 
epidemiological scenarios were motivated by particular 
examples, references have been provided in the Main Text to 
document this motivation. 

Methods and 
Supplementary 

4. 
Communicating 
uncertainty 

We account for structural uncertainty by comparing predictions 
across multiple models for each disease that differ in their 
structural assumptions regarding regulation of infection 
processes in humans, age- and sex- specific exposure patterns, 
and other factors (Figure 1). Wider consideration of stochastic 
uncertainty is discussed in the Supplementary Methods and 
Results. 

Results and 
Supplementary 

5. Testable model 
outcomes 

The temporal infection trends and age profiles for infection 
predicted by the models have the potential to be tested 
empirically. 
For SCH the model outcomes can be tested by the ongoing 
Geshiyaro project. 
For VL the model predictions can be compared to KAMIS data 
in the future, with careful consideration of discrepancies 
between real and detected incidence. 

Results and 
Discussion 

 
 

A2. Bounce-back rates for each disease: Additional results 
 
To enable broad comparison of the resurgence dynamics, a single year of interventions (MDA and/or active case 
detection and vector control) was simulated and the “bounce back” (compared to baseline) over a 10-year period 
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was plotted for each disease (Figure A2.1). This is shown as the mean prevalence/incidence as a fraction of 
baseline prevalence/incidence.  
 
Prevalence for five out of the nine (if the soil-transmitted helminths are considered separately) diseases returns to 
baseline levels within 2 years of a single intervention (ascaris, hookworm, trichuris, schistosomiasis and 
onchocerciasis). In comparison, LF and gHAT have both not returned to their baseline endemicity levels within 5 
years. These slower bounce-back rates are reflected by these diseases having the lowest predicted delay to reaching 
control targets following the COVID-19 interruption.   
 

 
Figure A2.1. Bounce-back trajectories (starting at year 0) following one year of intervention at baseline. 
Disease outcomes are: mf prevalence (LF and oncho); prevalence in SAC (STH and S. mansoni); infection 
prevalence in children aged 1-9 (trachoma); population-scaled annual incidence (gHAT and VL). 
 
 

A3. Soil-transmitted helminths: Additional model details and supplementary results 
 
Table A3.1. Timeline (years) to 2030 target for hookworm and Ascaris for no interruption; a 6-month, 12-
month and 18-month interruption. 
  

Years to target:  
No interruption   

Years to target:  
6-m. interruption 

Years to target:  
12-m. interruption   

Years to target:  
18-m. interruption 

Hookworm 
Erasmus MC 
Imperial CL 

8·1 
0·4 

8·5 
0·7 

8·3 
1·6 

8·6 
1·8 

Ascaris 
Erasmus MC 
Imperial CL 

6·4 
8·0 

6·9 
8·6 

7·7 
9·9 

7·8 
10·4 
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A3.1 Models 
The two STH transmission models used for this work were developed independently by research groups at 
Imperial College London (ICL) and Erasmus MC, University Medical Center Rotterdam (Erasmus MC). Both 
models are stochastic individual-based models (IBMs) and are based on similar biological and demographic 
assumptions.1,2 Model output at a given time can therefore be at individual level (worm burden, egg output) or at 
population level or for individuals of a particular age (mean worm burden, prevalence of infection). Model output 
can be expressed as probability distributions and can be directly compared to observed epidemiological data, for 
the purposes of parameter estimation and model validation, as well as for model comparisons. 
 
A3.1.1 Erasmus MC model 
The Erasmus MC model (WORMSIM) is stochastic and individual-based, in terms of both hosts and intestinal 
parasite numbers per host. WORMSIM simulates the life histories of a discrete number of individual humans and 
individual worms within those humans, which are born and die in a stochastic fashion. Simulated humans are 
exposed and contribute to a central reservoir of infection in the external environment, in which infective material 
(e.g. worm larvae or eggs) survive in an exponential fashion (at each time step in the simulation, a fixed proportion 
of the reservoir decays). Infective material is produced by female worms after a period of pre-patency (maturation 
in the human host), and only when at least one male worm is present in the same host. The degree of parasite 
aggregation within the human population is governed by the level of inter-individual variation in exposure to the 
central reservoir of infection (by age, sex, and random individual factors). Similarly, the model allows for 
heterogeneity in participation in PC, as well as systematic non-compliance to PC. The model further accounts for 
different sources of variation, such as measurement error in parasitological test outcomes (any arbitrary 
parasitological test based on egg counts can be simulated, e.g. Kato-Katz faecal smear. Model code and installation 
and user instructions have been published elsewhere.3 
 
A3.1.2 Imperial College London model 
The model simulates the number of worms present in each individual person in a village over time. Individuals 
contribute to and can acquire infections from the environmental reservoir of infective stages (eggs or larvae). The 
transmission parameters are age- and species-dependent. The number of worms in an individual follows a negative 
binomial distribution, i.e. a large proportion of the population have a few worms and a small proportion of the 
population have many worms. Further details of the model can be found in.4 
 
A3.2 Model assumptions and parametrization 
A3.2.1 Density dependent fecundity 
At high host worm burdens, egg production per worm is restricted by overcrowding effects (density dependent 
fecundity), as recorded in field epidemiological studies involving worm expulsion and faecal egg sampling. In the 
EMC description, egg production gradually levels off to a maximum level with increasing worm burden. In the 
ICL description, overcrowding effects lead to the maximum egg production rate being achieved earlier and a 
subsequent small drop in production for higher worm burdens. 
 
A3.2.2 Exposure and Contribution 
Different assumptions about the relative contribution of different age groups to transmission (i.e. the relative 
frequency of practicing open defaecation; the models employ very similar assumptions about exposure to the 
environmental reservoir, leading to nearly identical predictions for age profiles in infection level). Based on the 
age pattern in hookworm infection levels, the EMC model assumes that the practice of defaecation increases with 
age up to age ten, and this pattern in open defaecation is then also applied to Trichuris and Ascaris. In contrast, 
the ICL model assumes that age-dependent contribution is proportional to age-dependent exposure (i.e. and 
therefore differs between the three worm species). As such, given identical infection levels in by age, in the EMC 
model adults contribute relatively more to transmission than in the ICL model, reducing the effectiveness of SAC-
targeted MDA, but making community-wide treatment more beneficial.5 
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A3.2.2 Model Parameters 
 
Table A3.2. Model parameters used to simulate transmission of Ascaris lumbricoides, Trichuris trichiura and hookworm infections.  
 

 Value or assumption 
Parameter  Erasmus MC Imperial College London 
Human demography 
Hookworm Demographic data quantified for sub-Saharan Africa 2000 United Nations Population Division6 Demographic data taken from 2003 Kenya Demographic and Health 

Surveys. 
Ascariasis Indian fertility and mortality rates as reported for 1980-1985 by United Nations Population Division (2015 

Revision). 
Demographic data taken from 2003 Kenya Demographic and Health 
Surveys. 

Trichuris Indian fertility and mortality rates as reported for 1980-1985 by United Nations Population Division (2015 
Revision). 

Demographic data taken from 2003 Kenya Demographic and Health 
Surveys. 

Transmission of infection 
Seasonal variation in 
contribution to reservoir 

Stable throughout the year (assumption). Stable throughout the year (assumption). 

Aggregation of parasites in hosts 
Hookworm 𝑘𝑘𝑤𝑤 = 0 · 35.7 𝑘𝑘𝑤𝑤 = 0 · 35.7 
Ascariasis 𝑘𝑘𝑤𝑤 = 0 · 8.8 𝑘𝑘𝑤𝑤 = 0 · 8.4,8 
Trichuris 𝑘𝑘𝑤𝑤 = 0 · 38 in high prevalence settings, fitted to data from9, 

𝑘𝑘𝑤𝑤 = 0 · 12 in moderate prevalence settings. 
𝑘𝑘𝑤𝑤 = 0 · 38 in high prevalence settings, fitted to data from9, 
𝑘𝑘𝑤𝑤 = 0 · 12 in moderate prevalence settings. 

Variation in exposure and contribution to the environmental reservoir by age and sex 
Hookworm Relative exposure and contribution to the reservoir both increase linearly from 0 to 1 between ages 0–10 and is 

stable thereafter with no difference between males and females3. 
Relative exposure and contribution to the reservoir are assumed to 
vary be constant across age groups, assuming no difference 
between males and females. The values were estimated from 
baseline data of the Tumikia study10 and unpublished 
epidemiological data of the DeWorm3 study.11 

Ascariasis Contribution to the reservoir increases linearly from 0 to 1 between ages 0–10 and is stable thereafter with no 
difference between males and females (reflecting behaviour related to defaecation and mobility patterns as 
previously estimated for hookworm3). Exposure to the reservoir is defined as a piece-wise linear function of 
age that increases linearly from a base level 𝑥𝑥0 =0·33 of relative exposure at age zero to a relative exposure of 
1·0 at age 𝑎𝑎peak=3, and then again linearly declines back to the base level 𝑥𝑥0 at age 15 and is stable thereafter. 
This function aims to reflect behaviour leading to ingestion of contaminated matter, which typically peaks in 
young children.8 

Relative exposure and contribution to the reservoir by age are 
assumed to be equal and are estimated from the baseline data: 0·22 
(0-4 years), 1·88 (5-9), 1·0 (10-19), 0·53 (20+).  

Trichuris Contribution to the reservoir increases linearly from 0 to 1 between ages 0–10 and is stable thereafter with no 
difference between males and females (reflecting behaviour related to defaecation and mobility patterns as 
previously estimated for hookworm3). Exposure to the reservoir is defined as a piece-wise linear function of 
age that increases linearly from a base level 𝑥𝑥0 =0·33 of relative exposure at age zero to a relative exposure of 
1·0 at age 𝑎𝑎peak=3, and then again linearly declines back to the base level 𝑥𝑥0 at age 15 and is stable thereafter. 
This function aims to reflect behaviour leading to ingestion of contaminated matter, which typically peaks in 
young children.8 
 

Relative exposure and contribution to the reservoir are assumed to 
vary piece-wise constant by age group and are estimated at 0·3 (0-4 
years), 1·28 (5-14), 1 (15-24) and 0·17 (ages 25+), assuming no 
difference between males and females. These figures were 
estimated from epidemiological data from 9. 

Life history and productivity of the parasite in the human host 
Average worm lifespan   
Hookworm 3 years12–14 2 years2 
Ascariasis 1 year8,12–15 1 year12–15 
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Trichuris 1 year2,9 1 year2,9 
Variation in worm lifespan Weibull distribution with shape 2; i.e. the mortality rate is zero at age zero and then increases linearly with 

worm age (assumption as previously used for hookworm3). 
Exponential distribution: i.e. the mortality rate is constant and 
independent of worm age. 

Pre-patent period   
Hookworm 7 weeks12,13,16,17 No pre-patent period used. 
Ascariasis 10 weeks12 No pre-patent period used. 
Trichuris 10 weeks12 No pre-patent period used. 
Age-dependent 
reproductive capacity  

Constant over age (assumption). Constant over age (assumption). 

Female worm fecundity Density-dependent on total number of female worms in host, assuming hyperbolic saturation3. Density-dependent on total number of female worms in host, 
assuming exponential saturation. Exponential model of saturation 
with parameter γ = 0·02 for hookworm18, γ = 0·07 for ascaris4, and γ 
= 0·0035 for trichuris9,19. 

Hookworm On average 8·3 eggs per female worm per 41·7 mg sample of faeces (200 epg per female worm, as previously 
reported based on association between number of expulsed adult female worms and egg counts based on Kato-
Katz). The average maximum total host output is assumed to be 62·5 eggs per 41·7 mg faeces (1500 epg, as 
previously assumed3). 

On average 3 eggs per female worm per 41.7 mg sample of faeces 
(72 epg per female worm, as previously reported based on 
association between number of expulsed adult female worms and 
egg counts based on Kato-Katz20).  

Ascariasis On average 406 eggs per female worm per 41·7 mg sample of faeces (9750 epg per female worm), and 
maximum total host output of 777 eggs per 41·7 mg faeces on average (18,650 epg). These figures were 
estimated from pre-control data on number of expulsed adult female worms and egg counts based on a 
concentration and sedimentation technique using homogenised stools8. 
 

On average 320 eggs per female worm per 41·7 mg sample of 
faeces (7674 epg per female worm). 

Trichuris On average 15·4 eggs per female worm per 41·7 mg sample of faeces (370 epg per female worm), and 
maximum total host output of 3333·33 eggs per 41·7 mg faeces on average (80,000 epg). These figures were 
estimated from pre-control data on number of expulsed adult female worms and egg counts based on a 
concentration and sedimentation technique using homogenised stools8. 
 

 On average 5·875 eggs per female worm per 41·7 mg sample of 
faeces (141 epg per female worm)3. 
 

Host immunity to 
incoming infections 

None (assumption). None (assumption). 

Infection dynamics in environmental reservoir 
Survival of infective 
material in the central 
reservoir 

Exponential survival (assumption). Exponential survival (assumption). 

Hookworm Average lifespan of two weeks, implemented as a monthly survival probability of exp(−26/12) = 11 · 5% 
(95%-CI: 0·05–7·38 weeks under assumption of exponential survival), based on the notion that average 
survival time is in the order of weeks.16,17,21 

Average lifespan of 30 days.2 

Ascariasis Average lifespan of 1·5 month, implemented as a monthly survival probability of exp(−1/1 · 5) = 51 · 3% 
(95%-CI: 0·04–5·53 months under assumption of exponential survival).13,14 
 

Lifespan of approximately 2 months.1  

Trichuris Average lifespan of 20 days implemented as a monthly survival probability of exp(−1/(2/ 3)) = 22 · 3% 
(95%-CI: 0·02–2·46 months under assumption of exponential survival. 

Lifespan of approximately 20 days.9 

Drug treatment 
Proportion of adult worms 
killed by single dose of 
albendazole (400 mg), or 
pyrantel pamoate (10 
mg/kg, ascariasis only) 

Assumption: proportion killed is equal to the faecal egg reduction rate. Assumption: proportion killed is equal to the faecal egg reduction 
rate. 
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Hookworm 0·95 for albendazole22 0·95 for albendazole22 
Ascariasis 0·99 for albendazole22 0·99 for albendazole22 
Trichuris 0·60 for albendazole22 0·60 for albendazole22 
Diagnostic test outcomes 
Variability in measured host load of infective material (eggs per examined sample of faeces) 
Hookworm Kato-Katz: negative binomial distribution with aggregation parameter 𝑘𝑘 = 0 · 35, estimated separately from 

repeated individual-level egg count data from Uganda.23 
Kato-Katz: negative binomial distribution with aggregation 
parameter 𝑘𝑘 = 0 · 35, estimated from unpublished triple egg count 
data from Tamil Nadu, India 

Ascariasis Kato-Katz: negative binomial distribution with aggregation parameter 𝑘𝑘 = 0 · 25. Kato-Katz: negative binomial distribution with aggregation 
parameter 𝑘𝑘 = 0 · 3 24 

Trichuris Kato-Katz: negative binomial distribution with aggregation parameter 𝑘𝑘 = 0 · 82. Kato-Katz: negative binomial distribution with aggregation 
parameter 𝑘𝑘 = 0 · 82 19 

Cut-offs for no, light, moderate, and heavy infection 
Hookworm 1, 2000, and 4000 epg 1, 2000, and 4000 epg  
Ascariasis 1, 5000, and 50,000 epg  1, 5000, and 50,000 epg  
Trichuris 1, 1000, and 10,000 epg  1, 1000, and 10,000 epg  
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A4. Schistosomiasis (Schistosoma mansoni): Additional model details and supplementary 
results  
 
A4.1 Goal 
The 2030 goal for schistosomiasis is elimination as a public health problem (EPHP), achieved when the prevalence of 
heavy-intensity (eggs per gram, epg ≥ 400 for Schistosoma mansoni) infections in school-age children (SAC; 5-14 year 
olds) is reduced to less than 1%.25 
 
A4.2 Method 
We used an age-structured deterministic model developed by Imperial College London.26 The model incorporates treatment 
by mass drug administration (MDA) with praziquantel and is parameterised for S. mansoni using previously published 
parameter values (Table A4.1).27 
 
We considered a moderate (30% baseline prevalence among SAC) and a high (70% baseline prevalence among SAC) 
prevalence setting for S. mansoni. We used two different age intensity profiles with low and high adult burdens of infection 
relative to SAC (Figure A4.1). In the model, we implemented annual MDA to 75% SAC only. We assumed no non-
adherence and no non-access to treatment, i.e. MDA was delivered at random at each round of treatment. We also assumed 
no migration, i.e. single community with a population size of 1000. Simulations were carried out for missing the second 
round of MDA (compared to not missing MDA) and used to determine the time taken to achieve EPHP. 
 
For each transmission setting and age profile, the simulations were run for 15 years. For each point in time, we determined 
the prevalence of heavy-intensity infections in SAC to investigate whether EPHP had been achieved.  
 
Note that although S. haematobium was not modelled in this investigation, as this species typically has a low adult burden 
of infection (Figure A4.1), the results are likely to be similar to S. mansoni with a low adult burden of infection. 
 
SCHISTOX, an individual-based stochastic model for the study of schistosome transmission dynamics and the impact of 
control by mass drug administration has been developed by the University of Oxford and is publicly available for use 
(https://github.com/mattg3004/Schistoxpkg.jl, https://github.com/mattg3004/SchistoIndividual).28 This was used to 
produce the bounce-back Figure A2.1.  
 

 
Figure A4.1. Age-intensity profiles of infection for Schistosoma mansoni using model-simulated low and high adult 
burdens of infection (relative to school-aged children [SAC; 5–14 years old]) and S. haematobium using previous 
fit to data.29 Figure adapted from 30;  http://creativecommons.org/licenses/by/4.0/.  
 
 
 
 

https://github.com/mattg3004/Schistoxpkg.jl
https://github.com/mattg3004/SchistoIndividual
http://creativecommons.org/licenses/by/4.0/
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Table A4.1. Parameter values used for Schistosoma mansoni. 
 

Parameter Value Source 
Fecundity 0·34 eggs/female/sample 1,31,32 
Egg distribution within the individual 0·87 31,32 
Aggregation parameter 0·24 26,33 
Density dependent fecundity 0·0007/female worm 26,34 
Worm lifespan 5·7 years 1,35 
Drug efficacy 86·3% 36 
Low adult burden setting: Age specific contact 
rates for 0-4, 5-9, 10-15, 16+ years old 

0·01, 1·20, 1, 0·02 34 

High adult burden setting: Age specific contact 
rates for 0-4, 5-11, 12-19, 20+ years old 

0·01, 0·61, 1·00, 0·12 34 

Prevalence of infection Percentage of population having > 0 eggs per gram [epg] - 
Prevalence of heavy-intensity infections Percentage of population having ≥ 400 epg 25,37 
Human demography Based on Uganda’s demographic profile 13,23 

 
 
 

A5. Lymphatic filariasis: Additional model details and supplementary results 
 
A5.1. Lymphatic filariasis model details and parameters  
Full model descriptions for all three models, including parameters, are given in the supplementary information of Prada et 
al. (2019).38 
 
A5.1.1 TRANSFIL model description and methods 
The mathematical model of lymphatic filariasis (LF) transmission TRANSFIL is a stochastic individual-based model of 
LF infection in human populations, simulating worm burden, microfilaraemia and other demographic parameters relating 
to age and risk of exposure. Humans are modelled individually, with their own male and female worm burden. The 
concentration of mf in the peripheral blood is modelled for each individual and increases according to the number of fertile 
female worms as well as decreasing at a constant rate. The total mf density in the population contributes towards the current 
density of L3 larvae in the human-biting mosquito population, where the distribution of L3 amongst the human-biting 
mosquito population is completely homogeneous.  
 
An empirically derived relationship is used for the uptake of mf by a mosquito, where both Culex and Anopheles uptake 
curves are implemented depending on setting (see Irvine et al.).39 The model dynamics are therefore divided into the 
individual human dynamics, including age and turnover; worm dynamics inside the host; microfilariae dynamics inside the 
host and larvae dynamics inside the mosquito.  
 
A5.1.2 LYMFASIM mode description and methods 
LYMFASIM40,41 is a stochastic individual-based model for lymphatic filariasis (LF). It is a specific model variant within 
WORMSIM, a generalized framework for modelling transmission and control of helminth infections in humans.3,42 
LYMFASIM simulates the life histories of individual people and individual worms in a community, and the effects of 
interventions (e.g. mass drug administration, integrated vector management, bednet use) on transmission and morbidity, 
while taking into account the human demography and the complexities of helminth transmission. The model has been 
described elsewhere and has been applied to support decision making on control and elimination of lymphatic filariasis in 
different settings.19,20,23–31  

 
Mass drug administration (MDA) is simulated by specifying the exact timing of the treatment rounds (year, month), the 
efficacy of the applied treatment regimen, the achieved coverage level, and compliance patterns. LYMFASIM assumes 
that a fraction of people never participates in MDA (e.g. systematic refusal, related to chronic illness). In addition, 
LYMFASIM allows the relative compliance to vary between age and sex groups; this mechanism captures transient contra-
indications for MDA (e.g. exclusion of young children and pregnant women) and other age- and sex-related behavioral 
factors driving participation in MDA. Lastly, each individual has a personal inclination to participate in MDA, which is 
considered as a lifelong property. A stochastic process eventually defines for each individual whether they are treated in a 
given round, depending on the calculated probability. 
 
A5.1.3 EPIFIL model description and methods 
EPIFIL is a hybrid coupled partial differential and differential equation model that tracks changes in the pre-patent and 
adult worm burdens and microfilariae levels in the human host, as well as the average number of infective L3 larval stages 
per mosquito. The model also includes a measure of immunity developed by human hosts against L3 larvae. The model 
has been previous well described and parameterised.52–58 
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Intervention by mass drug administration was modeled based on the assumptions that anti-filarial treatment with a 
combination drug regimen acts by killing certain fractions of the populations of adult worms and microfilariae instantly 
after the drug administration. 
 
A5.2 Alternative scenarios 
 
Table A5.1. Timeline (years) to 2030 target across all three models (LYMFASIM, EPIFIL and TRANSFIL). 
Mitigation strategy is one additional round of MDA after restarting the programme. 

Endemicity setting 
% mf baseline prevalence 

Years to target:  
No interruption  
 

Years to target:  
12-month interruption,  
no mitigation 

Years to target:  
12-month interruption, with 
mitigation 

LYMFASIM, Erasmus MC - W. bancrofti, IA settings (Anopheles) 
High: 15-20% (95% CIs) 13·0 (7-26) 13·7 (0-37) 13·2 (0-37) 

Med: 5-10% (95% CIs) 8·4 (2-25) 9·2 (0-40) 8·3 (0-40) 

LYMFASIM, Erasmus MC  - W. bancrofti, DA settings (Culex) 

High: 15-20% (95% CIs) 9·1 (5-25) 9·7 (0-37) 9·2 (0-39) 
Med: 5-10% (95% CIs) 5·3 (2-23) 6·2 (0-35) 5·3 (0-35) 

EPIFIL, Notre Dame - W. bancrofti, IA settings (Anopheles) 

High: 15-20% 7·7 (7-9) 8·7 (8-10) 7·8 (7-9) 

Med: 5-10% 5·4 (4-6) 6·4 (5-7) 5·0 (4-7) 

EPIFIL, Notre Dame - W. bancrofti, DA settings (Culex) 

High: 15-20% 6·7 (6-7) 7·7 (7-9) 6·7 (6-8) 

Medium: 5-10% 4·9 (4-6) 5·9 (5-7) 4·3 (4-6) 

TRANSFIL, Oxford/Surrey/Warwick - W. bancrofti, IA settings (Anopheles) 

High (15-20%) 11·4 (7-23) 12·0 (8-23) 11·5 (7-24) 

Medium (5-10%) 7·7 (5-13) 8·4 (6-14) 7·6 (4-13) 

TRANSFIL, Oxford/Surrey/Warwick - W. bancrofti, DA settings (Culex) 

High: 15-20% (95% CIs) 10·9 (6-23) 11·8 (7-23) 11·0 (6-22) 

Med: 5-10% (95% CIs) 7·2 (4-18) 8·0 (5-19) 7·2 (4-18) 

       
Figure A5.1. Mitigation methods after missing one year of MDA. Dark grey: resume at 65% coverage. Red: one year 
of bMDA after the program restarts. Orange: three years increased coverage (80%) then resume 65%. Yellow: resume the 
program with one round IDA, then return to the previous regime (in areas using DA only). 
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Figure A5.3. Example timelines for 15% mf prevalence (2018) with DA. Assuming one round of missed MDA in 2020 
and using mitigation methods from Figure A5.1 (continue at 65%, dark grey; 3 rounds 80%, orange; 1 round biannual 
MDA in year 5, red; 1 round of IDA, yellow); The dashed line shows 1% mf prevalence. 
 
 
 

A6. Onchocerciasis: Additional model details and supplementary results 
 
Two available onchocerciasis transmission models – ONCHOSIM and EPIONCHO-IBM - are used to simulate the effect 
of a 6-, 12- and 18-months interruption in annual mass drug administration (MDA) with ivermectin on the infection 
microfilarial (mf) prevalence trends.  The models have been used before to inform the World Health Organization 2030 
targets for eliminating onchocerciasis (NTD Modelling Consortium Onchocerciasis Group 2019) and to explore the impact 
of various strategies.59 
 
A6.1 ONCHOSIM model description and parameters 
ONCHOSIM is a stochastic individual-based model that simulates the transmission of onchocerciasis in a closed dynamic 
population of approximately 440 individuals (rural village).60,61  The model simulates life histories of human individuals 
and Onchocerca volvulus worms and mf within individual human hosts. Transmission of infection occurs through bites of 
blackflies whose intensity is represented by the annual biting rate. The probability that an individual is bitten by a blackfly 
is assumed to depend on age (exposure to blackfly increases linearly between the ages of zero and 20), sex (males have a 
higher exposure), personal factors such as attractiveness to blackflies, and seasonal biting variation of blackflies. At each 
bite, blackflies can transmit or pick up the infection. Only a small proportion of transmitted larvae will successfully develop 
into adult worms. Following insemination of females by male worms, new microfilariae (mf) are produced, which can be 
picked up by the blackfly. These mf develop in the blackfly into the infective stage (L3), which is modelled 
deterministically in the vector. The model accounts for infection acquired from other villages. This is captured by the 
parameter called external force of infection. A more detailed description of the model can be found elsewhere.61 
Information about the quantification of biological, transmission, parasitic and treatment parameters can be found in Table 
A6.1. 
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Table A6.1. ONCHOSIM parameter quantification. 
Parameter  Value Source 
Transmission of infection 
General transmission parameters   
Relative biting rate (rbr) Multiplied with the reference mbr values, to 

modify the monthly and annual biting rate: 
varied between simulations. 

 

Seasonal variation in contribution to reservoir (mbr) Reference mbr values (Jan-Dec):  
5340, 4700, 3000, 3840, 3880, 3380,  
5260, 6820, 6020, 6580, 7500, 5380 

62 and 
entomological 
data collated by 
OCP 

Transmission probability (v), i.e. the probability that an infective particle 
in the reservoir successfully develops into a parasite life stage that is 
capable of infecting a human host 

v = 0·07345; see reference for the derivation of 
this value, given parameters for fly biology and 
development of infective L3 larvae within the 
fly. 

63 

Success ratio (sr) sr = 0·0031 64,65 
Zoophily (z, 1 -h) z = 0·04 ; h = 0·96 66 and expert 

opinion (OCP 
entomologists) 

Individual relative exposure and contribution to flies 
Relative exposure and contribution  by age and sex  Zero at birth, linearly increasing between ages 0–

20 from 0 to 1·0 for men and from 0 to 0·7 for 
women, and then constant from the age of 20 
years onwards 

65 

Variation due to personal factors (fixed through life) given age and sex 
(αExi)  

Gamma distribution with mean 1·0. Shape and 
rate equal varies between simulations 

 

Life history and productivity of the parasite in the human host 
Average worm lifespan (Tl) 10 years 67 
Variation in worm lifespan Weibull distribution with shape 3·8. Assumption; 67 
Prepatent period (pp) 1 year 67–69 
Age-dependent microfilaria production capacity, R(a) R(a) = 1 for 0 ≤ a < 5 67,70,71 

R(a) = 1-((a-5)/15) for 5 ≤ a < 20 
R(a) = 0 for a > 20 

Longevity of microfilariae within host (Tm) 9 months 65 
Mating cycle (rc) 3 months 65,67,72 
Male potential (pot) 100 female worms. 65 
Density-dependent female worm reproductive capacity 
Average contribution of an inseminated worm at peak fecundity to the 
skin mf-density 

7·6 mf/worm 65 

Exponential saturation of individual female worm productivity per worm 
present in host (λz) 

λz = 0 i.e. no exponential saturation. Assumption 

Morbidity 
Disease threshold (Elc) for blindness Weibull distribution with mean 10,000 and shape 

2·0 
73 

Reduction in remaining life expectancy due to blindness (rl) 50% 73 which refers to 
partly published 
data from OCP; 
60,74–76 

Infection dynamics in the vector 
L1-uptake in the vector Exponential saturating function with parameters 

a = 1·2, b = 0·0213, and c = 0·0861. 
77 which refers to 
78,79 
 

Mass treatment coverage 
Timing and coverage (Cw) Varied between scenarios  
Relative compliance (cr(k, s)) by age and sex 
 

Age-group (k) 0-4 5-9 10-14 15-19 20-29 30-49 50+ 
cr(k,males) 0·00 0·75 0·80 0·80 0·70 0·75 0·80 
cr(k,females) 0·00 0·75 0·70 0·74 0·65 0·70 0·75 

 

Based on 
unpublished OCP 
data 

Drug treatment 
Proportion of microfilariae cleared from host 100% 80 
Duration of temporary reduction in female reproductive capacity (Tr0), 
average 

11 months 80 

Permanent reduction in female worm reproductive capacity (d0), average 34·9% 80 
Proportion of adult worms killed (m0) 0% 80 
Relative effectiveness of treatment in a person (v)  Weibull distribution with mean 1 and shape 2 80 
Surveys 
Timing Surveys are done at yearly intervals. The 

simulation allows for a 200-year warming-up 
period before the first survey in 1998. 

 

Dispersal factor for worm contribution to measured density of infective 
material (d) 

Exponential distribution with mean 1 67 

Variability in measured host load of infective material (here: mf per skin 
snip) 

Poisson distribution with mean 𝑠𝑠𝑠𝑠(𝑡𝑡)  60 
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A6.2 EPIONCHO-IBM model description and parameters 
EPIONCHO-IBM is a stochastic individual-based model, which simulates humans in a closed population, keeping track 
of the number of infecting adult O. volvulus and mf in a human. The model accounts for age- and sex-dependent exposure 
of humans to blackfly bites, and the individual-level variation in exposure. The production of mf requires the presence of 
both male and female worms, assuming a completely polygamous mating system. Mortality rates of adult worms and mf 
are assumed to increase with age and parasite fecundity decreases with age. Density-dependent processes are assumed to 
act on three stages of the O. volvulus lifecycle: 1) establishment of larvae within the vector; 2) parasite-induced mortality 
of the vector, and 3) establishment of adult worms within the human. The dynamics of the parasite within the vector are 
modelled deterministically at a fly population level. The model accounts for a latent period in the development of the 
parasite in the vector by including L1, L2 and L3 stages. A more detailed description of the model can be found elsewhere.81 
Information about the quantification of biological, transmission, parasitic and treatment parameters can be found in Table 
A6.2. 
 
Table A6.2. EPIONCHO-IBM parameter quantification (Hamley et al. 2019). 

Parameter or variable Definition  Value and units Reference 

Human host demography    
𝑁𝑁𝐻𝐻 Number of human hosts in population 500 81 
𝜇𝜇𝐻𝐻 Mortality rate of human hosts 0·02 year-1 82 
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 Maximum age of human hosts 80 years 83 
𝜓𝜓𝑆𝑆′  Probability that a human host is of sex 𝑠𝑠 𝜓𝜓𝐹𝐹

′ = 𝜓𝜓𝑀𝑀
′ = 0 · 5 83 

Exposure to blackfly bites    
𝑘𝑘𝐸𝐸 ,  𝛽𝛽𝐸𝐸 Shape and rate parameters of the gamma 

distribution describing individual human 
host exposure to blackfly bites 

Vary 
 

81 

𝑄𝑄 = 𝐸𝐸𝑀𝑀 𝐸𝐸𝐹𝐹⁄  Relative male to female exposure to 
blackfly bites  

1·20 83 

𝛼𝛼𝐹𝐹 Age-specific change in contact rate with 
vectors for females 

-0·023 
year-1 

83 

𝛼𝛼𝑀𝑀  Age specific change in contact rate with 
vectors for males 

0·007 
year-1 

83 

𝑞𝑞 
 
 

Period (age) preceding initial increase in 
exposure to vector bites during childhood 

0 years 83 

Human host infection    
𝛽𝛽 = ℎ 𝑔𝑔⁄  Per blackfly biting rate on humans, 

calculated as the product of the proportion 
of blackfly bites taken on humans (the 
human blood index, h) and the reciprocal 
of the duration of the gonotrophic cycle, g 

ℎ = 0·63§ 
𝑔𝑔 = 1/104  
years 

82,84 

𝐴𝐴𝐴𝐴𝐴𝐴 =  𝛽𝛽 𝑉𝑉 𝐻𝐻⁄  Annual biting rate of blackflies on 
humans; the key variable for simulating 
different endemicity levels 

Varies; 
bites/person/year 

81 

𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) = 𝐴𝐴𝐴𝐴𝐴𝐴 × 𝐿𝐿3(𝑡𝑡) Annual transmission potential of blackflies 
to humans 

Defined by 𝐴𝐴𝐴𝐴𝐴𝐴 and 
𝐿𝐿3(𝑡𝑡) 

82 

Π𝐻𝐻(𝑖𝑖)�𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡 − 𝜏𝜏𝐻𝐻),Ω𝑇𝑇(𝑎𝑎(𝑖𝑖) − 𝜏𝜏𝐻𝐻)�

= �
𝛿𝛿𝐻𝐻0 + 𝛿𝛿𝐻𝐻∞𝑐𝑐𝐻𝐻𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡 − 𝜏𝜏𝐻𝐻)Ω𝑇𝑇(𝑎𝑎(𝑖𝑖) − 𝜏𝜏𝐻𝐻)

1 + 𝑐𝑐𝐻𝐻𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡 − 𝜏𝜏𝐻𝐻)Ω𝑇𝑇(𝑎𝑎(𝑖𝑖) − 𝜏𝜏𝐻𝐻) � 

 

Density-dependent constraint on the 
proportion of infective L3 larvae 
successfully establishing as adult worms 

defined by 𝛿𝛿𝐻𝐻0, 𝛿𝛿𝐻𝐻∞, 
𝑐𝑐𝐻𝐻, 𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡 − 𝜏𝜏𝐻𝐻) and 
Ω𝑇𝑇(𝑎𝑎(𝑖𝑖) − 𝜏𝜏𝐻𝐻) 

82,83,85 

𝛿𝛿𝐻𝐻0 Proportion of L3 larvae developing to the 
adult stage within the human host, per bite, 
when 𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) → 0 

Dimensionless, varies 
 

Re-estimated in 
81  

𝛿𝛿𝐻𝐻∞ Proportion of L3 larvae developing to the 
adult stage within the human host, per bite, 
when 𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) → ∞ 

Dimensionless, varies Re-estimated in 
81  

𝑐𝑐𝐻𝐻 
 
 

Severity of transmission intensity-
dependent parasite establishment within 
humans 

varies Re-estimated in 
81  

𝜏𝜏𝐻𝐻 Time delay between L3 entering the host 
and establishing as adult worms 

0·8 years 
 

86 

Parasite demography    
𝑦𝑦𝑊𝑊 
 

Parameter relating mortality rate to age in 
adult worms, Eq (S6), (S7) 

0·1 81 
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𝑑𝑑𝑊𝑊 Parameter relating mortality rate to     age 
in adult worms, Eq (S6), (S7) 

6·01 81 

𝑦𝑦𝑀𝑀 Parameter relating mortality rate to age in 
microfilariae, Eq (S6), (S7) 

1·09 
 

81 

𝑑𝑑𝑀𝑀 
 

Parameter relating mortality rate to age in 
microfilariae, Eq (S6), (S7) 

1·43 
 

81 

𝐿𝐿𝑊𝑊 Maximum longevity of adult worms 
 

20 years 
 

67 

𝐿𝐿𝑀𝑀 Maximum longevity of microfilariae 
 

2·5 years 
 

87 
 

𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 Number of discrete age classes in adult 
worms and microfilariae 

21 
 

81 

𝑞𝑞𝑀𝑀 Duration of each age class for 
microfilariae 

0·125 years 
 

81 

𝑞𝑞𝑊𝑊 Duration of each age class for adult 
worms, Eq (S8) 

1 year 81 

ε∗ Per capita rate of production of 
microfilariae per mg of skin per (fertile) 
adult female Onchocerca volvulus at age 
zero, Eq (S11) 

1·15 year-1 88 

ω Per capita rate of progression from non-
fertile to fertile adult female O. volvulus, 
Eq (S9) 

0·59 year-1 88,89 

𝜆𝜆0 Per capita rate of reversion from fertile to 
non-fertile adult female O. volvulus, Eq 
(S10) 

0·33 year-1 88,89 

𝐹𝐹 Parameter relating parasite fecundity to 
age, Eq (S11) 

70 81 

𝐺𝐺 Parameter relating parasite fecundity to 
age, Eq (S11) 

0·72 81 

Larval stages within the vector and adult female blackfly population dynamics.  

Π𝑉𝑉(𝑖𝑖)(𝑡𝑡) =
𝛿𝛿𝑉𝑉0

�1 + 𝑐𝑐𝑉𝑉𝑀𝑀(𝑖𝑖)(𝑡𝑡)Ω𝑇𝑇(𝑎𝑎(𝑖𝑖))�
 Proportion of microfilariae (mf) per mg of 

skin in human host 𝑖𝑖 developing into 
infective L3 larvae within the blackfly 
vector per bite 

Defined by 𝛿𝛿𝑉𝑉0, 𝑐𝑐𝑉𝑉, 
𝑀𝑀(𝑖𝑖)(𝑡𝑡) and Ω𝑇𝑇(𝑎𝑎(𝑖𝑖)) 

82,88 

𝛿𝛿𝑉𝑉0 Proportion of mf per mg developing to the 
infective L3 stage per bite when 𝑀𝑀(𝑖𝑖)(𝑡𝑡) →
0 

Dimensionless, 0·0207  88 

𝑐𝑐𝑉𝑉 Severity of constraining density-dependent 
larval development per dermal microfilaria 

0·00878 82 

𝜈𝜈1 Per capita development rate from L1 to L2 
larvae 

201·6 year-1 90 

𝜈𝜈2 Per capita development rate from L2 to L3 
larvae  

207·7 year-1 90 

𝜇𝜇𝑉𝑉 Per capita mortality rate of blackfly 
vectors 

26 year-1 82,88 

𝛼𝛼𝑉𝑉 Per capita microfilaria-induced mortality 
of blackfly vectors  

0·39 year-1 
 

82 

𝜏𝜏𝑉𝑉 Delay before L1 larvae can start 
transitioning to L2 stages 

0·011 years 
(4 days) 

90 

Ivermectin treatment    
𝜇𝜇𝑀𝑀(𝑖𝑖)
′ �𝜏𝜏ℎ(𝑖𝑖)� = (𝜏𝜏ℎ(𝑖𝑖) + 𝑢𝑢)−𝜅𝜅 Ivermectin-induced per capita rate of 

excess mortality of microfilariae at time 
𝜏𝜏ℎ(𝑖𝑖) since treatment, Eq (S16) 

Defined by 𝑢𝑢 and 𝜅𝜅 89 

𝑢𝑢 Constant to allow for very large yet finite 
microfilaricidal effect upon treatment with 
ivermectin 

9·6×10-3 89 
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𝜅𝜅 Shape parameter for excess microfilarial 
mortality following treatment with 
ivermectin 

1·25 89 

𝜆𝜆(𝑖𝑖)
′ �𝜏𝜏ℎ(𝑖𝑖)� = 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒�−𝜑𝜑𝜏𝜏ℎ(𝑖𝑖)�  Ivermectin-induced per capita rate of 

reversion from fertile to non-fertile adult 
female O. volvulus at time 𝜏𝜏ℎ(𝑖𝑖) since the 
last treatment, Eq (S17) 

Defined by 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜑𝜑 89 

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 Maximum rate of ivermectin-induced 
female worm sterility 

32·4 year-1 89 

𝜑𝜑 Rate of decay of ivermectin-induced 
female worm sterilisation 

19·6 year-1 89 

𝜆𝜆𝑝𝑝′  Proportion of adult female worms made 
permanently infertile at each ivermectin 
treatment round 

0·345 89 

Skin microfilarial intensity (density) and prevalence   
𝑀𝑀(𝑖𝑖,𝑘𝑘)

∗ (𝑡𝑡) The observed number of microfilariae in a 
single skin snip 𝑘𝑘 from human host 𝑖𝑖 

Model output 81 

𝑤𝑤 The average weight of skin for one skin 
snip (taken with a Holth-type corneoscleral 
punch [27]) 

2 mg 88,91 

𝑀𝑀�(𝑖𝑖)
∗ (𝑡𝑡) The mean number of microfilariae per mg 

skin from 𝑛𝑛 skin snips of weight 𝑤𝑤 in 
human host 𝑖𝑖 

Model output 81 

𝐴𝐴�(𝑖𝑖)∗ (𝑡𝑡) A binary variable indicating positivity for 
microfilariae in human host 𝑖𝑖 

Model output 81 

𝑛𝑛 The number of skin snips taken per 
individual human host 

2  81 

𝑀𝑀�∗(𝑡𝑡) The mean number of microfilariae        per 
mg of skin per human host 

Model output 81 

𝑘𝑘𝑀𝑀(𝑖𝑖) = 𝑘𝑘𝑀𝑀0 + 𝑘𝑘𝑀𝑀1𝑊𝑊𝐹𝐹(𝑖𝑖) The degree of microfilarial aggregation 
within the skin of human host 𝑖𝑖 

defined by 𝑘𝑘𝑀𝑀0 and 
𝑘𝑘𝑀𝑀1 

81 

𝑘𝑘𝑀𝑀0 The degree of microfilarial aggregation   in 
the skin as 𝑊𝑊𝐹𝐹(𝑖𝑖)(𝑡𝑡) → 0 

0·313 81 

𝑘𝑘𝑀𝑀1 The change in microfilarial aggregation 
with increasing 𝑊𝑊𝐹𝐹(𝑖𝑖)(𝑡𝑡) 

0·048 per adult female 
worm 

81 

 
A6.3 Modelling approach, scenarios and mitigation strategy 
 
A6.3.1 Pre-control mf prevalence setting  
We simulated pre-control O. volvulus mf prevalence levels ranging from 40%-80% (i.e. from meso- to hyperendemicity) 
with each model. The following key transmission parameters were varied between simulations to match pre-control mf 
prevalence levels: 1) annual biting rate (both models), 2) variation in exposure to vector bites between individuals in the 
population (both models), and 3) the level of external force of infection (only ONCHOSIM). We ran the models with 
different parameter values and accepted combinations when the pre-control mf prevalence in the endemic equilibrium 
would fall into this range. Both models were run until we had 100 simulations (i.e. parameter combinations) for each 1% 
prevalence bin. 
 
A6.3.2 Scenarios 
Scenarios are modelled for African settings with annual MDA since 2014 (short history of control), across the whole range 
of pre-control mf prevalence values. The annual MDA coverage was always assumed to be 65% of the total population, 
with on average 5% of the population never participating in treatment (systematic non-adherence 5%). We simulated the 
following scenarios: 

1. No interruption of annual MDA 
2. 6, 12, and 18 months interruption of MDA treatment due to COVID19 

Biannual treatment in the year following the 6-, 12- or 18-month interruption was simulated as a mitigation strategy. The 
coverage of the mitigation strategy was 65% with 5% systematic non-adherence.  
All scenarios and mitigation strategies were simulated until 2030. For the interruption scenarios and mitigation strategy, 
we extended the simulated period to 2033, in order to assess the delays of reaching the mf prevalence level of 2030 without 
interruption. Delays were calculated by assessing the year when the interruption (and mitigation) scenario fell below the 
mf prevalence level in 2030 without interruption. The prevalence levels in the medium and high endemic setting were 
based on the average of all repeats (i.e. 2000 repeats) within 40-60% and 60-80% bins, respectively. Table A6.3 shows the 
corresponding mean delays to reach the mf prevalence in 2030 without interruption using ONCHOSIM and EPIONCHO-
IBM. Figure A6.1 shows the underlying predicted mean mf prevalence dynamics during MDA.  
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Table A6.3. Predicted mean delays to reach the mf prevalence in 2030 without interruption.  
 Additional years required to reach the mf prevalence in 2030 without interruption 

 6-month interruption 12-month interruption 18-month interruption 

Pre-control mf 
prevalence (%) 

ONCHOSIM EPIONCHO-
IBM 

ONCHOSIM EPIONCHO-
IBM 

ONCHOSIM EPIONCHO-
IBM 

40 - 60 
(mesoendemic) 

1 0 1 2 1 2 

60 - 80 
(hyperendemic) 

1 1 2 3 2 3 

 
 
 
 

 
Figure A6.1. Mean microfilarial (mf) prevalence dynamics during ivermectin MDA predicted by ONCHOSIM. 
The colors represent the different scenarios, i.e. no interruption, interruption, and mitigation (biannual treatment). The 
dotted line represents the mf prevalence level in 2030 without interruption.   

 
 
 
 
 

A7. Trachoma: Additional model details and supplementary results 
 
A7.1 Trachoma model details and parameters 
The model utilised here is an individual-based stochastic model of ocular C. trachomatis transmission which accounts for 
active trachoma (trachomatous inflammation—follicular, TF) persisting after clearance of C. trachomatis infection 
(Borlase et al., under review). This model is based on a previously described framework 93 which was validated as the most 
parsimonious and best fit to cross-sectional infection (PCR) and TF data in a study which compared several possible 
frameworks for ocular C. trachomatis transmission.94  
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In this framework individuals transition through four sequential states: Susceptible (S), infected but not yet diseased (I), 
infected and diseased (ID) and diseased but no longer infected (D), illustrated schematically in Figure A7.1. Here disease 
refers specifically to TF. Within this framework, people who have cleared infection but remain diseased (D) are susceptible 
to infection but with force of infection (𝜆𝜆) reduced by a factor (𝛤𝛤).  
 
Model parameters, definitions, values and sources are given in Table A7.1  
 
 

 
 
Figure A7.1 Schematic of trachoma model structure. Individuals can be susceptible to infection (S), infected but not 
yet diseased (I), infected and diseased (ID) or diseased but having cleared infection (D). Disease refers to trachomatous 
inflammation—follicular (TF). Individuals for whom infection has been cleared but disease persists (D) can be re-infected 
with force of infection (𝜆𝜆) reduced by 𝛤𝛤.  
  
Table A7.1. Trachoma model variables, parameters and sources.  
 

Notation Description  Values /distribution  Units Source 
Si Susceptible individuals -   
Ii,j Infected and not yet diseased  

(individual i infection j) 
14  Days 95 

IDi,1 Infected and diseased period  
(individual i, first infection) 

~𝐴𝐴𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠𝑃𝑃𝑛𝑛(𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚) Days  

IDi,j Infected and diseased period  
(individual i, infection j) 

(𝐼𝐼𝐼𝐼𝑖𝑖,1 − 𝜔𝜔𝑚𝑚𝑖𝑖𝑚𝑚 )𝑒𝑒𝜙𝜙(𝑗𝑗−1) + 𝜔𝜔𝑚𝑚𝑖𝑖𝑚𝑚 Days 93–95 

Di,1 Diseased only period  
(individual i, infection j) 

~𝐴𝐴𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠𝑃𝑃𝑛𝑛(𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚) Days  

Di,j Diseased only period  
(individual i, infection j) 

(𝐼𝐼𝑖𝑖,1 − 𝜏𝜏𝑚𝑚𝑖𝑖𝑚𝑚 )𝑒𝑒𝜃𝜃(𝑗𝑗−1) + 𝜏𝜏𝑚𝑚𝑖𝑖𝑚𝑚 Days 93–95 

𝜔𝜔 Duration of infected and diseased period 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 = 200,𝜔𝜔𝑚𝑚𝑖𝑖𝑚𝑚=77 Days 93–95 
𝜏𝜏 Duration of diseased only period 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 300, 𝜏𝜏𝑚𝑚𝑖𝑖𝑚𝑚=7 Days 93–95 
𝜙𝜙 Decay rate, infected and diseased period 0·45 Proportion 93–95 
𝜃𝜃 Decay rate, diseased only period 0·3 Proportion  93–95 
b Infectivity of an individual proportional to their bacterial load 0·114 Proportion 93,94 

β Transmission parameter Varied to simulate a range of 
settings 

  

𝜆𝜆𝑚𝑚 Force of infection for age group a Calculated  Weeks 93,94 
Γ Reduction in force of infection during disease only state 0·5 Proportion 93,94,96 
𝑐𝑐 Treatment coverage (proportion of population receiving treatment at each 

round of MDA) 
0·8 Proportion 97 

𝜖𝜖 Treatment efficacy (probability of infection clearance given that treatment 
is received) 

0·85 Proportion 98 

 
 
Following the original model and evidence from empirical studies, 93,99,100 duration of ID and D disease for each individual 
are assumed to decrease with each subsequent infection. For each individual i, the duration of first ID and D periods (IDi,1; 
Di,1) are randomly assigned from Poisson distributions, with distribution means given as the baseline (longest) duration 
used by Pinsent and colleagues (see Table A7.1).93 The duration of these periods for subsequent infections are then assumed 
to decrease following a negative exponential to a minimum value, with decay rates and minimum durations also as given 
by Pinsent and colleagues.93 Similarly, it is assumed that an individual’s infectivity is proportional to their bacterial load, 
and that this also declines from the first infection following a negative exponential with each subsequent infection. For 
each individual’s (i) infection number (j), the calculated durations of IDi,j and Di,j are used as fixed transition periods, in 
contrast to exponential transitions utilised in the previous models.  
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Community-wide MDA is assumed to be delivered to all ages with an 80% coverage level, in line with WHO minimum 
target coverage,97 and an efficacy (the probability that an individual who receives MDA clears infection) of 85% is 
assumed.98 To simulate the potentially lower efficacy of topical tetracycline eye ointment (which is routinely given to 
children aged less than 6 months), treatment is assumed to be 50% less effective in this age group. Treatment is assumed 
to be distributed randomly. Additional reductions in transmission due to other interventions (i.e. facial cleanliness and 
environmental improvements, which are also part of the WHO strategy for trachoma control) are not currently explicitly 
included in the model due to uncertainty regarding their relative impact.  
 
A7.2. Modelling approach, scenarios and mitigation strategies.  
We simulated interruption and mitigation strategies in two settings with differing baseline levels of 
endemicity/transmission. These were high endemicity, defined as mean baseline (before MDA) TF in children aged 1-9 
years (TF1-9) of 40% (range 37·5-42·5), and medium endemicity, corresponding to a mean baseline  
TF1-9 of 20% (range 17·5-22·5). We simulated the interruption to MDA to be mid-way through a planned programme, 
assuming a 5-year MDA programme for the high endemic setting (interruption in year 3) and a 3-year MDA programme 
for the medium endemic setting (interruption in year 2).  
 
In order to ensure that the age-distribution of historical infections (and therefore infectivity, duration of infection and 
disease) are representative for a given level of baseline endemicity, a 40-year burn-in period was implemented for all 
simulations (burn-in period removed from analyses). This was followed by 16 simulated years for analysis.  
 
To represent the different levels of baseline endemicity, we varied the transmission parameter β; this can be considered a 
proxy for a range of hard-to-quantify factors which facilitate transmission of ocular C. trachomatis, including overcrowding 
and lack of sanitation. We then filtered the initial sets of stochastic simulations based on the specified baseline prevalence 
range.  To ensure simulations were representative of settings that would have been expected to reach elimination as a public 
health problem (EPHP) threshold of TF1-9 <5% threshold before 2030 with a strategy of annual district-level MDA targeting 
the whole community, we also filtered out simulations which did not reach TF1-9 <5% under the no interruption scenario.   
 
In addition to the mitigation strategy considered in the main text (an additional round of community-wide MDA delivered 
6 months after the programme restarts) we also simulated an alternative mitigation strategy in which the additional round 
of MDA targets only children aged 6 months to 9 years.  
 
A7.3 Additional results 
The average time to reach the EPHP threshold of TF1-9 <5% (calculated as the mean/median of stochastic simulations) and 
95% confidence intervals (given as 95th centiles) for the range of scenarios described in the main text are given in table 
A7.1, in addition to the alternative mitigation strategy of an extra MDA round targeting children only.  
 
The impact in terms of average time to reaching the EPHP threshold is very similar for both mitigation strategies. This is 
representative of the fact that children are effectively a core group within the model, due to the assumptions of higher 
bacterial loads and longer durations of infection; assumptions which reflect empirical evidence.   
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Table A7.2. Additional results, trachoma. Average (mean and median) years to EPHP target of TF <5% in children aged 
1-9 years in high and medium endemic settings under scenarios of: No MDA interruption, MDA interruption (6 months, 
12 months or 18 months) and two mitigation strategies (extra community-wide MDA, ie. All age group in the year 
following a 12-month interruption; extra MDA targeting only children aged 6 months to 9 years of age). 95% Confidence 
intervals are given as 95th centiles.  
 

High Endemicity (Baseline 40% TF1-9) 

Scenario: No 
interruption 

6-month 
interruption; 
No mitigation 

12-month 
interruption; 
No mitigation 

18-month 
interruption; 
No mitigation 

12-month 
interruption; 
Mitigation= 
Extra community-
wide MDA round 

12-month interruption; 
Mitigation= 
Extra MDA round, 
children aged 6 months to 
9 years 

Mean years to 
achieve EPHP 
(Median; 95% CI) 

4·4 
(4·2; 2·4-
11·5) 

4·65 
(4·6; 2·4-11·4) 

7·1 
(6·3; 2·4->16a) 

6·5 
(6·1; 2·4->16 a) 

5·3 
(5·2; 2·4->16a) 

5·4 
(5·3; 2·4->16a) 

Medium Endemicity (Baseline 20% TF1-9) 

Scenario: No 
interruption 

6-month 
interruption; 
No mitigation 

12-month 
interruption; 
No mitigation 

18-month 
interruption; 
No mitigation 

12-month 
interruption; 
Mitigation= 
Extra community-
wide MDA round 

12-month interruption; 
Mitigation= 
Extra MDA round, 
children aged 6 months to 
9 years only 

Mean years to 
achieve EPHP 
(Median; 95% CI 

2·7 
(2·6; 1·8-4·6) 

3·2 
(3·1; 1·8-4·3) 

4·0 
(3·9; 1·8-5·7) 

4·4 
(4·3; 1·8-5·7) 

3·8 
(3·8; 1·8-4·6) 

3·9 
(3·8; 1·8-4·9) 

 
 

 

A8. Visceral Leishmaniasis: Additional model details and supplementary results 
 
 
A8.1 Model structure 
 
  

 
Figure A8.1. Schematic presentation of the structure of model E1 and the related model E0. For model E1, 
asymptomatic individuals (yellow compartments) are the main contributors to transmission. Model E0 has the same 
structure as model E1, but asymptomatic individuals do not contribute to transmission. Both models have different 
durations of infection stages from fitting to data, which are listed elsewhere.101–104  
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A8.2 Model description 
The Erasmus MC models consist of a set of deterministic age-structured model variants based on different assumptions 
about where the main reservoir of infection lies; namely, solely in symptomatic individuals (VL and PKDL; Model E0), or 
mainly in asymptomatic individuals (Model E1). Other variants, with the main reservoir of infection in previously immune 
individuals in whom infection reactivates or PKDL cases, have also been explored.101  
 
The models include population growth of both humans and sand flies (the populations are assumed to grow at the same 
rate in the absence of seasonality and vector control) and age-structure in human mortality and exposure to sand flies. 
Models E0 and E1 have a yearly seasonal pattern in sandfly density based on seasonal patterns observed in sandfly 
distribution studies in Bihar.105–108 Seasonality is implemented via a stepwise function in the sand-fly birth rate, which is 
assumed to peak during 3 months of the year (July-September). Indoor residual spraying reduces the populations of the 
sandfly compartments, and active case detection leads to a shorter duration of the symptomatic untreated state (dark red) 
in all models. Additional details of the model, all parameter values, and calculations of equilibria of the system of ordinary 
differential equations along with data are provided in previous papers.101–104 
 
A8.3 Model fitting  
The model is calibrated based on age-structured data from approximately 21,000 individuals included in the KalaNet bednet 
trial in India and Nepal.108 In the model there are compartments for early and late asymptomatic infection, and early and 
late recovered stage, to allow the fitting of these models to prevalence of positivity on the direct agglutination test (DAT) 
and/or PCR from the KalaNet study.108 
 
The impact of indoor residual spraying of insecticide (IRS) was estimated using a geographical cross-validation on >5,000 
VL cases from 8 endemic districts in Bihar collected by CARE India109 for which the full model descriptions and sensitivity 
analyses are presented in Le Rutte, Chapman et al., 2017.102  
 
A8.4 Bounce-back 
We simulated a highly endemic setting with a pre-control equilibrium of 10 VL cases per 10,000 population per year.  
 
During year 0 we implemented 1 year of attack phase interventions: 

o vector control, IRS effect = 0·67 
o active case detection (ACD), onset of symptoms to diagnosis = 45 days 

From the start of year 1 onwards we simulated a situation comparable to the pre-control situation 
o  IRS effect = 0 
o onset of symptoms to diagnosis = 60 days 

 
The outcomes of both Model E0 and model E1 are presented in Figure A8.2, whereas Figure A2.1 includes the predictions 
from Model E1 only. 
 

 
 
Figure A8.2. Bounce-back trajectories of VL incidence following one year of intervention at baseline for models 
E0 and E1.  
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A8.5 Delays to the target  
We also simulated VL programme interruptions of 6, 12, and 18-months (besides the 12 months that are presented in the 
main text) for both a highly- and moderately-endemic setting using transmission Models E0 and E1. The number of years 
to get to the target incidence of <1/10,000/year are presented in Table A8.1, as well as the delay in years when compared 
to the scenario without an interruption due to Covid-19. For these scenarios we also simulated the potential impact on 
reducing the number of years to reach the target after implementing mitigation strategies (Table A8.2). We simulated a 
duration of the mitigation strategy (extended attack phase) to be equal to the duration of the interruption (6, 12 or 18 
months). 
 
Table A8.1. Years to target (delays in years) without mitigation strategy.  

VL Years to target (delays in years) 
  
Interruptions: 

Highly endemic setting Moderately endemic setting 
Model E0 Model E1 Model E0 Model E1 

None  14·8 (0) 9·5 (0)  2·5 (0)  2·3 (0) 
6 months*  15·4 (0·6) 10·2 (0·7)  4·1 (1·5) 3·3 (1·0) 
12 months**$  16·2 (1·4) 10·9 (1·4)  4·8# (2·3) 4·1 (1·8) 
18 months***  17·0 (2·2) 11·8 (2·3)  7·0 (4·5)  4·8 (2·5) 

* 6 months = no IRS and ACD between 1 April 2020 and 30 September 2020 
** 12 months = no IRS and ACD between 1 April 2020 and 31 March 2021 
*** 18 months = no IRS and ACD between 1 April 2020 and 30 September 2021 
$ The 12 months interruption scenario is presented in Table 3 of the main text. 
 
Table A8.2. Years to target (delays in years) with mitigation strategy. The duration of the mitigation strategy is 
equally long as the duration of the interruption.  

VL Years to target (delays in years) 
  
Interruptions: 

High prevalence Medium prevalence 
Model E0 Model E1 Model E0 Model E1 

None 14·8 (0) 9·5# (0) 2·5 (0) 2·3 (0) 
6 months* 15·3 (0·1) 9·7 (0·2) 4·1(1·6) 3·3 (1·0) 
12 months**$ 15·8 (1·0) 10·0 (0·5) 4·8 (2·3) 4·1 (1·8)  
18 months*** 16·3 (1·5) 10·4 (6·1) 5·5 (3·0)  4·8 (2·5) 

* 6 months = no IRS and ACD between 1 April 2020 and 30 September 2020 
** 12 months = no IRS and ACD between 1 April 2020 and 31 March 2021 
*** 18 months = no IRS and ACD between 1 April 2020 and 30 September 2021 
$The 12 months interruption scenario is presented in Table 3 of the main text. 
 
 
A8.6 Timelines of delay to the elimination target  
 
Table A8.3. Overview of simulated scenarios. All interruption scenarios include simulations both with and without 
mitigation strategy, where the mitigation strategy has the same duration as the interruption. 

 Model E0 Model E1 
Highly endemic setting 
(10/10,000/year) 

No interruption No interruption 
6-month interruption  6-month interruption 
12-month interruption 12-month interruption* 
18-month interruption 18-month interruption 

Moderately endemic setting 
(5/10,000/year) 

No interruption No interruption 
6-month interruption 6-month interruption 
12-month interruption 12-month interruption 
18-month interruption 18-month interruption 

*The 12-month interruption of Model E1 for the highly endemic setting is the scenario that is presented in Figure 2 of the main text. 
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Figure A8.3. Predicted visceral leishmaniasis incidence over time. The solid lines present the impact of the interruption 
(in years) of VL control measures due to Covid-19 during the attack phase. The dotted lines present the predicted incidence 
when implementing a mitigation strategy. The grey lines represent the default scenario without an interruption of the 
programme. Interruptions to the programme are simulated to last from 1 April 2020 to 31 March 2021. 
 
For interruptions at different stages of the control programme (both during the attack as well as the consolidation phase) 
we would like to refer to the following paper titled “The simulated impact of COVID-19 related programme 
interruptions on visceral leishmaniasis in India”, by Epke Le Rutte, Luc Coffeng, Johanna Muñoz and Sake de Vlas 
(soon to be linked to MedRXiv/journal). In this paper we also present the impact on cumulative VL incidence that is caused 
by the interruption of the programmes besides the delay to the target. 
 
 

A9. gHAT: Additional model details and supplementary results 
 
A9.1 Modelling approach, settings and interruption scenarios simulated 
Main strategies against gHAT in the DRC consist of case detection via active screening (AS) and passive surveillance (PS), 
with vector control (VC) implemented in the last years in a reduced number of settings. In the present study, we focused 
on three potential interruption scenarios of gHAT activities in DRC settings due to COVID-19. We chose regions where 
VC has not yet been implemented and explored the impact of altered control interventions for 6, 12, and 18 months starting 
on 1st April 2020. We focus here on “medium-risk” and “high-risk” settings with average levels of AS before and after the 
interruption. In all cases, interruption periods were simulated considering full interruption of screening activities in addition 
to a reduced passive surveillance (consisting of passive detection set back to pre-2000 level). Mitigation scenarios were 
simulated such that after interruption, active screening was resumed at maximum historical level, and passive detection set 
back to values before interruption. 
 
Two previously published deterministic models (Model S and Model W) were used to perform this analysis. Both were 
originally calibrated to different human case data in the Democratic Republic of Congo (DRC) 110,111, which has around 
70% of the case burden in 2019.112 Both models explicitly include tsetse and have a high/low-risk structure for human 
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exposure to tsetse and participation in AS. Neither model includes animal reservoirs or importation. Model S simulated 
10% annual AS, and Model W simulated 17% AS. PS rates for non-interruption years were inferred through the fitting. AS 
was assumed to take place at the beginning of each non-interruption year, whereas PS occurs throughout the year. The different 
level of reported cases from both data sets used by each model, and inferred transmission levels, were used to define medium-risk 
(Model W) and high-risk (Model S) settings. Additional information is found in model description sections 3 and 4. 
 
A9.2 Additional results 
This section includes complementary results to those presented in the main text. 
 
A9.2.1. Years to elimination of transmission 
Table A9.1 presents expected timeline (years) to elimination of transmission for medium and high-risk settings under different 
interruption, and interruption plus mitigation scenarios. Years are counted since 2018. Median and 95% CI are indicated.  
 
Table A9.1. Years to elimination of transmission of gHAT. 
 

Scenario Medium risk setting High-risk setting 

No interruption 13 (5-27) 32 (26-43) 

6-month interruption 13 (6-28) 32 (26-43) 

6-month interruption plus mitigation 11 (5-21) 31 (24-41) 

12-month interruption 14 (6-28) 33 (27-43) 

12-month interruption plus mitigation 12 (6-22) 31 (25-41) 

18-month interruption 14 (6-29) 33 (27-43) 

18-month interruption plus mitigation 12 (6-22) 25-42) 

 
A9.2.2. New infections under different scenarios 
Timelines comparing the impact on new infections of different scenarios (interruption and interruption plus mitigation strategy) 
analysed to a scenario with no interruption. 
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Figure A9.1. Median annual incidence. Comparing interruption and mitigation strategies to a scenario with no interruption, 
for medium and high-risk settings. Dashed line indicates threshold for elimination of transmission. 
 
 
A9.3 Model S 
A9.3.1 Description of transmission model and control interventions 
The deterministic Model S used here was presented and described in (1) and is a variant of the gHAT transmission model 
originally published in.113 The model consists of a system of coupled ordinary differential equations (ODEs), with 
compartments for tsetse, animal and human populations. These three different host types are modelled for two different 
settings corresponding to a low transmission area (e.g. the village, L) and a high transmission area (such as river banks or 
plantations, H) that enable accounting for heterogeneity in exposure to tsetse bites. The population size for tsetse, animal 
or humans in each setting i (i = {L, H}) is assumed to be stable by allowing the associated birth terms to compensate deaths 
in all the compartments. Tsetse and animal populations always stay within their setting (for example, tsetse in low 
transmission settings always remain in the low transmission setting and animals in high transmission settings always remain 
in the high transmission setting). Similarly, humans in low transmission settings always remain in low transmission setting. 
However, humans in the high transmission setting move back and forth between the high and low transmission settings 
spending a fixed amount of time in each one (to model, for example, the movement of high-risk individuals between villages 
and plantations) — as shown in Figure A9.2. 
 
Five compartments describe humans in any of the two settings: susceptible (Shi); exposed or incu- bating (Ehi); infected with the 
first stage of the disease (Ih1i); infected with the second stage of the disease, where trypanosomes have reached the cerebro-
spinal fluid (Ih2i); and treated (Thi). The total human population in setting i is Nhi = Shi + Ehi + Ih1i + Ih2i + Thi. Tsetse populations 
are divided into susceptible (Svi); teneral (Uvi); exposed (Evi); and infected (Ivi), so that the vector population is Nvi = Svi + 
Uvi + Evi + Ivi. 
 
In this model implementation: i) animals do not contribute to transmission, thus animal populations are modelled as constant 
parameters, Nai, and only form a sink for tsetse bite; ii) both stages (rather than only stage 1) of the disease are exposed to tsetse fly 
bites; iii) an additional compartment in the vector dynamics, Ui, accounts for the teneral effect — a reduction of infectivity 
with time — such that on average tsetse are only infectious for the first five days after emergence. A schematic of the model is 
shown in Figure A9.2. 
 
Test and treat interventions encompass both active screening and passive surveillance. Passive detection is represented by 
a continuous stage-specific detection rate and removes infected people from both low- and high-risk settings whilst active 
screening only recruits people in the low risk setting. With the available staged data suggesting an enhanced passive 
surveillance system, an improvement with time was included in the detection rate of stage 2, r2 by multiplying the fitted 
constant of proportionality, c2, by the proportion of people screened through passive surveillance as informed by data 
which showed an increasing trend. 
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We followed 114 to relate a proportion, d, of humans effectively screened in a given a year and the daily removal rate 𝑟𝑟𝑚𝑚𝑎𝑎𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑖𝑖𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎 
as 𝑑𝑑 = 1 − exp (−365𝑟𝑟𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑖𝑖𝑚𝑚𝑐𝑐𝑐𝑐𝑎𝑎).  
 
Thus, for the pulsed active screening, we get:  𝑟𝑟𝑚𝑚𝑎𝑎

𝑝𝑝𝑐𝑐𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝 =  𝑟𝑟𝑚𝑚𝑎𝑎𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑖𝑖𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎 = −� 12
365
� ln (1 − 𝑑𝑑). 

 
Screening levels were informed from data; estimates for the population of Bandundu were taken from 115 for the period 
corresponding to calibration, and a 3% annual growth was assumed for projections. 
 
The unknown proportion of the population at risk of infection in Bandundu province is included via 𝜖𝜖, such that 
 
 𝑑𝑑(𝑡𝑡0 = 𝑋𝑋𝑠𝑠(𝑐𝑐)

𝜖𝜖𝑁𝑁𝐵𝐵(𝑐𝑐)
, where Xs(t) indicates number of people screened in year t, and NB(t) indicates Bandundu province population 

in year t. With no additional data enabling estimating 𝜖𝜖, this parameter was set as a constant value. 
 
A9.3.2 Parameter values 
Except 𝜖𝜖 and α which are parameters new to the model and that were assumed fixed since their incorporation in (1), model 
parameters assigned fixed were taken from Model S posteriors (median) in 116, and are described in Table A9.2. 
 
 

  
 

113.
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Table A9.2. Model parameterisation (fixed parameters). Notation, a brief description, and the used values of fixed 
parameters in Model S. 
 

Notation Description Value 

α Rate at which tsetse become non-teneral (i.e. cannot get infectious) 73 year−1 

A/H1 Density of animals relative to humans in area L 0·7 

A/H2 Density of animals relative to humans in area H 0·9 

b Proportion of infective bites leading to infection in humans and animals 0·8 

cai Proportion of bites on an infective animal of type i that lead to a mature infection in flies 0 

δ Rate at which treated humans return to the susceptible class 2·19 year−1 

δa Rate of loss of immunity in animal hosts 1·095 year−1 

𝜖𝜖 Proportion of population at risk 0·7 

η Rate at which hosts move from the incubating stage 31·025 year−1 

f Inverse of duration of feeding cycle; or biting rate 121·545 year−1 

γ Rate of progression to stage 2 in humans 0·365 year−1 

γaL Rate of progression to the immune class in animal hosts of type L 0·73 year−1 

γaH Rate of progression to the immune class in animal hosts of type H 0·6935 year−1 

µ Death rate of humans due to natural causes 0·02 year−1 

µai Death rate of animal host of type i 0·511 year−1 

µt Death rate of humans due to treatment 0 year−1 

µv Death rate of tsetse 10·95 year−1 

ν Inverse of the extrinsic incubation period 13·505 year−1 

r1 Removal rate of infected humans in stage 1 due to treatment (passive detection) 4·6144 year−1 

σ Biting preference for humans 0·4 

σai Biting preference for animal in the setting i 0·3 

ξ Proportion of time spent i the high-risk region by commuters 0·62 

 
A9.3.2 Summary of previous fitting 
The deterministic ODE version of Model S was calibrated to province level data for Bandundu (Democratic Republic of 
Congo) using an Aproximate Bayesian Computation (ABC) algorithm in a previous work 110 fitting six parameters. The 
data consisted of annual, staged reported cases for 2000-2012 from active screening and passive detection (indicated as fit to 
”staged data’ in 110). A summary of the fitted parameter posteriors is given in Table A9.3. 
 
Table A9.3. Model parameterisation (posterior parameters). Notation, a brief description, the median values, and the 
95% certainty intervals of fitting parameters in Model S. 
 

Notation Description Median Value 95% CI Unit 
ch Proportion of bites on an infective human that lead 

to a mature 
3·2134 ×10−3 [2·554, 3·9612] (×10−3) - 

 Infection in flies      

c2 Constant of proportionality relating proportion of 
population screened to detection rate 

22·3726 [15·2063, 33·0127] [year−1] 

µγ Disease-induced death rate or rate of leaving the 
recovered state for humans 

0·6189 [0·4852, 0·7261] [year−1] 
 

mHL Ratio of humans in the high-exposure  to low-
exposure environment 

0·2468 [0·1508, 0·2951] - 

vhL Number of vectors per human in area L 3·1426 [2·4479, 3·9298] - 
vhH Number of vectors per human in area H 3·6195 [2·8221, 4·4467] - 
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A9.4 Model W 
A9.4.1 Description 
The original model 111 describes dynamics of gHAT transmission explicitly considering compartments of humans and 
tsetse. Figure A9.3 shows a schematic description of gHAT dynamics in this model. Humans can be exposed and 
subsequently infectious by a bite of an infectious tsetse. They progress through different stages of the infection (stage 1 
and stage 2) with different rates (σH and ϕH respectively). On the other side, tsetse vectors can become exposed and 
subsequently infectious if they bite an infectious human. Infected people may be detected by passive and active screening, 
followed by hospitalisation and recovery. Here, we consider a version of the model where humans are partitioned into two 
compartments of (i) low-risk and participating in the active screening, and (ii) high-risk and non-participating in active 
screening. We assume there are no animal reservoirs although animals receive some proportion of tsetse bites. For 
simplicity, we assume the total population of humans to be constant, however, we take into account growth of population 
(3%) for comparison to the observed data. This model accounts for the possibility of detecting of infected humans through 
passive and active screening. Passive screening describes potential visits of people to fixed medical centers for testing. 
Before 1998 (pre-active screening) it was assumed that passive detection was less effective than after activities began, and 
only so identified stage 2 individuals at a rate 𝛾𝛾𝐻𝐻

𝑝𝑝𝑝𝑝𝑝𝑝which is smaller than the stage 2 passive detection rate from 1998 
onwards, 𝛾𝛾𝐻𝐻

𝑝𝑝𝑐𝑐𝑎𝑎𝑐𝑐. 
 
 

 
 
Figure A9.3. Schematic of Model W to describe gHAT infection dynamics. This multi-host model of gHAT takes into 
account high- and low-risk groups of humans and their interactions with tsetse vectors. Each group consists of different 
compartments: Susceptible humans SHi can become exposed on a bite of an infectious tsetse. Exposed people EHi progress 
to become the stage 1 infected people and eventually stage 2 (if not detected in active screening), and once treated they 
recover by hospitalization RHi. Active screening can accelerate treatment rate of infected people. Here we assume high-risk 
group does not participate in active screening. By biting an infectious person, tsetse can become exposed and subsequently 
infectious, EV and IV. GV represents the tsetse population not exposed to Trypanosoma brucei gambiense in the first blood-
meal and are therefore less susceptible in the following meals. Rates are shown by Greek letters associated with arrows. 
Animal reservoir is not considered. This figure is taken from 111 and adapted from the original model schematic 117. 
 
Following previous modelling work using gHAT data from former Bandundu province110, there is a strong signal from 
epidemiological staging data that passive screening has improved during the time period from 2000–2016. To capture the 
steadily increasing trend in the proportion of stage 1 to stage 2 passive detections, the model utilises the following formulae: 

𝜂𝜂𝐻𝐻(𝑌𝑌) = 𝜂𝜂𝐻𝐻
𝑝𝑝𝑐𝑐𝑎𝑎𝑐𝑐 �1 +

𝜂𝜂𝐻𝐻𝑚𝑚𝑚𝑚𝑝𝑝
1 + exp (−𝑑𝑑𝑎𝑎𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝�𝑌𝑌 − 𝑑𝑑𝑐𝑐ℎ𝑚𝑚𝑚𝑚𝑎𝑎𝑝𝑝)�

� 

 

𝛾𝛾𝐻𝐻(𝑌𝑌) = 𝛾𝛾𝐻𝐻
𝑝𝑝𝑐𝑐𝑎𝑎𝑐𝑐 �1 +

𝛾𝛾𝐻𝐻𝑚𝑚𝑚𝑚𝑝𝑝
1 + exp (−𝑑𝑑𝑎𝑎𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝(𝑌𝑌 − 𝑑𝑑𝑐𝑐ℎ𝑚𝑚𝑚𝑚𝑎𝑎𝑝𝑝))

� 

 
 
where Y is the year and ηH is the stage 1 passive detection rate and γH is the stage 2 passive detection rate. Parameters 
dictating the amplitude, steepness and switching year can be found in Tables A9.4 and A9.5. Four parameters, dchange, ηHamp , 
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γHamp , and dsteep, describing the change of passive detection over time have been estimated through fitting to the health-zone-level 
data for Mosango. 
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Similar to the previous models, we allow for the imperfect nature of the tests by considering sensitivity of tests to detect 
true cases and specificity to observe false positive cases. Specificity is set to one after 2015 due to improvement in 
confirmatory quality control.111 
  
Using a similar approach to the previous ODE models, we consider the same level of screening as reported between 2000–
2016. It is assumed, as in much of the previous published studies using this model, that active screening began in 1998 and 
achieved the same number of people screened as in 2000 (the first year of data). After 2016 and before the COVID 
interruption, we use the average number of screened people between 2012–2016 in all scenarios. 
 
A9.4.2 Parameter values 
As in previous versions of Model W 110,116–119, some parameters with estimates available in the literature were assigned fixed 
values. Fixed values are given in Table A9.4. The other parameter values were taken from posterior distributions by fitting the 
model to data (see 4.3 for an outline of methods and summary of statistics of parameters). 
 
 
 
Table A9.4. Model parameterisation (fixed parameters). Notation, a brief description, and the used values of fixed 
parameters in Model W. 
 

Notation Description Value 

NH Total human population size (in 2015) 121,433 (11) 120 

BH Total human birth rate = µH NH 

µH Natural human mortality rate 5·4795×10−5 days−1 121 

σH Human incubation rate 0·0833 days−1 122 

ϕH Stage 1 to 2 progression rate 0·0019 days−1 123,124 

ωH Recovery rate/waning-immunity rate 0·006 days−1 125 

Sens Active screening diagnostic sensitivity 0·91 126 

BV Tsetse birth rate 0·0505 days−1 118 

ξV Pupal death rate 0·037 days −1 

K Pupal carrying capacity = 111·09NH 118 

P(pupating) Probability of pupating 0·75 

µV Tsetse mortality rate 0·03 days−1 122 

σV Tsetse incubation rate 0·034 days−1 127,128 

α Tsetse bite rate 0·333 days−1 129 

pV Probability of tsetse infection per single 
infective bite 

0·065 122 

ε Reduced non-teneral susceptibility factor 0·05 117 

fH Proportion of blood-meals on humans 0·09 130 

dispact Overdispersion parameter for active detection 4 × 10−4 111 

disppass Overdispersion parameter for passive detection 2·8 × 10−5 111 

A9.4.3 Summary of previous fitting 
Model W was fitted to health-zone-level data for Mosango using an adaptive Metropolis-Hastings MCMC algorithm 111. A 
summary of the fitted parameter posteriors is given below. 
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Table A9.5. Model parameterisation (posterior parameters). Notation, a brief description, the median values, 
and the 95% credible intervals of fitted parameters in Model W. 
 

Notation Description Value 
Median 95% CI 

Unit 

R0 Basic reproduction number (NGM approach) 1·012 [1·007,1·026] - 
r Relative bites taken on high-risk humans 3·241 [1·683,6·530] - 

k1 Proportion of low-risk people 0·9267 [0·7985,0·9787] - 

k4 Proportion of high-risk people k4 = 1 − k1 - 

𝜂𝜂𝐻𝐻
𝑝𝑝𝑐𝑐𝑎𝑎𝑐𝑐  Treatment rate from stage 1, 1998 onwards 1·064×10−4 [0·361,2·517]×10−4 days−1 

𝛾𝛾𝐻𝐻
𝑝𝑝𝑐𝑐𝑎𝑎𝑐𝑐  Treatment rate from stage 2 (1998 onwards) 2·542×10−3 [1·152,6·173]×10−3 days−1 

𝑏𝑏𝛾𝛾𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝  Relative treatment rate from stage 2 factor, pre-
1998 

0·7908 [0·6487,0·9819] - 

𝛾𝛾𝐻𝐻
𝑝𝑝𝑝𝑝𝑝𝑝 Treatment rate from stage 2, pre-1998 𝛾𝛾𝐻𝐻

𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑏𝑏𝛾𝛾𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝 𝛾𝛾𝐻𝐻
𝑝𝑝𝑐𝑐𝑎𝑎𝑐𝑐  days−1 

Spec Active screening diagnostic specificity 0·9992 [0·9987,0·9997] - 

u Proportion of passive cases reported 0·3289 [0·2376,0·4328] - 

dchange Midpoint year for passive improvement 2004·9 [2002·7,2010·0] Year 

ηHamp Relative improvement in passive stage 1 
detection rate 

1·035 [0·179,3·579] - 

γHamp Relative improvement in passive stage 2 
detection rate 

0·3250 [0·0370,0·9194] - 

dsteep Speed of improvement in passive detection rate 1·037 [0·737,1·387] years−1 
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