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Supplementary Methods 

1. Data 

 

The NYC Test & Trace Corps (T2) initiative attempts to interview all confirmed and probable 

COVID-19 patients about their location and activities before and during the infectious period. 

Information about close contacts during the infectious period is elicited during the interview. 

Close contacts are then interviewed and monitored for the duration of their quarantine. The 

program offers resources to support quarantine and isolation free of charge, including food 

delivery, medication delivery, and access to hotels. Close contacts are encouraged to get tested.  

 

We used T2 data collected in NYC from October 1, 2020 to May 10, 2021. The study period 

spans the second pandemic wave of COVID-19 in NYC. The data contain 5,735,726 phone call 

records of interactions between contact tracers and confirmed/probable cases and their contacts, 

as well as information gathered during the phone calls. Age and zip code of home location are 

available for most cases and contacts. Index cases and their contacts were identified in the 

dataset using a matching algorithm based on personal identifying information (see below for 

details). We further cross-linked the contact tracing dataset with laboratory test results of 

COVID-19 in NYC during the same period to obtain the infection status of exposed persons. The 

daily numbers of contacted infected individuals in five age groups (0-9, 10-19, 20-49, 50-64, 

65+) are shown in Supplementary Fig. 1a. During the study period, the age structure of 

confirmed cases remained stable; age group 20-49 accounted for most infections (Supplementary 

Fig. 1b). Percentage of circulating SARS-CoV-2 variants in NYC from January 2 2021 to May 8 

2021 is shown in Supplementary Fig. 2. The numbers of tested exposures of different types and 

the secondary attack rate in each exposure type are reported in Supplementary Fig. 3. Use of this 

dataset in this study was approved by Columbia University Institutional Review Board (IRB) 

AAAT2182. 

 

We used a two-step matching process to match individuals between the T2 contact tracing and 

DOHMH surveillance databases. In the first, heuristic step, pairwise matching was performed 

with blocking on any phone number and date of birth, requiring either of the two fields to be 

non-missing and both records to match exactly. Case-insensitive optimal string alignment 

distance was then computed between first names and last names of pairwise entries of blocked 

records to detect minor misspellings. Diminutive first names were flagged using text searching. 

String distance thresholds of two or less for the last name and one or zero or a diminutive flag for 

the first name were used to identify positive matches. If matched pairs from this heuristic 

matching process had non-matching person identifiers from the DOHMH and T2 databases or 

person identifiers were missing for at least one of the paired records, records entered a second 

matching step. For this step, an XGBoost model was trained using the following features: 1) 

Jaro-Winkler string distance score for first and last name; 2) optimal string alignment distance 

between phone numbers, allowing for transposition between home and mobile phones; when 

missing, 10 was imputed; 3) the count of month/date/year components of the dates of birth that 

matched exactly, accounting for the possibility of components being mis-entered into the 

database; when missing, 3 was used; 4) a flag to identify the transposition of month and date 

components of the dates of birth; 5) the difference in birth years as an absolute value; when 

missing, a difference of 90 was imputed; 6) the probability distribution of the first and last name; 
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7) optimal string alignment distance between normalized mailing addresses and zip codes; when 

missing, they were assumed to be different and a distance of 40 was imputed for mailing address 

and 5 for zip code. All predictors were standardized to z-scores. A gold-standard data set was 

created by subjectively hand-labeling a random sample of 2,886 step 2 input matches as 

good/bad matches based on the personally identifying information. The XGBoost model was 

trained and tuned using five-fold cross validation on an 80/20 training/test split, with 

stratification on the binary (good/bad match) target variable. The Area Under the Curve (AUC) 

was maximized at 0.937 with the following hyperparameters: nrounds = 10, max_depth = 6 and 

eta=0.3. We reviewed sensitivity, specificity and F1 scores on the test dataset at different 

predicted probability cut-off values to identify the threshold above which record pairs were 

automatically matched. We selected a predicted probability of a match of 0.5 as the final 

threshold; this choice was based on a near-maximum F1 score at this threshold, and because it is 

widely used in machine learning applications as the threshold of choice. The sensitivity at this 

cut-off was 0.957, specificity was 0.702 and precision was 0.922. Step 2 input matches that were 

classified as “good” matches moved on to the final matches and combined with step 1 matches. 

Final matches were joined to each other to turn a = b and b = c pairs into a = b = c relationships 

and assigned person IDs. Records that did not make it to the final matches list were treated as 

people represented by only one record and were each assigned a unique person ID. 

 

 

Demographic and socioeconomic data for NYC zip code tabulation areas (ZCTA) were compiled 

from the 5-year American Community Survey (ACS) (https://www.census.gov/programs-

surveys/acs/data.html). Variables include population size, population density (persons per square 

kilometer), percentage of Black residents, percentage of Hispanic residents, percentage of 

population over 65 years old, median household income, percentage of residents with bachelor’s 

degree, and mean household size. We downloaded the 2019 estimates for these variables using 

the R package tidycensus1. 

 

COVID-19 surveillance data in NYC at the MOZCTA (modified ZIP code tabulation area) level 

are available at the GitHub repository maintained by the NYC Department of Health and Mental 

Hygiene (DOHMH) (https://github.com/nychealth/coronavirus-data). We used weekly cases per 

capita, weekly tests per capita, and percentage of tests positive. Vaccination data were obtained 

from the public repository of DOHMH (https://github.com/nychealth/covid-vaccine-data). 

Human mobility data recording the weekly number of visitors to points of interest (POIs) in 

NYC were provided by SafeGraph (https://safegraph.com/), which aggregates anonymized 

location data from numerous mobile phone applications to provide insights about physical 

places, via the SafeGraph Community. To enhance privacy, SafeGraph excludes census block 

group information if fewer than five devices visited an establishment in a month from a given 

census block group. We aggregated the mobility data to zip code level to estimate the weekly 

number of visitors (regardless of visitors’ location of residence) to POIs in each zip code area. In 

the statistical analysis, we mapped the ACS data from the ZCTA level to the MOZCTA level to 

align the scale of the data. The mapping between ZCTA and MOZCTA is available at 

https://data.cityofnewyork.us/Health/Modified-Zip-Code-Tabulation-Areas-MODZCTA-/pri4-

ifjk. 

 

2. Reconstructing transmission networks 

https://www.census.gov/programs-surveys/acs/data.html
https://www.census.gov/programs-surveys/acs/data.html
https://github.com/nychealth/coronavirus-data
https://github.com/nychealth/covid-vaccine-data
https://safegraph.com/
https://data.cityofnewyork.us/Health/Modified-Zip-Code-Tabulation-Areas-MODZCTA-/pri4-ifjk
https://data.cityofnewyork.us/Health/Modified-Zip-Code-Tabulation-Areas-MODZCTA-/pri4-ifjk
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Due to asymptomatic and pre-symptomatic shedding, the reporting dates of index cases and 

contacts cannot be used to determine the direction of transmission. To address this issue, we 

developed a maximum-likelihood method to reconstruct transmission chains based on the risk of 

COVID-19 spread across different age groups. This approach includes three steps: 
 

1) Estimate the infection time using symptom onset date or specimen collection date. 

Use the estimated infection time to determine the direction of exposure and 

transmission. 

 

2) Estimate the probability of transmission for exposures across age groups using test 

and trace data. 

 

3) Sample an ensemble of possible transmission networks and select the one that 

maximizes the transmission likelihood. 

  

2.1 Estimation of infection time 

 

For each pair of index case and contact, we inferred the direction of exposure or transmission 

using estimated infection time. All index cases were confirmed infections, but only a proportion 

of contacts were tested. We therefore used exposure pairs for which both the index case and 

contact had been tested and excluded exposure pairs for which contacts had not been tested, as 

these contacts did not affect the observed transmission network. If the contact tested negative, 

the direction of exposure is from the index case to the close contact (i.e., the index case is the 

infector); however, if the contact tested positive, the direction of exposure is uncertain and must 

be estimated. 

 

For symptomatic cases who reported symptom onset dates, the infection time was estimated 

using the distribution of the incubation period reported from previous studies. Incubation period 

is the time between infection and symptom onset. Here we used a Weibull distribution estimated 

based on detailed contact tracing data from Hunan province, China2. Specifically, the probability 

density function (PDF) for the incubation distribution is 

 

𝑝(𝑥) =
𝑘

𝜆
(
𝑥

𝜆
)
𝑘−1

𝑒−(
𝑥
𝜆)
𝑘

,         [1] 

 

where the shape parameter 𝑘 = 1.58 and the scale parameter 𝜆 = 7.11. To estimate infection 

time, we randomly drew incubation periods (in days) for symptomatic cases from this PDF [1]. 

We also tested a log-normal incubation distribution estimated using contact tracing data from 

Shenzhen, China3. The transmission network remained similar. 

 

Previous studies indicate that incubation period estimated using contact tracing data may be 

subject to bias depending on outbreak dynamics and the method used to calculate the delay 

distribution4. Typically, within-individual delay distributions such as the incubation period are 

not affected by epidemic dynamics if a forward delay distribution is used (i.e., a distribution of 

incubation period from a cohort of infected individuals that were infected at the same time). 
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However, the incubation period could be biased if a backward delay distribution is used (i.e., a 

distribution of incubation period from a cohort of infected individuals that developed symptoms 

at the same time). Specifically, the backward incubation period is biased low (high) when the 

epidemic is growing (declining). To reduce the effect of such potential bias on the network 

reconstruction, we used the incubation period distribution estimated in Hu et al2. In this study, 

the authors argued that the contact tracing data were collected from in-depth epidemiological 

investigations, allowing robust estimation of key time-to-event distributions. Moreover, the 

exponential growth phase of the outbreak lasted only about two weeks (thus the potential 

underestimation of incubation period is limited) and the effort heavily relied on forward contact 

tracing. The effect of the potential bias of incubation period on network reconstruction is 

therefore limited. 

 

To verify the robustness of inference, we performed sensitivity analyses using two alternative 

incubation period distributions – one with a 10% underestimation of the mean (𝑘 = 1.58, 𝜆 =
6.40, mean 5.76 days) and another one with a 10% overestimation of the mean (𝑘 = 1.58, 𝜆 =
7.82, mean 7.04 days). We used the same shape parameter 𝑘 and varied the scale parameter 𝜆 to 

adjust the mean incubation period. For each pair of index case and reported exposure with 

symptom onsets, we drew 1,000 samples of infection times using the incubation period 

distribution. Denote 𝑝→ as the fraction of samples that the inferred transmission direction is from 

the index case to exposure. We computed {𝑝→} for all pairs and calculated the change of {𝑝→} 
due to biased incubation period distributions. For the underestimated incubation period, the 

median change is -0.003 (95% CI: [-0.049, 0.046]); for the overestimated incubation period, the 

median change is 0.003 ([-0.044, 0.047]). This experiment indicates that potential bias in the 

incubation period distribution does not dramatically affect the inference of transmission 

direction. 

 

For cases without symptoms, we used specimen collection date to estimate infection date. 

Denote 𝑡𝑖𝑛𝑓→𝑡𝑒𝑠𝑡  as the interval from infection to specimen collection date. We aim to estimate 

𝑡𝑖𝑛𝑓→𝑡𝑒𝑠𝑡  given a person tested positive, i.e., 𝑃(𝑡𝑖𝑛𝑓→𝑡𝑒𝑠𝑡|𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒). Using Bayes’ rule, we have 

the following relation: 

 

𝑃(𝑡𝑖𝑛𝑓→𝑡𝑒𝑠𝑡|𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) ∝ 𝑃(𝑡𝑖𝑛𝑓→𝑡𝑒𝑠𝑡)𝑃(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒|𝑡𝑖𝑛𝑓→𝑡𝑒𝑠𝑡).        [2] 

 

Here 𝑃(𝑡𝑖𝑛𝑓→𝑡𝑒𝑠𝑡) is the prior and 𝑃(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒|𝑡𝑖𝑛𝑓→𝑡𝑒𝑠𝑡) is the likelihood of testing positive 

given that specimens were collected 𝑡𝑖𝑛𝑓→𝑡𝑒𝑠𝑡  days after infection. 

 

The prior 𝑃(𝑡𝑖𝑛𝑓→𝑡𝑒𝑠𝑡) can be approximated using the interval from infection to specimen 

collection date for symptomatic cases, which provides a roughly plausible range of 𝑡𝑖𝑛𝑓→𝑡𝑒𝑠𝑡 . For 

each tested symptomatic case, 𝑡𝑖𝑛𝑓→𝑡𝑒𝑠𝑡  is the sum of the sampled incubation period (from 

infection to symptom onset) and the time from symptom onset to specimen collection date, 

available in the dataset. The distribution of the prior 𝑃(𝑡𝑖𝑛𝑓→𝑡𝑒𝑠𝑡) is shown in Supplementary 

Fig. 4a. 

 

The likelihood 𝑃(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒|𝑡𝑖𝑛𝑓→𝑡𝑒𝑠𝑡) was estimated using viral dynamics and limits of detection 

(LOD) for PCR tests. Following Larremore et al.5, we generated synthetic viral dynamics in 
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infected persons. The log-transformed viral load (copies/mL), 𝑉, is a piece-wise linear function 

of the number of days after infection, 𝑡. Specifically, the viral dynamics is determined by three 

control points: (𝑡0, 3), (𝑡𝑝𝑒𝑎𝑘 , 𝑉𝑝𝑒𝑎𝑘), and (𝑡𝑓 , 6). Here 𝑡0 is the time when log viral load reaches 

3; 𝑡𝑝𝑒𝑎𝑘 is the peak timing of log viral load; 𝑉𝑝𝑒𝑎𝑘 is the peak magnitude of log viral load; and 𝑡𝑓  

is the time when log viral load falls to 6. The mean log viral load was computed using the 

following function: 

 

�̅�(𝑡) =

{
 
 
 

 
 
 

3𝑡

𝑡0
, 𝑡 ≤ 𝑡0

3 +
(𝑉𝑝𝑒𝑎𝑘 − 3)(𝑡 − 𝑡0)

𝑡𝑝𝑒𝑎𝑘 − 𝑡0
, 𝑡0 < 𝑡 ≤ 𝑡𝑝𝑒𝑎𝑘

max (𝑉𝑝𝑒𝑎𝑘 −
(𝑉𝑝𝑒𝑎𝑘 − 6)(𝑡 − 𝑡𝑝𝑒𝑎𝑘)

𝑡𝑓 − 𝑡𝑝𝑒𝑎𝑘
, 0) , 𝑡 > 𝑡𝑝𝑒𝑎𝑘

        [3] 

 

In simulations, the following parameter distributions were used: 𝑡0 ∼ 𝑈(2.5, 3.5), 𝑉𝑝𝑒𝑎𝑘 ∼

𝑈[7,11], 𝑡𝑝𝑒𝑎𝑘~min(𝑡0 + 0.5 + 𝛤(1.5,1), 3), and 𝑡𝑓 ∼ 𝑡𝑝𝑒𝑎𝑘 + 𝑈(2,6). Here 𝑈(𝑎, 𝑏) is a 

uniform distribution between 𝑎 and 𝑏; and Γ(𝑎, 𝑏) is a Gamma distribution with a shape 

parameter 𝑎 and a scale parameter 𝑏. The simulated log viral load on each day 𝑡 was drawn from 

a Gaussian distribution: 

 

𝑉(𝑡) ∼ 𝑁(𝜇 = �̅�(𝑡), 𝜎2 = 0.04�̅�(𝑡)2).        [4] 
 

Sample trajectories of viral load are shown in Supplementary Fig. 4b. 

 

We simulated 105 viral load trajectories. For each trajectory, we randomly drew a LOD from 

𝑈[2,3.5], defined as the threshold for positive results – the test result is positive if 𝑉(𝑡) is above 

the LOD and negative otherwise. Using simulated viral dynamics and LOD, we obtained the 

likelihood 𝑃(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒|𝑡𝑖𝑛𝑓→𝑡𝑒𝑠𝑡) as shown in Supplementary Fig. 4c. 

 

We computed the posterior distribution 𝑃(𝑡𝑖𝑛𝑓→𝑡𝑒𝑠𝑡|𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) using Eq. [2] (Supplementary Fig. 

4d). The infection time for cases without symptoms was estimated using the distribution 

𝑃(𝑡𝑖𝑛𝑓→𝑡𝑒𝑠𝑡|𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒).  Once the infection time of index case - contact pairs had been sampled, 

using either symptom onset date or specimen collection date, the direction of exposure could be 

determined by the chronological order of infection. 

 

2.2 Estimation of transmission probability across age groups 

 

We further use the test and tracing date to estimate the transmission probability across age 

groups, which are used to reconstruct transmission chains. We classify the total population into 

four age groups: 0-9, 10-19, 20-64, and 65+. Denote 𝑃𝑎→𝑎′(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) as the probability of 

successful transmission for an exposure from age group 𝑎 to 𝑎′. In actuality, we only observe 

𝑃𝑎→𝑎′(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒|𝑡𝑒𝑠𝑡) among tested exposures. Bayes’ rule gives 
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𝑃𝑎→𝑎′(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) = 𝑃𝑎→𝑎′(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒|𝑡𝑒𝑠𝑡) ×
𝑃𝑎→𝑎′(𝑡𝑒𝑠𝑡)

𝑃𝑎→𝑎′(𝑡𝑒𝑠𝑡|𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
,        [5] 

 

where 𝑃𝑎→𝑎′(𝑡𝑒𝑠𝑡) is the probability that an exposure from age group 𝑎 to 𝑎′ is tested and 

𝑃𝑎→𝑎′(𝑡𝑒𝑠𝑡|𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) is the probability of testing given a successful transmission from age 

group 𝑎 to 𝑎′, i.e. an infection. A diagram for Eq. [5] is provided in Supplementary Fig. 5. 

 

If we assume the relative test-seeking probability between exposed and infected individuals is 

independent of age, then 𝑃𝑎→𝑎′(𝑡𝑒𝑠𝑡)/𝑃𝑎→𝑎′(𝑡𝑒𝑠𝑡|𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) is constant across age groups. We 

then can use the test positivity rate for exposure from age group 𝑎 to 𝑎′, 𝑃𝑎→𝑎′(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒|𝑡𝑒𝑠𝑡), 
to represent the relative transmission probability across age groups: 𝑃𝑎→𝑎′(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) =
𝛾𝑃𝑎→𝑎′(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒|𝑡𝑒𝑠𝑡), where 𝛾 = 𝑃𝑎→𝑎′(𝑡𝑒𝑠𝑡)/𝑃𝑎→𝑎′(𝑡𝑒𝑠𝑡|𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒). See Supplementary 

Fig. 5 for more details. 

 

To compute 𝑃𝑎→𝑎′(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒|𝑡𝑒𝑠𝑡), we first used the method introduced in subsection 2.1 to 

determine the possible directions of exposure pairs for which both index case and contact were 

tested. Then we selected the pairs of exposures from age group 𝑎 to 𝑎′ and computed the 

probability of successful transmission for 𝑎 → 𝑎′ exposures. We repeated this analysis 1,000 

times and took the average transmission probability 𝑃𝑎→𝑎′(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒|𝑡𝑒𝑠𝑡). Results are shown in 

Supplementary Table 1. 

 
2.3 Reconstruction of the maximum likelihood transmission network 

 

We combined the methods described in subsections 2.1 and 2.2 to reconstruct transmission 

networks. Using the method developed in subsection 2.1, we first estimated the possible 

directions of transmission events (in which both index case and contact tested positive) and used 

these directed transmission links to form a putative transmission network. For each transmission 

link ℓ, we identified the age groups for both patients (e.g., an exposure from age group 𝑎 to 𝑎′) 
and recorded the transmission probability across age groups for this link ℓ in Extended Data 

Table 1 (estimated in subsection 2. 2) as 𝑃ℓ(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒|𝑡𝑒𝑠𝑡). We computed the likelihood 

considering all transmission links: 𝐿 = √∏ 𝑃ℓ(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒|𝑡𝑒𝑠𝑡)ℓ
𝑛

 where ℓ runs over all 𝑛 

transmission links in the network. We sampled 1,000 putative transmission networks and 

selected the network that maximizes the likelihood 𝐿 among the ensemble of possible 

transmission networks. 

 
3. Statistical analysis 

 

We used conditional autoregressive (CAR) models to analyze non-household within- and cross-

ZIP code transmission in two separate models. The CAR model was implemented in a Bayesian 

hierarchical framework. Specifically, we fitted a Poisson generalized linear mixed model 

(GLMM) where the random effect was modeled by CAR priors to account for the inherent 

spatial-temporal autocorrelation present in the disease transmission data.  

 
3.1 Statistical model 
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We modeled the numbers of non-household within- and cross-ZIP code transmission events 

using a modified Poisson generalized linear mixed model. Denote 𝑦𝑤𝑖𝑡ℎ𝑖𝑛(𝑖, 𝑡) and 𝑦𝑐𝑟𝑜𝑠𝑠(𝑖, 𝑡) as 

the weekly numbers of non-household within-ZIP code and cross-ZIP code transmission events 

in ZIP code 𝑖 and week 𝑡. Here cross-ZIP code transmission events include both directions, i.e., 

transmission for which either infector or infectee lived in a certain ZIP code. The week for 

transmission is determined by the self-reported contact time between index cases and contacts. 

Fixed effects include log-transformed population density, log-transformed weekly cases per 

capita, log-transformed weekly tests per capita, cumulative cases per capita, percentage of Black 

residents, percentage of Hispanic residents, percentage of population over 65 years old, median 

household income, percentage of residents with a bachelor’s degree, mean household size, 

percentage of fully vaccinated residents, and number of POI visitors per capita. All covariates 

were standardized to have mean zero and standard deviation one. We used log-transformed 

population as an offset, assuming the numbers of both within-ZIP code and cross-ZIP code 

transmission events are proportional to local population. In the regression model, we used the 

weekly case per capita to represent the local force of infection that impacts the number of 

observed within-ZIP code transmission events. While within-ZIP code transmission events are a 

subset of weekly cases, the observed transmission events are much fewer and may deviate from 

the pattern of weekly cases per capita due to reporting bias and other factors. For vaccination 

coverage, we observed a large spatial heterogeneity at the ZIP code level (Supplementary Fig. 6). 

The percentage of fully vaccinated population ranged from 22.7% to 82.8% in the week of May 

22, 2021. 

 

In the regression model, we used the raw number of POI visitors in each ZIP code area. The foot 

traffic data include information about the types of POIs, represented by the NAICS (North 

American Industry Classification System) code. However, there may be selection bias among 

POI categories. In addition, school-age children under 13 years old and other individuals without 

access to smart phones are not included in the data. Over the course of the pandemic, the change 

in POI visitation varied across different categories. For instance, the recovery for educational 

service was faster than for restaurant & bar and grocery & pharmacy (Supplementary Fig. 7, 

Restaurant & Bar (NAICS: 7224 (Drinking Places), 7225 (Restaurants and Other Eating Places)), 

Grocery & Pharmacy (NAICS: 445 (Food and Beverage Retailers), 456 (Health and Personal 

Care Retailers)), and Educational Service (NAICS: 61 (Educational Services))). Previous work 

has linked the differential change in POI visitation with socioeconomic status, finding that 

disadvantaged groups were not able to reduce their mobility as sharply, and that the POIs that 

they visit are more crowded and are therefore associated with higher risk6. 

 

Specifically, the model for non-household within-ZIP code transmission is described by the 

following equation: 
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𝑙𝑜𝑔(𝑦𝑤𝑖𝑡ℎ𝑖𝑛(𝑖, 𝑡 + 𝑑))
=  𝑙𝑜𝑔(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑖)) + 𝛽1 × 𝑙𝑜𝑔(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑖))

+ 𝛽2 × log(𝑤𝑒𝑒𝑘𝑙𝑦 𝑐𝑎𝑠𝑒𝑠 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎(𝑖, 𝑡))

+ 𝛽3 × log(𝑤𝑒𝑒𝑘𝑙𝑦 𝑡𝑒𝑠𝑡𝑠 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎(𝑖, 𝑡))
+ 𝛽4 × 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎(𝑖, 𝑡) + 𝛽5 ×  % 𝐵𝑙𝑎𝑐𝑘 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡(𝑖)
+ 𝛽6 ×  % 𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡(𝑖) + 𝛽7 ×  % 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡 𝑜𝑣𝑒𝑟 65(𝑖)
+ 𝛽8 ×  𝑚𝑒𝑑𝑖𝑎𝑛 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑖𝑛𝑐𝑜𝑚𝑒(𝑖) + 𝛽9 ×% 𝑏𝑎𝑐ℎ𝑒𝑙𝑜𝑟′𝑠 𝑑𝑒𝑔𝑟𝑒𝑒(𝑖)
+ 𝛽10 ×𝑚𝑒𝑎𝑛 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑠𝑖𝑧𝑒(𝑖) + 𝛽11 ×% 𝑓𝑢𝑙𝑙𝑦 𝑣𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑒𝑑 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡(𝑖, 𝑡)
+ 𝛽12 × 𝑤𝑒𝑒𝑘𝑙𝑦 𝑃𝑂𝐼 𝑣𝑖𝑠𝑖𝑡𝑜𝑟𝑠 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎(𝑖, 𝑡) + 𝜓𝑖𝑡 + 𝜀𝑖𝑡 .        [6] 

 

Here 𝑑 is the lag (in weeks),  𝑙𝑜𝑔(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑖)) is the offset, 𝜓𝑖𝑡 is the random effect for 

location 𝑖 and week 𝑡, and 𝜀𝑖𝑡 is the error term. In the main model, we used 𝑑 = 0 (no lag). We 

additionally tested 𝑑 = 1 and 𝑑 = 2 as a sensitivity analysis. 

 

The model for cross-zip code transmission is defined similarly: 

 

𝑙𝑜𝑔(𝑦𝑐𝑟𝑜𝑠𝑠(𝑖, 𝑡 + 𝑑))
=  𝑙𝑜𝑔(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑖)) + 𝛽1 × 𝑙𝑜𝑔(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑖))

+ 𝛽2 × log(𝑤𝑒𝑒𝑘𝑙𝑦 𝑐𝑎𝑠𝑒𝑠 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎(𝑖, 𝑡))

+ 𝛽3 × log(𝑤𝑒𝑒𝑘𝑙𝑦 𝑡𝑒𝑠𝑡𝑠 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎(𝑖, 𝑡))
+ 𝛽4 × 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎(𝑖, 𝑡) + 𝛽5 ×  % 𝐵𝑙𝑎𝑐𝑘 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡(𝑖)
+ 𝛽6 ×  % 𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡(𝑖) + 𝛽7 ×  % 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡 𝑜𝑣𝑒𝑟 65(𝑖)
+ 𝛽8 ×  𝑚𝑒𝑑𝑖𝑎𝑛 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑖𝑛𝑐𝑜𝑚𝑒(𝑖) + 𝛽9 ×% 𝑏𝑎𝑐ℎ𝑒𝑙𝑜𝑟′𝑠 𝑑𝑒𝑔𝑟𝑒𝑒(𝑖)
+ 𝛽10 ×𝑚𝑒𝑎𝑛 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑠𝑖𝑧𝑒(𝑖) + 𝛽11 ×% 𝑓𝑢𝑙𝑙𝑦 𝑣𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑒𝑑 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡(𝑖, 𝑡)
+ 𝛽12 × 𝑤𝑒𝑒𝑘𝑙𝑦 𝑃𝑂𝐼 𝑣𝑖𝑠𝑖𝑡𝑜𝑟𝑠 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎(𝑖, 𝑡) + 𝜓𝑖𝑡 + 𝜀𝑖𝑡 .        [7] 

 

3.2 Controlling for spatial-temporal autocorrelation 

 

We first fitted a model without considering spatial-temporal autocorrelation in the random effect 

𝜓𝑖𝑡; however, we found signatures of spatial autocorrelation in the residuals using Moran’s I test 

for each week. The dependent variables are also temporally autocorrelated. Neglecting such 

spatial-temporal autocorrelation will lead to overconfidence in the estimated effect size, i.e., the 

standard errors will be biased too small7. 

 

To account for this inherent spatial-temporal autocorrelation in the dependent variables 

𝑦𝑤𝑖𝑡ℎ𝑖𝑛(𝑖, 𝑡) and 𝑦𝑐𝑟𝑜𝑠𝑠(𝑖, 𝑡), we modeled the random effect 𝜓𝑖𝑡 using conditional autoregressive 

(CAR) priors8,9. Specifically, we used the CAR model proposed by Rushworth et al.10, which 

represents the spatial-temporal structure as a multivariate autoregressive process with a spatially 

autocorrelated precision matrix. The model is specified by8: 

 

𝜓𝑖𝑡 = 𝜙𝑖𝑡 ,        [8] 
𝝓𝑡|𝝓𝑡−1~𝑁(𝜌𝑇𝜙𝑡−1, 𝜏

2𝑸(𝑾,𝜌𝑆)
−1),    𝑡 = 2,… , 𝑇 

𝝓1~𝑁(𝟎, 𝜏
2𝑸(𝑾,𝜌𝑆)

−1), 
𝜏2~𝐼𝑛𝑣𝑒𝑟𝑠𝑒 − 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏), 

𝜌𝑆 , 𝜌𝑇~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1). 
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In this model 𝝓𝑡 = (𝜙1𝑡 , … , 𝜙𝐾𝑡) is the vector of random effects for time 𝑡, which evolve over 

time via a multivariate first order autoregressive process with temporal autoregressive parameter 

𝜌𝑇. The spatial autocorrelation is induced by the variance 𝜏2𝑸(𝑾,𝜌𝑆)
−1. The precision matrix 

𝑸(𝑾, 𝜌𝑆) depends on the spatial adjacency matrix 𝑾 and the spatial autoregressive parameter 

𝜌𝑆. We used a binary spatial adjacency matrix 𝑾 = (𝑤𝑖𝑗), where the entry 𝑤𝑖𝑗  is one if location 𝑖 

and location 𝑗 share a common border and is zero otherwise. Additionally, 𝑤𝑖𝑖 = 0. The 

functional form of 𝑸(𝑾, 𝜌𝑆) is given by11 

 

 𝑸(𝑾,𝜌𝑆) = 𝜌𝑆[𝑑𝑖𝑎𝑔(𝑾𝟏) −𝑾] + (1 − 𝜌𝑆)𝑰,        [9] 
 

where 𝟏 is the 𝐾 × 1 vector of ones and 𝑰 is the 𝐾 × 𝐾 identity matrix. 

 

We implemented the model using the function ST.CARar in the R package CARBayesST12. 

Using a Bayesian hierarchical framework, model coefficients in Eqs. [6-7] and parameters in Eq. 

[8] were estimated using a Markov chain Monte Carlo (MCMC) algorithm13. We fitted the 

model using data from 177 MOZCTAs and 31 weeks (𝐾 = 177, 𝑇 = 31). In the main model, we 

used 𝑑 = 0 (no lag). We generated 420,000 MCMC samples for each coefficient/parameter and 

discarded the first 20,000 samples as the burn-in period. The remaining samples were 

subsequently thinned by 20 to reduce the autocorrelation of the Markov chain. In total, 20,000 

MCMC samples were generated for each coefficient and parameter. The convergence of Markov 

chains was diagnosed using the convergence diagnostic proposed by Geweke14. The diagnostic 

statistics for all coefficients and hyperparameters were within the range (-1.96, 1.96), suggesting 

convergence of Markov chains. 

 

We further evaluated the spatial-temporal autocorrelation in the model residuals to confirm that 

spatial and temporal structures had been annihilated. Specifically, we examined the spatial 

autocorrelation in residuals from the 177 locations in each week using Moran’s I. The spatial 

autocorrelation of the residuals was absent for most weeks (𝑝 > 0.05) (Supplementary Fig. 8). 

Moran’s I is a measure of spatial autocorrelation that characterizes the correlation in a signal 

among nearby locations in space. Specifically, it is defined as 

 

𝐼 =
𝑁

𝑊

∑ ∑ 𝑤𝑖𝑗(𝑥𝑖 − �̅�)(𝑥𝑗 − �̅�)
𝑁
𝑗=1

𝑁
𝑖=1

∑ (𝑥𝑖 − �̅�)2
𝑁
𝑖=1

,        [10] 

 

where 𝑁 is the number of spatial units, 𝑥 is the variable of interest (here, the residual in each ZIP 

code area), �̅� is the mean of 𝑥, 𝑤𝑖𝑗  is a matrix of spatial weights with zeros on the diagonal 

(𝑤𝑖𝑖 = 0), and 𝑊 is the sum of all 𝑤𝑖𝑗  (𝑊 = ∑ ∑ 𝑤𝑖𝑗
𝑁
𝑗=1

𝑁
𝑖=1 ). Here, we define 𝑤𝑖𝑗  as the 

adjacency matrix for all ZIP code areas, i.e., 𝑤𝑖𝑗 = 1 if locations 𝑖 and 𝑗 are contiguous, 𝑤𝑖𝑗 = 0 

otherwise. Under the null hypothesis of no autocorrelation, the expected value of 𝐼 is 𝐸(𝐼) =
−1/(𝑁 − 1), which approaches zero as 𝑁 approaches infinity. The p-value of the Moran’s I test 

is obtained by comparing the computed 𝐼 value with the null distribution. 

 

For each location, we evaluated the temporal autocorrelation in the residuals using the Durbin-

Watson test. Results indicate that temporal autocorrelation was not significant for most locations 
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(𝑝 > 0.05) (Supplementary Fig. 9). Durbin-Watson test is used to detect the presence of 

autocorrelation at lag 1 in the residuals from a regression model. Define 𝑒𝑡 as the residual at time 

𝑡. The Durbin-Watson test statistics is 

 

𝑑 =
∑ (𝑒𝑡 − 𝑒𝑡−1)

2𝑇
𝑡=2

∑ 𝑒𝑡
2𝑇

𝑡=1

.        [11] 

 

Here 𝑇 is the number of observations. The value of 𝑑 ranges between 0 and 4. For large 𝑇, 𝑑 is 

approximately equal to 2(1 − 𝜌), where 𝜌 is the sample autocorrelation of the residuals. 𝑑 = 2 

indicates no autocorrelation; 𝑑 < 2 indicates a positive serial correlation; 𝑑 > 2 indicates a 

negative serial correlation.  

 

The effects of covariates are represented by the exponentiated coefficient, or the incidence rate 

ratio. The incidence rate ratio quantifies the multiplicative change in the number of transmission 

events if each covariate increases by one standard deviation, adjusting for all other covariates in 

the model. The distributions of incidence rate ratios were obtained from the 20,000 MCMC 

samples. The median, 95% CI, and p-values were derived from these empirical distributions. The 

estimated coefficients for the main model are shown in Supplementary Table 2. 

 

A few sensitivity analyses were performed to assess the robustness of the results. First, we 

additionally tested one-week and two-week lags. The qualitative results remained similar 

(Supplementary Figs. 10-11). Second, we used another form of the random effect model 

proposed by Knorr-Held et al.15. In this model, the spatial-temporal variation in the data is 

decomposed into three components: an overall spatial effect common to all time periods, an 

overall temporal trend common to all spatial units, and a set of independent space-time 

interactions. See more details in Ref.8. The model was fitted using the function ST.CARanova in 

the R package CARBayesST. A zero-week effect lag was used and the MCMC setting was the 

same. Results hold as in the main model (Supplementary Fig. 12). Third, we tested whether the 

findings are robust to potential different response rates in contact tracing among age groups. 

Specifically, we randomly removed 50% of the contact tracing records reported by individuals 

<18 years old or >65 years old, representing the scenario that children and elderly are less likely 

to report their close contacts. Results remain similar to the main model (Supplementary Fig. 13). 
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Supplementary Figure 1. Age structure of index cases called by contact tracers. (a) The daily 

number of index cases in each age group from October 1 2020 to May 10 2021. There was a data 

reporting issue during March 2021 so the spike in March does not reflect the actual COVID-19 

situation. (b) The proportion of index cases in each age group during the study period. 
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Supplementary Figure 2. Percentage of SARS-CoV-2 variants in NYC from January 2 2021 to 

May 8 2021. Prior to January 2 2021, the circulating strains in NYC were dominated by the 

index virus strain (categorized into “Others” in this figure). Data were obtained from the NYC 

DOHMH public repository (https://github.com/nychealth/coronavirus-data/tree/master/variants). 
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Supplementary Figure 3. Positivity rate among tested exposures. The numbers of tested 

exposures of different types are shown in the upper panel (log scale). Lower panel shows the 

positivity rate for each exposure type. 
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Supplementary Figure 4. Estimating the distribution of the interval from infection to testing for 

positive cases. (a) The prior distribution of 𝑡𝑖𝑛𝑓→𝑡𝑒𝑠𝑡  obtained using data from symptomatic 

infections. (b) Samples of synthetic viral load trajectories. (c). The likelihood 

𝑃(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒|𝑡𝑖𝑛𝑓→𝑡𝑒𝑠𝑡) obtained using synthetic viral dynamics and LOD. (d). The posterior 

𝑃(𝑡𝑖𝑛𝑓→𝑡𝑒𝑠𝑡|𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒). 
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Supplementary Figure 5. A diagram for estimating the transmission probability for an exposure 

from age group 𝑎 to 𝑎′. Assume the grey rectangular has an area of 1, representing all exposures 

from age group 𝑎 to 𝑎′. The combined orange and red areas represent the probability of testing, 

𝑃𝑎→𝑎′(𝑡𝑒𝑠𝑡); the combined orange and blue areas represent the probability of infection, 

𝑃𝑎→𝑎′(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒); the ratio of the orange area to the combined orange and red areas is the 

positivity rate, 𝑃𝑎→𝑎′(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒|𝑡𝑒𝑠𝑡) = 𝑜𝑟𝑎𝑛𝑔𝑒/(𝑜𝑟𝑎𝑛𝑔𝑒 + 𝑟𝑒𝑑); the ratio of the orange area 

to the combined orange and blue areas is the probability of testing among infected exposures, 

𝑃𝑎→𝑎′(𝑡𝑒𝑠𝑡|𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) = 𝑜𝑟𝑎𝑛𝑔𝑒/(𝑜𝑟𝑎𝑛𝑔𝑒 + 𝑏𝑙𝑢𝑒). Since the orange area can be computed by 

𝑃𝑎→𝑎′(𝑡𝑒𝑠𝑡) × 𝑃𝑎→𝑎′(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒|𝑡𝑒𝑠𝑡), or 𝑃𝑎→𝑎′(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) × 𝑃𝑎→𝑎′(𝑡𝑒𝑠𝑡|𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒), we have 

𝑃𝑎→𝑎′(𝑡𝑒𝑠𝑡) × 𝑃𝑎→𝑎′(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒|𝑡𝑒𝑠𝑡) = 𝑃𝑎→𝑎′(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) × 𝑃𝑎→𝑎′(𝑡𝑒𝑠𝑡|𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒). Then we 

can estimate the transmission probability for an exposure from age group 𝑎 to 𝑎′ through 

𝑃𝑎→𝑎′(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) = 𝑃𝑎→𝑎′(𝑡𝑒𝑠𝑡) × 𝑃𝑎→𝑎′(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒|𝑡𝑒𝑠𝑡)/𝑃𝑎→𝑎′(𝑡𝑒𝑠𝑡|𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒). 
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Supplementary Figure 6. Vaccination coverage at the ZIP code scale in NYC on May 22 2021. 

Percentages of fully vaccinated population (two doses) and those with at least one dose are 

shown in the left and right panel, respectively. 

  



 20 

 
 

Supplementary Figure 7. The daily number of visitors for three categories of POIs: Restaurant & 

Bar (NAICS: 7224 (Drinking Places), 7225 (Restaurants and Other Eating Places)), Grocery & 

Pharmacy (NAICS: 445 (Food and Beverage Retailers), 456 (Health and Personal Care 

Retailers)), and Educational Service (NAICS: 61 (Educational Services)). 
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Supplementary Figure 8. Moran’s I test for residual spatial autocorrelation. Moran’s I test was 

performed for each week. P-values for within- and cross-zip code transmission are shown. The 

horizontal dash line marks the p=0.05 threshold. The Moran’s I test was two-sided and no 

adjustment was made for multiple comparisons. 
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Supplementary Figure 9. Durbin-Watson test for residual temporal autocorrelation performed for 

each location. P-values for within- and cross-zip code transmission are shown. The horizontal 

dash line marks the p=0.05 threshold. The Durbin-Watson test was two-sided and no adjustment 

was made for multiple comparisons. 
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Supplementary Figure 10. Results of sensitivity analysis using a one-week lag. Dots and 

horizontal lines show median values and 95% CIs. DIC=6,301 for a and DIC=12,555 for b. 

Distributions in (a) and (b) were obtained using 𝑛 = 20,000 MCMC samples of the posterior 

estimates. 
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Supplementary Figure 11. Results of sensitivity analysis using a two-week lag. Dots and 

horizontal lines show median values and 95% CIs. DIC=6,257 for a and DIC=12,401 for b. 

Distributions in (a) and (b) were obtained using 𝑛 = 20,000 MCMC samples of the posterior 

estimates. 
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Supplementary Figure 12. Results of sensitivity analysis using an alternate random effects model 

form. No lag effect was used. Dots and horizontal lines show median values and 95% CIs. 

DIC=6,349 for a and DIC=12,641 for b. Distributions in (a) and (b) were obtained using 𝑛 =
20,000 MCMC samples of the posterior estimates. 
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Supplementary Figure 13. Results of sensitivity analysis assuming 50% of index cases <18 years 

old and >65 years old do not report their close contacts. No lag effect was used. Dots and 

horizontal lines show median values and 95% CIs. DIC=6,340 for a and DIC=12,644 for b. 

Distributions in (a) and (b) were obtained using 𝑛 = 20,000 MCMC samples of the posterior 

estimates. 
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 0-9 10-19 20-64 65+ 

0-9 0.507 0.499 0.457 0.516 
10-19 0.469 0.472 0.436 0.530 
20-64 0.470 0.440 0.346 0.482 
65+ 0.457 0.449 0.388 0.604 

 

Supplementary Table 1. Transmission probability 𝑃𝑎→𝑎′(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒|𝑡𝑒𝑠𝑡) across age groups. Row 

indicates the age group of index cases, and column indicates the age group of contacts. 
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Variables Non-household within-ZIP code Non-household cross-ZIP code 

POI visitors per capita 0.0914 (0.0031, 0.1765) 0.1346 (0.0839, 0.1842) 
% fully vaccinated residents -0.3281 (-0.5100, -0.1503) -0.1600 (-0.3066, -0.0173) 

Mean household size 0.0700 (-0.0573, 0.1981) -0.0798 (-0.1684, 0.0077) 
% residents with bachelor 0.1298 (-0.0660, 0.3394) 0.0852 (-0.0411, 0.2138) 
Median household income -0.2342 (-0.4034, -0.0714) -0.0564 (-0.1564, 0.0432) 

% 65+ population -0.0218 (-0.1132, 0.0703) -0.0640 (-0.1227, -0.0066) 
% Hispanic residents 0.1286 (0.0405, 0.2149) 0.1244 (0.0562, 0.1946) 

% Black residents -0.0375 (-0.1207, 0.0438) 0.0947 (0.0398, 0.1527) 
Cumulative case per capita -0.1902 (-0.3448, -0.0364) -0.2349 (-0.3671, -0.1116) 
Log(weekly test per capita) -0.0537 (-0.1506, 0.0426) 0.0022 (-0.0609, 0.0639) 
Log(weekly case per capita) 0.9508 (0.8176, 1.0864) 0.7761 (0.6817, 0.8666) 

Log(population density) -0.0782 (-0.1695, 0.0165) 0.0107 (-0.0528, 0.0770) 

 
Supplementary Table 2. Estimated coefficients for the main model. Results show the median 

estimates and 95% CIs. Significant covariates (p<0.05) are highlighted in blue. Two-sided 

Student’s t-test was used to determine the significance of coefficients. 
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