Online Supplemental Materials

Table S1. Descriptive statistics (*Mean*±*SE*) for non-object-oriented exploratory behaviors across age for full-term (FT) and preterm (PT) infants; Individual Behaviors = Variability of Individual Behaviors; Combined Behaviors = Variability of Combined Behaviors.

Non-Object-	Birth	Infants' Age in Months						
Oriented Behaviors	Status	3 mos	4 mos	6 mos	9 mos	12 mos	18 mos	24 mos
Head Up	FT	59.48±6.16	62.26±4.95	87.50±3.12	93.31±6.69	_	_	_
Head Op	PT	44.49±6.47	52.09±6.64	75.9±4.98	79.03±8.24			
Head in Midline	FT	45.10±6.70	63.29 ± 6.45	73.59 ± 4.00	62.06±11.30	_	_	_
	PT	34.30±4.50	43.58±5.73	54.49 ± 4.06	56.54±9.33	_	_	-
Both Hands in	FT	40.96 ± 7.03	36.05 ± 6.80	25.17±6.63	18.64 ± 5.26	28.00 ± 4.89	33.37±4.81	36.20±6.13
Midline	PT	24.40 ± 5.84	24.68 ± 5.30	18.82 ± 4.18	15.71±4.45	16.49 ± 4.21	27.87±5.37	26.17±6.00
On a Hand Elatad	FT	26.85±3.52	13.86±3.82	13.71±3.64	9.66±2.76	4.37±1.67	2.45±1.74	$2.84{\pm}1.00$
One Hand Fisted	PT	32.73±4.70	26.74±4.47	27.06±4.91	14.39 ± 3.91	10.62 ± 3.61	7.71±3.86	3.24±1.76
IIdin Maadh	FT	5.89 ± 3.02	$4.84{\pm}1.98$	7.79±3.01	$0.34{\pm}0.17$	3.55 ± 2.36	3.75 ± 2.30	$2.54{\pm}0.94$
Hand in Mouth	РТ	6.96±2.83	13.46±4.25	8.64±3.70	0.38 ± 0.30	$1.87{\pm}1.25$	4.22±2.07	5.83±3.90
Hand Touching	FT	48.17±6.30	40.92±6.13	39.95±5.46	35.47±6.82	28.28 ± 4.30	25.22±3.56	31.47±5.29
Body	РТ	41.22±5.74	33.95±5.33	45.12±5.64	33.84±6.09	20.00 ± 4.10	23.09±4.05	24.02±4.34
Lealring at Hand	FT	0.32 ± 0.24	1.46 ± 0.76	0.78 ± 0.36	1.58 ± 0.63	$3.49{\pm}0.97$	1.74 ± 0.55	0.59±0.39
Looking at Hand	PT	$0.30{\pm}0.17$	1.73 ± 1.45	2.37 ± 0.69	2.88 ± 0.76	$2.49{\pm}0.73$	$1.94{\pm}0.61$	$0.76{\pm}0.28$
Bouts of	FT	28.15±3.25	26.51±4.19	26.21±3.43	35.42±6.42	32.37±4.12	21.49±1.77	18.68 ± 1.87
Exploration	PT	25.20±3.51	27.59±3.84	28.24±3.38	21.22±3.10	26.20±4.18	20.10±2.39	17.36 ± 2.85
Individual	FT	27.53±2.27	31.71±2.40	32.83±2.50	34.34±2.94	40.34±2.35	21.31±1.77	26.94±1.72
Behaviors	PT	25.86±1.66	27.97±1.84	35.52±2.09	32.54 ± 2.05	32.74±2.67	31.33±2.66	29.06 ± 2.85
Combined	FT	2.00±0.47	2.12±0.38	3.10±0.56	4.65±0.91	5.34 ± 0.98	2.08±0.31	1.52 ± 0.28
Behaviors	РТ	1.50 ± 0.29	2.11±0.45	2.89 ± 0.39	3.04±0.43	3.32±0.61	2.15±0.31	2.05 ± 0.46

bject-oriented exploratory behaviors across age for full-tern lividual Behaviors; Combined Behaviors = Variability of C						
Infants' Age in Months						
5	6 mos	9 mos	12 mos	18 mos		
.56	26.97 ± 1.77	28.27 ± 2.16	21.70 ± 1.45	21.73±1.		

Table S2. Descriptive statistics ($Mean \pm SE$) for object-oriented exploratory behaviors across age for full-term (FT) and preterm (PT) infants; Individual Behaviors = Variability of Individual Behaviors; Combined Behaviors = Variability of Combined Behaviors.

Object-Oriented	Birth	Infants' Age in Months						
Behaviors	Status	3 mos	4 mos	6 mos	9 mos	12 mos	18 mos	24 mos
Holding Object	FT	45.74±1.11	36.68±2.56	26.97±1.77	28.27±2.16	21.70±1.45	21.73±1.54	20.40±1.86
Unimanually	PT	46.23±1.36	40.69±1.93	28.71±2.64	27.59±2.14	28.26 ± 1.61	22.85 ± 1.40	21.66±1.49
Holding Object	FT	8.53±2.21	26.63±5.12	46.06±3.54	43.46±4.33	56.56±2.89	54.82±3.04	57.04±3.57
Bimanually	PT	7.55 ± 2.73	18.61 ± 3.87	42.59±5.27	44.81±4.28	43.42±3.25	54.16±2.78	55.00±3.19
	FT	5.58 ± 1.44	15.03 ± 3.70	24.09±3.57	13.35±3.78	6.27 ± 1.90	1.16 ± 0.44	0.26±0.16
Object in Mouth	PT	6.35±2.21	10.84 ± 2.38	22.33±3.77	20.20±4.62	9.24±1.99	5.62 ± 1.61	1.09 ± 0.63
Object Touching	FT	80.66 ± 2.93	68.13±3.76	51.37±3.54	23.59±4.00	20.07 ± 3.05	20.12±3.10	19.00 ± 2.81
Body	PT	69.36 ± 3.62	68.44±3.53	49.04±4.19	26.97±4.24	15.00±2.69	17.59±2.77	22.01±4.04
Looking at Object	FT	$2.88{\pm}1.05$	16.11±3.24	21.25±2.81	24.55±3.94	41.61±3.26	40.71±2.25	48.26±2.97
in Hand	PT	3.24 ± 1.36	12.06 ± 2.67	28.03 ± 3.62	37.04 ± 2.67	39.60 ± 2.68	39.01±2.45	42.95±3.48
Fingering Object	FT	1.30 ± 0.46	1.52 ± 0.42	2.51 ± 0.52	4.17 ± 1.10	2.02 ± 0.51	2.37 ± 0.94	1.53 ± 0.36
Fingering Object	PT	1.12 ± 0.44	$2.34{\pm}0.67$	2.43 ± 0.47	2.58 ± 0.55	1.88 ± 0.55	2.24 ± 0.48	$2.39{\pm}0.74$
Danaina Obiaat	FT	0.002 ± 0.002	1.67 ± 1.31	7.76±2.18	1.96 ± 0.73	1.58 ± 0.75	1.05 ± 0.45	$0.87 {\pm} 0.37$
Banging Object	PT	0.02 ± 0.02	0.0004 ± 0.0004	0.64 ± 0.28	2.71 ± 1.06	1.71 ± 0.54	1.08 ± 0.62	0.74 ± 0.31
Object	FT	$0.39{\pm}0.31$	0.23±0.16	1.13 ± 0.54	1.08 ± 0.37	2.65 ± 0.55	4.12±0.71	6.44±1.09
Manipulation	PT	0.22 ± 0.22	0.61 ± 0.46	1.63 ± 0.36	$1.84{\pm}0.58$	2.15 ± 0.58	2.72 ± 0.57	4.37 ± 0.97
Transferring	FT	0.02 ± 0.02	0.47 ± 0.14	1.22 ± 0.18	1.99 ± 0.33	2.60 ± 0.43	2.05 ± 0.30	2.20±0.39
Object	РТ	0.05 ± 0.03	0.35 ± 0.10	1.05 ± 0.18	3.05 ± 0.46	3.48 ± 0.41	2.31 ± 0.27	2.24 ± 0.29
Bouts of	FT	13.24 ± 1.35	21.22±2.22	40.19±3.06	25.26±2.14	29.98±1.48	24.26±1.38	29.49±1.96
Exploration	PT	11.57 ± 1.10	17.59 ± 1.54	27.63±1.71	28.91 ± 2.30	29.13±2.02	27.56 ± 1.88	26.79±1.95
Individual	FT	35.19±1.97	45.20±2.08	56.57±1.66	57.83±2.09	63.89±2.70	62.08 ± 2.20	63.49±1.96
Behaviors	PT	29.12±2.33	38.89±2.42	56.35±2.28	58.64±2.32	57.74±1.88	61.97±1.82	63.25±2.31
Combined	FT	2.05±0.34	4.55±0.57	7.53±0.60	6.38±0.61	6.10±0.67	5.39±0.64	6.20±0.57
Behaviors	PT	1.56 ± 0.45	3.47±0.51	7.12±0.63	7.56 ± 0.68	6.34±0.45	6.69±0.56	6.43±0.52

Davlay Scale	Birth	Infants' Age in Months						
Bayley Scale	Status	3 mos	4 mos	6 mos	9 mos	12 mos	18 mos	24 mos
	FT	13.74±0.65	16.13±0.48	22.70±0.73	31.13±0.76	39.04±1.30	48.39±0.51	51.87±2.48
Gross Motor	PT	12.33 ± 0.58	14.73 ± 0.56	19.77 ± 0.90	28.33 ± 1.30	$32.53{\pm}1.89$	39.40±3.11	42.90 ± 3.46
D' M (FT	6.43±0.49	10.04 ± 0.57	18.78 ± 0.58	23.70±0.41	28.39±0.43	34.04 ± 0.59	36.91±1.73
Fine Motor	PT	6.87 ± 0.47	$9.80{\pm}0.54$	16.07 ± 0.74	21.87 ± 1.00	24.37 ± 1.28	28.57±2.13	30.93 ± 2.32
Receptive	FT	6.52±0.14	7.43±0.14	8.26±0.19	9.13±0.25	10.26±0.56	16.78±1.35	23.57±1.70
Language	PT	6.47 ± 0.20	7.23 ± 0.18	7.93 ± 0.36	$9.10{\pm}0.40$	9.10±0.53	10.23 ± 0.92	16.87 ± 1.53
Expressive	FT	7.30±0.21	7.04 ± 0.24	8.13±0.31	11.09 ± 0.34	12.87±0.63	20.22±1.01	29.09±1.96
Language	PT	6.40 ± 0.37	6.17±0.33	6.63 ± 0.42	9.43±0.45	10.57 ± 0.68	15.20±1.39	20.87 ± 1.86
Q	FT	9.43±0.65	12.91±0.84	25.87±0.53	31.65±0.61	38.65±0.89	52.09±0.79	58.70±2.79
Cognitive	PT	9.53 ± 0.70	11.77±0.74	22.23±0.94	30.13±1.23	32.47±1.74	40.37±3.06	47.73±3.63

Table S3. Descriptive statistics (*Mean*±*SE*) for Bayley scores across age for full-term (FT) and preterm (PT) infants.

Table S4. Estimated statistical parameters for all fixed effects in final multilevel models testing developmental trends of change with age in NOO and OO exploratory behaviors in the NOO-OO pairs of interest (includes Cohen's *d* effect sizes).

Estimated Statistical Parameters						
NOO Exploratory Behaviors	OO Exploratory Behaviors					
Both Hands in Midline	Holding Object Bimanually					
Intercept: $\beta = 35.10$, $t(337) = 6.43$, $SE = 5.46$, $p < .001$;	Intercept: $\beta = -1.75$, $t(52) = -0.50$, $SE = 3.51$, $p = .621$;					
AGE: $\beta = -2.25$, $t(337) = -2.44$, $SE = 0.92$, $p = .015$;	AGE: $\beta = 6.73$, $t(52) = 12.22$, $SE = 0.55$, $p < .001$;					
AGE ² : $\beta = 0.09$, $t(337) = 2.75$, $SE = 0.03$, $p = .006$;	AGE ² : β = -0.19, $t(233)$ = -9.80, SE = 0.02, $p < .001$;					
d = 0.27	d = 3.39					
One Hand Fisted	Holding Object Bimanually					
Intercept: $\beta = 36.99$, $t(52) = 9.14$, $SE = 4.05$, $p < .001$;	Intercept: $\beta = -1.75$, $t(52) = -0.50$, $SE = 3.51$, $p = .621$;					
AGE: $\beta = -3.35$, $t(285) = -5.78$, $SE = 0.58$, $p < .001$;	AGE: $\beta = 6.73$, $t(52) = 12.22$, $SE = 0.55$, $p < .001$;					
AGE ² : $\beta = 0.08$, $t(285) = 4.53$, $SE = 0.02$, $p < .001$;	AGE ² : $\beta = -0.19$, $t(233) = -9.80$, SE = 0.02, $p < .001$;					
a = 0.08	a = 3.39					
Hand in Mouth 11.57 (227) 4.45 SE 2.60 < 0.01	Object in Mouth					
Intercept: $\beta = 11.5$ /, $t(337) = 4.45$, $SE = 2.60$, $p < .001$;	Intercept: $\beta = 11.02$, $t(52) = 4.15$, $SE = 2.66$, $p < .001$;					
AGE: $p = -1.20$, $l(557) = -2.00$, $SE = 0.45$, $p = .006$; ACE ² : $R = 0.04$, $t(227) = 2.27$, $SE = 0.02$, $n = .024$.	AGE: $p = 0.70$, $l(283) = 1.53$, $SE = 0.49$, $p = .124$; ACE ² : $p = 0.05$, $l(285) = 2.14$, $SE = 0.02$, $n = 0.02$;					
AGE: $p = 0.04$, $l(557) = 2.27$, $SE = 0.02$, $p = .024$, d = 0.29	AGE: $p = -0.05$, $t(265) = -5.14$, $SE = 0.02$, $p = .002$, d = 0.18					
u = 0.29 Hand Touching Body	a = 0.16 Object Touching Body					
Intercept: $\beta = 52.80$ $t(52) = 10.15$ $SF = 5.20$ $n < 0.01$:	Intercent: $\beta = 103.14$ $t(52) = 30.70$ $SE = 3.36$ $n < 0.01$:					
AGE: $\beta = -3.08 t(285) = -3.56 SE = 0.87 n < 0.01$	AGE: $\beta = -10.73 \ t(285) = -17.57 \ SE = 0.61 \ n < 0.001$					
AGE^{2} : $\beta = 0.08$, $t(285) = 2.69$, $SE = 0.03$, $p = .007$;	AGE^{2} ; $\beta = 0.31$, $t(285) = 13.59$, $SE = 0.02$, $p < .001$;					
d = 0.42	d = 2.08					
Looking at Hand	Looking at Object in Hand					
Intercept: $\beta = -0.52$, $t(337) = -0.75$, $SE = 0.70$, $p = .456$;	Intercept: $\beta = -8.51$, $t(52) = -3.23$, $SE = 2.64$, $p = .002$;					
AGE: $\hat{\beta} = 0.49$, $t(337) = 3.72$, $SE = 0.13$, $p < .001$;	AGE: $\hat{\beta} = 5.98$, $t(285) = 10.97$, $SE = 0.54$, $p < .001$;					
AGE ² : $\beta = -0.02$, $t(337) = -3.97$, $SE = 0.005$, $p < .001$;	AGE ² : β = -0.16, $t(285)$ = -7.86, SE = 0.02, p < .001;					
d = 0.41	d = 1.30					
Bouts of Exploration	Bouts of Exploration					
Intercept: $\beta = 24.36$, $t(52) = 7.31$, $SE = 3.33$, $p < .001$;	Intercept: $\beta = 11.33$, $t(337) = 5.96$, $SE = 1.90$, $p < .001$;					
AGE: $\beta = 0.74$, $t(285) = 1.19$, $SE = 0.62$, $p = .235$;	AGE: $\beta = 2.51$, $t(337) = 6.96$, $SE = 0.36$, $p < .001$;					
AGE ² : $\beta = -0.04$, $t(285) = -1.98$, $SE = 0.02$, $p = .049$;	AGE ² : β = -0.08, $t(337)$ = -6.05, SE = 0.01, p < .001;					
d = 0.14	d = 0.76					
Variability of Individual Behaviors	Variability of Individual Behaviors					
Intercept: $\beta = 23.60, t(52) = 14.26, SE = 1.65, p < .001;$	Intercept: $\beta = 24.80$, $t(52) = 10.94$, $SE = 2.27$, $p < .001$;					
AGE: $\beta = 1.78$, $t(285) = 5.07$, $SE = 0.35$, $p < .001$;	AGE: $\beta = 4.72$, $t(285) = 11.80$, $SE = 0.40$, $p < .001$;					
AGE: $p = -0.07$, $t(285) = -4.91$, $5E = 0.01$, $p < .001$;	AGE ^{-:} $p = -0.15$, $t(285) = -9.05$, $5E = 0.01$, $p < .001$;					
u = 0.00 Variability of Combined Debayions	u - 1.40 Variability of Combined Debayions					
variability of Combined Benaviors	variability of Combined Benävlors					

Intercept: $\beta = 0.58$, $t(337) = 1.64$, $SE = 0.35$, $p = .103$;	Intercept: $\beta = 1.35$, $t(52) = 2.52$, $SE = 0.53$, $p = .015$;
AGE: $\beta = 0.49$, $t(337) = 5.86$, $SE = 0.08$, $p < .001$;	AGE: $\beta = 0.76$, $t(285) = 7.51$, $SE = 0.10$, $p < .001$;
AGE ² : $\beta = -0.02$, $t(337) = -5.83$, $SE = 0.003$, $p < .001$;	AGE ² : β = -0.02, $t(285)$ = -6.52, SE = 0.004, p < .001;
d = 0.64	d = 0.89

Table S5. Estimated statistical parameters for all fixed effects in final multilevel models relating NOO exploration to OO exploration (includes Cohen's *d* effect sizes); when non-significant, STATUS variable was deleted from the final statistical models.

NOO Exploratory Behaviors (Independent Variable)	OO Exploratory Behaviors (Dependent Variable)	Estimated Statistical Parameters
Both Hands in Midline (BHM)	Holding Object Bimanually	Intercept: $\beta = -5.42$, $t(52) = -1.49$, $SE = 3.65$, $p = .143$; BHM: $\beta = 0.09$, $t(52) = 2.21$, $SE = 0.04$, $p = .032$; AGE: $\beta = 7.04$, $t(52) = 12.65$, $SE = 0.56$, $p < .001$; AGE ² : $\beta = -0.20$, $t(182) = -10.37$, $SE = 0.02$, $p < .001$; d = 0.61
One Hand Fisted (OF)	Holding Object Bimanually	Intercept : $\beta = 4.25$, $t(52) = 1.03$, $SE = 4.13$, $p = .308$; OF : $\beta = -0.16$, $t(234) = -3.11$, $SE = 0.05$, $p = .002$; AGE : $\beta = 6.16$, $t(52) = 10.74$, $SE = 0.57$, $p < .001$; AGE ² : $\beta = -0.17$, $t(234) = -9.00$, $SE = 0.02$, $p < .001$; d = 0.41
Hand in Mouth (MH)	Object in Mouth	Intercept : $\beta = 10.58$, $t(52) = 3.84$, $SE = 2.76$, $p < .001$; MH : $\beta = 0.03$, $t(286) = 0.50$, $SE = 0.06$, $p = .619$; AGE : $\beta = 0.80$, $t(286) = 1.62$, $SE = 0.50$, $p = .107$; AGE ² : $\beta = -0.05$, $t(286) = -3.19$, $SE = 0.02$, $p = .002$; d = 0.06
Hand Touching Body (HTB)	Object Touching Body	Intercept : $\beta = 98.65$, $t(52) = 25.55$, $SE = 3.86$, $p < .001$; HTB : $\beta = 0.09$, $t(286) = 2.64$, $SE = 0.03$, $p = .009$; AGE : $\beta = -10.47$, $t(286) = -17.06$, $SE = 0.61$, $p < .001$; AGE ² : $\beta = 0.30$, $t(286) = 13.35$, $SE = 0.02$, $p < .001$; d = 0.31
Looking at Hand (LH)	Looking at Object in Hand	Intercept : $\beta = -8.07$, $t(52) = -3.30$, $SE = 2.45$, $p = .002$; LH : $\beta = 0.82$, $t(286) = 5.35$, $SE = 0.15$, $p < .001$; AGE : $\beta = 5.55$, $t(286) = 10.61$, $SE = 0.52$, $p < .001$; AGE ² : $\beta = -0.14$, $t(286) = -7.24$, $SE = 0.02$, $p < .001$; d = 0.63
Bouts of Exploration (BE)	Bouts of Exploration	Intercept : $\beta = 5.98$, $t(336) = 3.42$, $SE = 1.75$, $p < .001$; BE : $\beta = 0.13$, $t(336) = 4.67$, $SE = 0.03$, $p < .001$; STATUS : $\beta = 4.52$, $t(336) = 2.58$, $SE = 1.75$, $p = .010$; AGE : $\beta = 2.55$, $t(336) = 7.29$, $SE = 0.35$, $p < .001$; AGE*STATUS : $\beta = -0.25$, $t(336) = -2.24$, $SE = 0.11$, $p = .026$; AGE ² : $\beta = -0.07$, $t(336) = -5.63$, $SE = 0.01$, $p < .001$;

Variability of Individual Behaviors (IB)	Variability of Individual Behaviors	Intercept : $\beta = 19.34$, $t(52) = 7.16$, $SE = 2.70$, $p < .001$; IB : $\beta = 0.21$, $t(286) = 4.38$, $SE = 0.05$, $p < .001$; AGE : $\beta = 4.41$, $t(286) = 11.31$, $SE = 0.39$, $p < .001$; AGE ² : $\beta = -0.12$, $t(286) = -8.49$, $SE = 0.01$, $p < .001$; d = 0.52
Variability of Combined Behaviors (CB)	Variability of Combined Behaviors	Intercept : $\beta = 1.22$, $t(52) = 2.34$, $SE = 0.52$, $p = .023$; CB : $\beta = 0.09$, $t(286) = 1.35$, $SE = 0.07$, $p = .178$; AGE : $\beta = 0.73$, $t(286) = 6.98$, $SE = 0.10$, $p < .001$; AGE ² : $\beta = -0.02$, $t(286) = -6.01$, $SE = 0.004$, $p < .001$; d = 0.16

d = 0.51

Table S6. Estimated statistical parameters for all fixed effects in final multilevel models relating children's NOO exploration to Bayley outcomes (includes Cohen's *d* effect sizes).

NOO Exploratory	Bayley Scales of Infant Development (Dependent Variable)							
Behaviors (Independent Variable)	Gross Motor	Fine Motor	Receptive Language	Expressive Language	Cognitive			
Head Up (HU)	Intercept : $\beta = 4.37$, $t(53) = 7.44$, $SE = 0.59$, $p < .001$; HU : $\beta = 0.04$, $t(57) = 5.01$, SE = 0.01, $p < .001$; AGE : $\beta = 2.33$, $t(53) = 16.21$, $SE = 0.14$, $p < .001$; d = 1.33	Intercept: $\beta = -8.72$, $t(52)$ = -5.95, $SE = 1.47$, $p < .001$; HU: $\beta = 0.02$, $t(56) = 2.88$, $SE = 0.01$, $p = .006$; STATUS: $\beta = -2.04$, $t(52)$ = -1.85, $SE = 1.10$, $p = .071$; AGE: $\beta = 5.74$, $t(52) = 10.09$, $SE = 0.57$, $p < .001$; AGE*STATUS: $\beta = 0.58$, $t(52) = 2.51$, $SE = 0.23$, $p = .015$; AGE ² : $\beta = -0.28$, $t(56) =572$, $SE = 0.05$, $p < .001$; d = 0.77	Intercept: $\beta = 4.73$, $t(53) = 23.36$, $SE = 0.20$, $p < .001$; HU: $\beta = 0.001$, $t(57) = 0.57$, $SE = 0.003$, $p = .572$; AGE: $\beta = 0.64$, $t(53) = 13.92$, $SE = 0.05$, $p < .001$; d = 0.15	Intercept: $\beta = 4.85$, $t(53) = 13.15$, $SE = 0.36$, $p < .001$; HU: $\beta = 0.01$, $t(57) = 1.52$, SE = 0.004, $p = .134$; AGE: $\beta = 0.57$, $t(53) = 8.92$, $SE = 0.06$, $p < .001$; d = 0.40	Intercept: $\beta = -14.04$, $t(53)$ = -7.17, $SE = 1.96$, $p < .001$; HU: $\beta = 0.02$, $t(56) = 1.79$, SE = 0.01, $p = .079$; AGE: $\beta = 8.87$, $t(53) = 11.53$, $SE = 0.77$, $p < .001$; AGE ² : $\beta = -0.47$, $t(56) = -6.97$, $SE = 0.07$, $p < .001$; d = 0.48			
Head in Midline (HM)	Intercept : $\beta = 4.45$, $t(53) = 7.19$, $SE = 0.62$, $p < .001$; HM : $\beta = 0.02$, $t(55) = 2.41$, SE = 0.01, $p = .019$; AGE : $\beta = 2.71$, $t(53) = 21.98$, $SE = 0.12$, $p < .001$; d = 0.65	Intercept: $\beta = -10.07$, $t(52)$ = -7.34, $SE = 1.37$, $p < .001$; HM: $\beta = 0.01$, $t(106) = 1.31$, $SE = 0.01$, $p = .194$; STATUS: $\beta = -1.82$, $t(52)$ = -1.76, $SE = 1.03$, $p = .084$; AGE: $\beta = 6.51$, $t(106) = 12.82$, $SE = 0.51$, $p < .001$; AGE*STATUS: $\beta = 0.56$, $t(106) = 2.80$, $SE = 0.20$, $p = .006$; AGE ² : $\beta = -0.34$, $t(106) = -7.63$, $SE = 0.05$, $p < .001$; d = 0.25	Intercept: $\beta = 3.80$, $t(53) = 7.73$, $SE = 0.49$, $p < .001$; HM: $\beta = -0.001$, $t(107) = -0.29$, $SE = 0.003$, $p = .772$; AGE: $\beta = 1.06$, $t(107) = 5.71$, $SE = 0.19$, $p < .001$; AGE ² : $\beta = -0.04$, $t(107) = -2.13$, $SE = 0.02$, $p = .035$; d = 0.06	Intercept: $\beta = 5.39$, $t(52) = 8.35$, $SE = 0.65$, $p < .001$; HM: $\beta = 0.01$, $t(54) = 2.30$, SE = 0.003, $p = .026$; STATUS: $\beta = 0.89$, $t(52) = 2.52$, $SE = 0.35$, $p = .015$; AGE: $\beta = 0.13$, $t(53) = 0.52$, $SE = 0.24$, $p = .605$; AGE ² : $\beta = 0.05$, $t(54) = 2.14$, $SE = 0.02$, $p = .037$; d = 0.63	Intercept: $\beta = -13.67$, $t(52)$ = -6.40, $SE = 2.14$, $p < .001$; HM: $\beta = -0.01$, $t(54) = -$ 1.47, $SE = 0.01$, $p = .147$; STATUS: $\beta = -1.83$, $t(52)$ = -1.05, $SE = 1.75$, $p = .300$; AGE: $\beta = 9.25$, $t(52) = 13.27$, $SE = 0.70$, $p < .001$; AGE*STATUS: $\beta = 0.67$, $t(52) = 2.13$, $SE = 0.32$, $p = .038$; AGE ² : $\beta = -0.52$, $t(54) = -$ 9.40, $SE = 0.06$, $p < .001$; d = 0.40			
Both Hands in Midline	Intercept : $\beta = 1.37$, $t(52) =$	Intercept : β = -0.90, <i>t</i> (52)	Intercept : $\beta = 7.68$, <i>t</i> (289)	Intercept : $\beta = 5.78$, $t(52) =$	Intercept : $\beta = 1.00, t(52) =$			

(BHM)	2.14, $SE = 0.64$, $p = .037$; BHM : $\beta = -0.01$, $t(238) = -0.82$, $SE = 0.01$, $p = .415$; STATUS : $\beta = 1.90$, $t(52) = 2.95$, $SE = 0.64$, $p = .005$; AGE : $\beta = 3.82$, $t(53) = 29.16$, $SE = 0.13$, $p < .001$; AGE ² : $\beta = -0.07$, $t(238) = -16.23$, $SE = 0.004$, $p < .001$; d = 0.11	= -1.49, $SE = 0.61$, $p =$.143; BHM : $\beta = -0.01$, $t(290) = -$ 1.75, $SE = 0.01$, $p = .081$; STATUS : $\beta = 0.39$, $t(52) =$ 0.65, $SE = 0.60$, $p = .519$; AGE : $\beta = 3.21$, $t(290) =$ 35.65, $SE = 0.09$, $p < .001$; AGE*STATUS : $\beta = 0.09$, t(290) = 2.39, $SE = 0.04$, $p =.018;AGE2: \beta = -0.07, t(290) = -22.85, SE = 0.003, p <.001;d = 0.21$	= 21.94, <i>SE</i> = 0.35, <i>p</i> < .001; BHM : β = 0.01, <i>t</i> (53) = 0.89, <i>SE</i> = 0.01, <i>p</i> = .376; STATUS : β = -2.26, <i>t</i> (289) = -4.02, <i>SE</i> = 0.56, <i>p</i> < .001; AGE : β = -0.08, <i>t</i> (289) = -1.06, <i>SE</i> = 0.07, <i>p</i> = .292; AGE * STATUS : β = 0.33, <i>t</i> (289) = 4.52, <i>SE</i> = 0.07, <i>p</i> < .001; AGE ² : β = 0.02, <i>t</i> (289) = 7.35, <i>SE</i> = 0.003, <i>p</i> < .001; <i>d</i> = 0.24	9.34, $SE = 0.62$, $p < .001$; BHM : $\beta = -0.002$, $t(238) = -0.66$, $SE = 0.003$, $p = .513$; STATUS : $\beta = -0.14$, $t(52) = -0.25$, $SE = 0.57$, $p = .807$; AGE : $\beta = 0.25$, $t(52) = 2.41$, $SE = 0.11$, $p = .019$; AGE * STATUS : $\beta = 0.20$, $t(52) = 2.48$, $SE = 0.08$, $p = .017$; AGE ² : $\beta = 0.02$, $t(238) = 5.89$, $SE = 0.004$, $p < .001$; d = 0.09	1.40, $SE = 0.72$, $p = .167$; BHM : $\beta = -0.02$, $t(53) = -2.25$, $SE = 0.01$, $p = .028$; STATUS : $\beta = -0.58$, $t(52) = -0.79$, $SE = 0.74$, $p = .436$; AGE : $\beta = 3.74$, $t(52) = 30.98$, $SE = 0.12$, $p < .001$; AGE * STATUS : $\beta = 0.30$, $t(52) = 3.92$, $SE = 0.08$, $p < .001$; AGE ² : $\beta = -0.06$, $t(185) = -15.01$, $SE = 0.004$, $p < .001$; d = 0.62
One Hand Fisted (OF)	Intercept: $\beta = 1.55$, $t(52) = 1.86$, $SE = 0.84$, $p = .069$; OF : $\beta = -0.01$, $t(238) = -0.89$, $SE = 0.01$, $p = .376$; STATUS : $\beta = 1.77$, $t(52) = 2.78$, $SE = 0.64$, $p = .008$; AGE : $\beta = 3.80$, $t(53) = 26.58$, $SE = 0.14$, $p < .001$; AGE ² : $\beta = -0.07$, $t(238) = -15.37$, $SE = 0.01$, $p < .001$; d = 0.12	Intercept: $\beta = -0.76$, $t(52)$ = -1.05, $SE = 0.73$, $p =$.301; OF: $\beta = -0.01$, $t(290) = -$ 1.20, $SE = 0.01$, $p = .230$; STATUS: $\beta = 0.17$, $t(52) =$ 0.29, $SE = 0.60$, $p = .773$; AGE: $\beta = 3.20$, $t(290) =$ 32.23, $SE = 0.10$, $p < .001$; AGE*STATUS: $\beta = 0.10$, t(290) = 2.57, $SE = 0.04$, $p =.011;AGE2: \beta = -0.07, t(290) = -21.74, SE = 0.003, p <.001;d = 0.14$	Intercept: $\beta = 7.50$, $t(52) = 17.01$, $SE = 0.44$, $p < .001$; OF: $\beta = 0.001$, $t(290) = 0.18$, $SE = 0.01$, $p = .860$; STATUS: $\beta = -1.88$, $t(52) = -4.01$, $SE = 0.47$, $p < .001$; AGE: $\beta = -0.04$, $t(290) = -0.55$, $SE = 0.08$, $p = .582$; AGE*STATUS: $\beta = 0.33$, $t(290) = 4.29$, $SE = 0.08$, $p < .001$; AGE ² : $\beta = 0.02$, $t(290) = 6.88$, $SE = 0.003$, $p < .001$; d = 0.02	Intercept: $\beta = 6.19$, $t(52) = 8.70$, $SE = 0.71$, $p < .001$; OF: $\beta = -0.01$, $t(238) = -2.15$, $SE = 0.01$, $p = .033$; STATUS: $\beta = -0.30$, $t(52) = -0.51$, $SE = 0.59$, $p = .611$; AGE: $\beta = 0.22$, $t(52) = 1.98$, $SE = 0.11$, $p = .053$; AGE*STATUS: $\beta = 0.20$, $t(52) = 2.55$, $SE = 0.08$, $p = .014$; AGE ² : $\beta = 0.02$, $t(238) = 5.89$, $SE = 0.004$, $p < .001$; d = 0.28	Intercept: $\beta = 0.55$, $t(52) = 0.53$, $SE = 1.04$, $p = .600$; OF: $\beta = -0.01$, $t(238) = -0.39$, $SE = 0.01$, $p = .700$; STATUS: $\beta = -0.61$, $t(52) = -0.85$, $SE = 0.72$, $p = .401$; AGE: $\beta = 3.75$, $t(52) = 22.31$, $SE = 0.17$, $p < .001$; AGE*STATUS: $\beta = 0.29$, $t(52) = 3.71$, $SE = 0.08$, $p < .001$; AGE ² : $\beta = -0.06$, $t(238) = -13.65$, $SE = 0.01$, $p < .001$; d = 0.05
Hand in Mouth (MH)	Intercept: $\beta = 1.17$, $t(52) = 1.73$, $SE = 0.68$, $p = .090$; MH: $\beta = 0.003$, $t(238) = -0.30$, $SE = 0.01$, $p = .762$; STATUS: $\beta = 1.87$, $t(52) = 2.96$, $SE = 0.63$, $p = .005$; AGE: $\beta = 3.83$, $t(53) = 29.15$, $SE = 0.13$, $p < .001$; AGE ² : $\beta = -0.07$, $t(238) = -16.24$, $SE = 0.004$, $p < .001$; d = 0.04	Intercept: $\beta = -1.30$, $t(52)$ = -1.99, $SE = 0.65$, $p = .052$; MH: $\beta = 0.01$, $t(290) = 0.96$, $SE = 0.01$, $p = .337$; STATUS: $\beta = 0.32$, $t(52) = 0.53$, $SE = 0.60$, $p = .600$; AGE: $\beta = 3.25$, $t(290) = 34.72$, $SE = 0.09$, $p < .001$; AGE*STATUS: $\beta = 0.09$, $p < .001$; AGE*STATUS: $\beta = 0.09$, $t(290) = 2.42$, $SE = 0.04$, $p = .016$;	Intercept: $\beta = 7.62$, $t(52) = 22.44$, $SE = 0.34$, $p < .001$; MH: $\beta = -0.01$, $t(290) = -0.96$, $SE = 0.01$, $p = .337$; STATUS: $\beta = -1.91$, $t(52) = -4.12$, $SE = 0.46$, $p < .001$; AGE: $\beta = -0.06$, $t(290) = -0.75$, $SE = 0.07$, $p = .454$; AGE*STATUS: $\beta = 0.33$, $t(290) = 4.30$, $SE = 0.08$, $p < .001$;	Intercept: $\beta = 5.88$, $t(52) = 9.72$, $SE = 0.61$, $p < .001$; MH: $\beta = -0.01$, $t(238) = -1.66$, $SE = 0.01$, $p = .100$; STATUS: $\beta = -0.21$, $t(52) = -0.36$, $SE = 0.58$, $p = .722$; AGE: $\beta = 0.24$, $t(52) = 2.33$, $SE = 0.10$, $p = .024$; AGE*STATUS: $\beta = 0.20$, $t(52) = 2.51$, $SE = 0.08$, $p = .015$;	Intercept: $\beta = 0.52$, $t(290)$ = 0.60, $SE = 0.87$, $p = .552$; MH: $\beta = -0.01$, $t(290) = -$ 0.48, $SE = 0.02$, $p = .632$; STATUS: $\beta = -0.63$, $t(290)$ = -0.93, $SE = 0.68$, $p =$.355; AGE: $\beta = 3.74$, $t(52) =$ 24.12, $SE = 0.16$, $p < .001$; AGE*STATUS: $\beta = 0.29$, t(52) = 3.91, $SE = 0.07$, $p <.001;$

		AGE ² : β = -0.07, $t(290)$ = - 22.79, SE = 0.003, p < .001; d = 0.11	AGE ² : $\beta = 0.02$, $t(290) =$ 7.18, $SE = 0.003$, $p < .001$; d = 0.11	AGE ² : $\beta = 0.02$, $t(238) = 6.03$, $SE = 0.004$, $p < .001$; d = 0.22	AGE ² : β = -0.06, t (290) = - 13.93, <i>SE</i> = 0.01, p < .001; d = 0.06
Hand Touching Body (HTB)	Intercept: $\beta = 2.16$, $t(52) = 3.38$, $SE = 0.64$, $p = .001$; HTB: $\beta = -0.02$, $t(238) = -3.29$, $SE = 0.01$, $p = .001$; STATUS: $\beta = 1.88$, $t(52) = 2.94$, $SE = 0.64$, $p = .005$; AGE: $\beta = 3.77$, $t(53) = 41.43$, $SE = 0.09$, $p < .001$; AGE ² : $\beta = -0.07$, $t(238) = -22.41$, $SE = 0.003$, $p < .001$ d = 0.43	Intercept: $\beta = -0.75$, $t(52)$ = -1.21, $SE = 0.62$, $p =$.232; HTB: $\beta = -0.01$, $t(290) =$ - 1.65, $SE = 0.01$, $p =$.100; STATUS: $\beta = 0.31$, $t(52) =$ 0.51, $SE = 0.60$, $p =$.611; AGE: $\beta = 3.21$, $t(290) =$ 35.55, $SE = 0.09$, $p <$.001; AGE*STATUS: $\beta = 0.09$, t(290) = 2.49, $SE = 0.04$, $p= .013;AGE2: \beta = -0.07, t(290) = -23.28, SE = 0.003, p <.001;d = 0.19$	Intercept: $\beta = 7.36$, $t(52) = 21.78$, $SE = 0.34$, $p < .001$; HTB: $\beta = 0.003$, $t(290) = 0.75$, $SE = 0.004$, $p = .456$; STATUS: $\beta = -1.90$, $t(52) = -4.04$, $SE = 0.47$, $p < .001$; AGE: $\beta = -0.04$, $t(290) = -0.52$, $SE = 0.07$, $p = .605$; AGE*STATUS: $\beta = 0.33$, $t(290) = 4.28$, $SE = 0.08$, $p < .001$; AGE ² : $\beta = 0.02$, $t(290) = 7.27$, $SE = 0.003$, $p < .001$; d = 0.09	Intercept: $\beta = 5.93$, $t(52) = 10.32$, $SE = 0.57$, $p < .001$; HTB: $\beta = -0.004$, $t(238) = -1.23$, $SE = 0.003$, $p = .222$; STATUS: $\beta = -0.15$, $t(52) = -0.27$, $SE = 0.58$, $p = .791$; AGE: $\beta = 0.25$, $t(52) = 2.44$, $SE = 0.10$, $p = .018$; AGE*STATUS: $\beta = 0.20$, $t(52) = 2.49$, $SE = 0.08$, $p < .016$; AGE ² : $\beta = 0.02$, $t(238) = 6.15$, $SE = 0.004$, $p < .001$; d = 0.16	Intercept: $\beta = 0.42$, $t(52) = .46$, $SE = 0.92$, $p = .647$; HTB: $\beta = 0.001$, $t(53) = 0.08$, $SE = 0.01$, $p = .937$; STATUS: $\beta = -0.73$, $t(52) = -1.04$, $SE = 0.70$, $p = .302$; AGE: $\beta = 3.77$, $t(52) = 24.41$, $SE = 0.15$, $p < .001$; AGE*STATUS: $\beta = 0.30$, t(52) = 4.04, $SE = 0.07$, $p < .001$; AGE ² : $\beta = -0.06$, $t(185) = -14.39$, $SE = 0.004$, $p < .001$; d = 0.02
Looking at Hand (LH)	Intercept: $\beta = 1.21$, $t(52) = 1.79$, $SE = 0.67$, $p = .080$; LH: $\beta = -0.004$, $t(238) = -0.11$, $SE = 0.03$, $p = .910$; STATUS: $\beta = 1.86$, $t(52) = 2.94$, $SE = 0.63$, $p = .005$; AGE: $\beta = 3.83$, $t(53) = 28.25$, $SE = 0.14$, $p < .001$; AGE ² : $\beta = -0.07$, $t(238) = -15.65$, $SE = 0.01$, $p < .001$; d = 0.01	Intercept: $\beta = -1.15$, $t(52)$ = -1.94, $SE = 0.60$, $p = .058$; LH: $\beta = 0.07$, $t(290) = 1.33$, $SE = 0.05$, $p = .183$; STATUS: $\beta = 0.33$, $t(52) = 0.58$, $SE = 0.58$, $p = .565$; AGE: $\beta = 3.20$, $t(290) = 32.70$, $SE = 0.10$, $p < .001$; AGE*STATUS: $\beta = 0.09$, $t(290) = 2.45$, $SE = 0.04$, $p = .015$; AGE ² : $\beta = -0.07$, $t(290) = -21.11$, $SE = 0.003$, $p < .001$; d = 0.16	Intercept: $\beta = 7.53$, $t(52) = 22.36$, $SE = 0.34$, $p < .001$; LH: $\beta = -0.01$, $t(290) = -0.68$, $SE = 0.02$, $p = .496$; STATUS: $\beta = -1.90$, $t(52) = -4.07$, $SE = 0.47$, $p < .001$; AGE: $\beta = -0.04$, $t(290) = -0.55$, $SE = 0.07$, $p = .584$; AGE*STATUS: $\beta = 0.33$, $t(290) = 4.29$, $SE = 0.08$, $p < .001$; AGE ² : $\beta = 0.02$, $t(290) = 7.13$, $SE = 0.003$, $p < .001$; d = 0.08	Intercept: $\beta = 5.71$, $t(52) = 9.67$, $SE = 0.59$, $p < .001$; LH: $\beta = -0.04$, $t(238) = -1.42$, $SE = 0.02$, $p = .156$; STATUS: $\beta = -0.18$, $t(52) = -0.31$, $SE = 0.57$, $p = .755$; AGE: $\beta = 0.28$, $t(52) = 2.68$, $SE = 0.10$, $p = .010$; AGE*STATUS: $\beta = 0.20$, $t(52) = 2.48$, $SE = 0.08$, $p = .016$; AGE ² : $\beta = 0.02$, $t(238) = 5.74$, $SE = 0.004$, $p < .001$; d = 0.18	Intercept: $\beta = 0.34$, $t(52) = 0.38$, $SE = 0.90$, $p = .706$; LH: $\beta = -0.01$, $t(238) = -0.26$, $SE = 0.05$, $p = .796$; STATUS: $\beta = -0.56$, $t(52) = -0.81$, $SE = 0.70$, $p = .424$; AGE: $\beta = 3.77$, $t(52) = 22.85$, $SE = 0.17$, $p < .001$; AGE*STATUS: $\beta = 0.28$, $t(52) = 3.80$, $SE = 0.07$, $p < .001$; AGE ² : $\beta = -0.06$, $t(238) = -13.17$, $SE = 0.01$, $p < .001$; d = 0.03
Bouts of Exploration (BE)	Intercept: $\beta = 1.26$, $t(52) = 1.73$, $SE = 0.73$, $p = .090$; BE : $\beta = -0.002$, $t(238) = -0.25$, $SE = 0.01$, $p = .806$; STATUS : $\beta = 1.86$, $t(52) = 2.96$, $SE = 0.63$, $p = .005$;	Intercept : $\beta = -1.09$, $t(52)$ = -1.78, $SE = 0.61$, $p = .080$; BE : $\beta = -0.003$, $t(290) = -0.43$, $SE = 0.01$, $p = .670$; STATUS : $\beta = 0.30$, $t(52) = -0.01$	Intercept : $\beta = 7.49$, $t(52) = 19.57$, $SE = 0.38$, $p < .001$; BE : $\beta = 0.002$, $t(290) = 0.37$, $SE = 0.01$, $p = .711$; STATUS : $\beta = -1.90$, $t(52) = -4.11$, $SE = 0.46$, $p < 0.46$	Intercept: $\beta = 5.52$, $t(52) = 8.76$, $SE = 0.63$, $p < .001$; BE : $\beta = 0.01$, $t(238) = 1.63$, $SE = 0.01$, $p = .105$; STATUS : $\beta = -0.19$, $t(52) = -0.33$, $SE = 0.57$, $p = 0$	Intercept: $\beta = 0.07$, $t(52) = 0.08$, $SE = 0.97$, $p = .939$; BE : $\beta = 0.01$, $t(238) = 1.02$, $SE = 0.01$, $p = .309$; STATUS: $\beta = -0.58$, $t(52) = -0.84$, $SE = 0.70$, $p =$

	AGE: β = 3.83, $t(53)$ = 29.11, SE = 0.13, p < .001; AGE ² : β = -0.07, $t(238)$ = - 16.28, SE = 0.004, p < .001; d = 0.03	0.51, $SE = 0.60$, $p = .615$; AGE : $\beta = 3.24$, $t(290) = 35.36$, $SE = 0.09$, $p < .001$; AGE*STATUS : $\beta = 0.09$, $t(290) = 2.44$, $SE = 0.04$, $p = .015$; AGE ² : $\beta = -0.07$, $t(290) = -22.98$, $SE = 0.003$, $p < .001$; d = 0.05	.001; AGE : $\beta = -0.05$, $t(290) = -0.65$, $SE = 0.07$, $p = .515$; AGE*STATUS : $\beta = 0.33$, t(290) = 4.29, $SE = 0.08$, $p < .001$; AGE ² : $\beta = 0.02$, $t(290) = 7.04$, $SE = 0.003$, $p < .001$; d = 0.04	.747; AGE : $\beta = 0.25$, $t(52) =$ 2.46, $SE = 0.10$, $p = .017$; AGE*STATUS : $\beta = 0.20$, t(52) = 2.47, $SE = 0.08$, $p =.017;AGE2: \beta = 0.02, t(238) =5.98, SE = 0.004, p < .001;d = 0.21$.407; AGE : β = 3.76, $t(52)$ = 23.89, SE = 0.16, p < .001; AGE*STATUS : β = 0.28, t(52) = 3.77, SE = 0.08, p < .001; AGE² : β = -0.06, $t(238)$ = - 14.12, SE = 0.004, p < .001; d = 0.13
Variability of Individual Behaviors (IB)	Intercept: $\beta = 0.75$, $t(52) = 1.09$, $SE = 0.69$, $p = .282$; IB: $\beta = 0.02$, $t(238) = 1.49$, SE = 0.01, $p = .138$; STATUS: $\beta = 1.82$, $t(52) = 2.91$, $SE = 0.62$, $p = .005$; AGE: $\beta = 3.80$, $t(53) = 28.03$, $SE = 0.14$, $p < .001$; AGE ² : $\beta = -0.07$, $t(238) = -15.33$, $SE = 0.01$, $p < .001$; d = 0.19	Intercept: $\beta = -1.40$, $t(52)$ = -2.10, $SE = 0.67$, $p =$.041; IB: $\beta = 0.01$, $t(290) = 0.86$, SE = 0.01, $p = .390$; STATUS: $\beta = 0.27$, $t(52) =$ 0.44, $SE = 0.60$, $p = .661$; AGE: $\beta = 3.22$, $t(290) =$ 34.62, $SE = 0.09$, $p < .001$; AGE*STATUS: $\beta = 0.09$, t(290) = 2.43, $SE = 0.04$, $p =.016;AGE2: \beta = -0.07, t(290) = -22.80, SE = 0.003, p <.001;d = 0.10$	Intercept: $\beta = 7.77$, $t(52) = 16.63$, $SE = 0.47$, $p < .001$; IB: $\beta = -0.01$, $t(290) = -0.87$, $SE = 0.01$, $p = .384$; STATUS: $\beta = -1.87$, $t(52) = -4.08$, $SE = 0.46$, $p < .001$; AGE: $\beta = -0.03$, $t(290) = -0.37$, $SE = 0.08$, $p = .712$; AGE*STATUS: $\beta = 0.33$, $t(290) = 4.30$, $SE = 0.08$, $p < .001$; AGE ² : $\beta = 0.02$, $t(290) = 6.64$, $SE = 0.003$, $p < .001$; d = 0.10	Intercept: $\beta = 5.72$, $t(52) = 8.87$, $SE = 0.65$, $p < .001$; IB: $\beta = -0.0003$, $t(238) = -0.03$, $SE = 0.01$, $p = .976$; STATUS: $\beta = -0.16$, $t(52) = -0.28$, $SE = 0.57$, $p = .777$; AGE: $\beta = 0.26$, $t(52) = 2.46$, $SE = 0.11$, $p = .017$; AGE*STATUS: $\beta = 0.20$, $t(52) = 2.49$, $SE = 0.08$, $p = .016$; AGE ² : $\beta = 0.02$, $t(238) = 5.76$, $SE = 0.004$, $p < .001$; d = 0.004	Intercept: $\beta = -0.23$, $t(290)$ = -0.30, $SE = 0.77$, $p =$.763; IB: $\beta = 0.03$, $t(290) = 1.71$, SE = 0.02, $p = .088$; STATUS: $\beta = -0.70$, $t(290)$ = -1.06, $SE = 0.66$, $p =$.292; AGE: $\beta = 3.70$, $t(52) =$ 28.93, $SE = 0.13$, $p < .001$; AGE*STATUS: $\beta = 0.29$, t(52) = 4.17, $SE = 0.07$, $p <.001;AGE2: \beta = -0.06, t(290) = -13.54, SE = 0.01, p < .001;d = 0.20$
Variability of Combined Behaviors (CB)	Intercept: $\beta = 1.19$, $t(52) = 1.79$, $SE = 0.67$, $p = .080$; CB : $\beta = 0.04$, $t(238) = 0.83$, $SE = 0.06$, $p = .407$; STATUS : $\beta = 1.82$, $t(52) = 2.94$, $SE = 0.62$, $p = .005$; AGE : $\beta = 3.81$, $t(53) = 28.11$, $SE = 0.14$, $p < .001$; AGE ² : $\beta = -0.07$, $t(238) = -15.62$, $SE = 0.01$, $p < .001$; d = 0.11	Intercept: $\beta = -1.17$, $t(52)$ = -1.94, $SE = 0.61$, $p = .060$; CB: $\beta = -0.002$, $t(290) = -0.05$, $SE = 0.04$, $p = .959$; STATUS: $\beta = 0.29$, $t(52) = 0.49$, $SE = 0.60$, $p = .626$; AGE: $\beta = 3.24$, $t(290) = 34.49$, $SE = 0.09$, $p < .001$; AGE*STATUS: $\beta = 0.09$, $p < .001$; AGE*STATUS: $\beta = 0.09$, $t(290) = 2.42$, $SE = 0.04$, $p = .016$; AGE ² : $\beta = -0.07$, $t(290) = -22.49$, $SE = 0.003$, $p < .001$; d = 0.01	Intercept: $\beta = 7.53$, $t(52) = 22.30$, $SE = 0.34$, $p < .001$; CB : $\beta = 0.01$, $t(290) = 0.32$, $SE = 0.05$, $p = .747$; STATUS : $\beta = -1.91$, $t(52) = -4.09$, $SE = 0.47$, $p < .001$; AGE : $\beta = -0.05$, $t(290) = -0.69$, $SE = 0.08$, $p = .492$; AGE*STATUS : $\beta = 0.33$, $t(290) = 4.29$, $SE = 0.08$, $p < .001$; AGE ² : $\beta = 0.02$, $t(290) = 6.71$, $SE = 0.004$, $p < .001$; d = 0.04	Intercept: $\beta = 5.72$, $t(52) = 9.68$, $SE = 0.59$, $p < .001$; CB : $\beta = -0.01$, $t(238) = -0.34$, $SE = 0.04$, $p = .734$; STATUS : $\beta = -0.15$, $t(52) = -0.27$, $SE = 0.57$, $p = .790$; AGE : $\beta = 0.26$, $t(52) = 2.48$, $SE = 0.10$, $p = .016$; AGE*STATUS : $\beta = 0.20$, $t(52) = 2.48$, $SE = 0.08$, $p = .016$; AGE ² : $\beta = 0.02$, $t(238) = 5.63$, $SE = 0.004$, $p < .001$; d = 0.04	Intercept: $\beta = 0.31$, $t(53) = 0.35$, $SE = 0.90$, $p = .729$; CB : $\beta = 0.14$, $t(238) = 2.09$, $SE = 0.07$, $p = .038$; STATUS : $\beta = -0.68$, $t(52) = -0.96$, $SE = 0.71$, $p = .341$; AGE : $\beta = 3.70$, $t(52) = 23.22$, $SE = 0.16$, $p < .001$; AGE*STATUS : $\beta = 0.29$, $t(52) = 3.86$, $SE = 0.07$, $p < .001$; AGE ² : $\beta = -0.06$, $t(238) = -13.07$, $SE = 0.01$, $p < .001$; d = 0.27

Table S7.	Estimated statistical	parameters for all	fixed effects in fin	al multilevel	models relating o	children's OO	exploration to Bayley
outcomes	(includes Cohen's d e	effect sizes).					

NOO Exploratory	Bayley Scales of Infant Development (Dependent Variable)							
Behaviors (Independent Variable)	Gross Motor	Fine Motor	Receptive Language	Expressive Language	Cognitive			
Holding Object Unimanually (HOU)	Intercept : $\beta = 1.76$, $t(51) = 1.47$, $SE = 1.20$, $p = .148$; HOU : $\beta = -0.01$, $t(238) = -0.46$, $SE = 0.02$, $p = .649$; STATUS : $\beta = 1.93$, $t(51) = 2.95$, $SE = 0.65$, $p = .005$; AGE : $\beta = 3.66$, $t(52) = 25.76$, $SE = 0.14$, $p < .001$; AGE ² : $\beta = -0.07$, $t(238) = -13.90$, $SE = 0.01$, $p < .001$; d = 0.06	Intercept: $\beta = 1.94$, $t(51) = 1.90$, $SE = 1.02$, $p = .063$; HOU: $\beta = -0.06$, $t(289) = -4.28$, $SE = 0.02$, $p < .001$; STATUS: $\beta = 0.18$, $t(51) = 0.35$, $SE = 0.52$, $p = .728$; AGE: $\beta = 2.99$, $t(289) = 28.67$, $SE = 0.10$, $p < .001$; AGE*STATUS: $\beta = 0.10$, $p < .001$; AGE*($\beta = 2.49$, $SE = 0.04$, $p = .013$; AGE ² : $\beta = -0.06$, $t(289) = -19.42$, $SE = 0.003$, $p < .001$; d = 0.50	Intercept: $\beta = 8.67$, $t(51) =$ 11.13, $SE = 0.78$, $p < .001$; HOU: $\beta = -0.02$, $t(289) = -$ 1.32, $SE = 0.01$, $p = .186$; STATUS: $\beta = -1.69$, $t(51)$ = -3.37, $SE = 0.50$, $p =.001;AGE: \beta = -0.27, t(289) = -2.68, SE = 0.10, p = .008;AGE*STATUS: \beta = 0.29,t(289) = 3.57$, $SE = 0.08$, $p< .001$; AGE ² : $\beta = 0.03$, $t(289) =$ 7.30, $SE = 0.004$, $p < .001$; d = 0.16	Intercept: $\beta = 5.09$, $t(289)$ = 5.00, $SE = 1.02$, $p < .001$; HOU: $\beta = 0.01$, $t(289) =$ 0.75, $SE = 0.01$, $p = .455$; STATUS: $\beta = -0.37$, $t(289)$ = -0.62, $SE = 0.60$, $p =$.535; AGE: $\beta = 0.17$, $t(51) =$ 1.13, $SE = 0.15$, $p = .265$; AGE*STATUS: $\beta = 0.22$, t(51) = 2.59, $SE = 0.09$, $p =.012;AGE2: \beta = 0.03, t(289) =4.66, SE = 0.01, p < .001;d = 0.09$	Intercept: $\beta = 1.08$, $t(289)$ = 0.97, $SE = 1.11$, $p = .331$; HOU: $\beta = -0.05$, $t(289) = -$ 2.32, $SE = 0.02$, $p = .021$; STATUS: $\beta = -0.28$, $t(289)$ = -0.39, $SE = 0.72$, $p =$.697; AGE: $\beta = 3.85$, $t(51) =$ 26.77, $SE = 0.14$, $p < .001$; AGE*STATUS: $\beta = 0.29$, t(51) = 3.93, $SE = 0.07$, $p <.001;AGE2: \beta = -0.06, t(289) = -14.83, SE = 0.004, p <.001;d = 0.27$			
Holding Object Bimanually (HOB)	Intercept: $\beta = 1.33$, $t(51) = 1.88$, $SE = 0.70$, $p = .066$; HOB: $\beta = 0.004$, $t(238) = 0.43$, $SE = 0.01$, $p = .669$; STATUS: $\beta = 1.93$, $t(51) = 2.95$, $SE = 0.65$, $p = .005$; AGE: $\beta = 3.66$, $t(52) = 25.75$, $SE = 0.14$, $p < .001$; AGE ² : $\beta = -0.07$, $t(238) = -13.87$, $SE = 0.01$, $p < .001$; d = 0.06	Intercept: $\beta = -1.29$, $t(51)$ = -2.40, $SE = 0.54$, $p =$.020; HOB: $\beta = 0.03$, $t(289) =$ 4.24, $SE = 0.01$, $p < .001$; STATUS: $\beta = 0.18$, $t(51) =$ 0.34, $SE = 0.52$, $p = .737$; AGE: $\beta = 2.99$, $t(289) =$ 28.41, $SE = 0.11$, $p < .001$; AGE*STATUS: $\beta = 0.10$, t(289) = 2.55, $SE = 0.04$, $p =.011;AGE2: \beta = -0.06, t(289) = -19.15, SE = 0.003, p <.001;d = 0.50$	Intercept: $\beta = 7.90$, $t(51) = 20.14$, $SE = 0.39$, $p < .001$; HOB: $\beta = 0.01$, $t(289) = 1.14$, $SE = 0.01$, $p = .255$; STATUS: $\beta = -1.69$, $t(51) = -3.38$, $SE = 0.50$, $p = .001$; AGE: $\beta = -0.26$, $t(286) = -2.56$, $SE = 0.10$, $p = .011$; AGE*STATUS: $\beta = 0.29$, $t(289) = 3.58$, $SE = 0.08$, $p < .001$; AGE ² : $\beta = 0.03$, $t(289) = 7.16$, $SE = 0.004$, $p < .001$; d = 0.13	Intercept: $\beta = 5.57$, $t(289)$ = 8.23, $SE = 0.68$, $p < .001$; HOB: $\beta = -0.01$, $t(289) = -$ 0.85, $SE = 0.01$, $p = .397$; STATUS: $\beta = -0.37$, $t(289)$ = -0.62, $SE = 0.60$, $p =$.539; AGE: $\beta = 0.17$, $t(51) =$ 1.16, $SE = 0.15$, $p = .251$; AGE*STATUS: $\beta = 0.22$, t(51) = 2.59, $SE = 0.09$, $p =.013;AGE2: \beta = 0.03, t(289) =4.64, SE = 0.01, p < .001;d = 0.10$	Intercept: $\beta = -1.17$, $t(289)$ = -1.47, $SE = 0.80$, $p =$.144; HOB: $\beta = 0.02$, $t(289) =$ 2.32, $SE = 0.01$, $p = .021$; STATUS: $\beta = -0.28$, $t(289)$ = -0.40, $SE = 0.72$, $p =$.692; AGE: $\beta = 3.85$, $t(51) =$ 26.90, $SE = 0.14$, $p < .001$; AGE*STATUS: $\beta = 0.29$, t(51) = 3.95, $SE = 0.07$, $p <.001;AGE2: \beta = -0.07, t(289) = -14.86, SE = 0.004, p <.001;d = 0.27$			
Object in Mouth	Intercept : $\beta = 1.28$, $t(51) =$	Intercept : β = -1.71, <i>t</i> (51)	Intercept : β = 7.63, <i>t</i> (289)	Intercept : β = 5.54, <i>t</i> (51) =	Intercept : β = -1.53, <i>t</i> (289)			

(MO)	1.89, $SE = 0.68$, $p = .065$; MO : $\beta = 0.003$, $t(238) =$ 0.22, $SE = 0.01$, $p = .823$; STATUS : $\beta = 1.95$, $t(51) =$ 2.96, $SE = 0.66$, $p = .005$; AGE : $\beta = 3.69$, $t(52) =$ 26.36, $SE = 0.14$, $p < .001$; AGE ² : $\beta = -0.07$, $t(238) = -13.66$, $SE = 0.01$, $p < .001$; d = 0.03	= -2.97, SE = 0.58, p = .004; MO : β = 0.03, t(289) = 2.65, SE = 0.01, p = .008; STATUS : β = 0.32, t(51) = 0.50, SE = 0.63, p = .620; AGE : β = 3.18, t(289) = 34.74, SE = 0.09, p < .001; AGE*STATUS : β = 0.10, t(289) = 2.50, SE = 0.04, p = .013; AGE² : β = -0.07, t(289) = - 20.30, SE = 0.003, p < .001; d = 0.31	= 21.41, <i>SE</i> = 0.36, <i>p</i> < .001; MO : β = 0.02, <i>t</i> (289) = 2.65, <i>SE</i> = 0.01, <i>p</i> = .008; STATUS : β = -1.56, <i>t</i> (289) = -3.14, <i>SE</i> = 0.50, <i>p</i> = .002; AGE : β = -0.22, <i>t</i> (51) = -2.79, <i>SE</i> = 0.08, <i>p</i> = .007; AGE*STATUS : β = 0.28, <i>t</i> (51) = 3.43, <i>SE</i> = 0.08, <i>p</i> = .001; AGE² : β = 0.03, <i>t</i> (289) = 7.90, <i>SE</i> = 0.004, <i>p</i> < .001; <i>d</i> = 0.31	8.44, $SE = 0.66$, $p < .001$; MO : $\beta = 0.003$, $t(289) = 0.44$, $SE = 0.01$, $p = .662$; STATUS : $\beta = -0.39$, $t(51) = -0.65$, $SE = 0.60$, $p = .519$; AGE : $\beta = 0.14$, $t(289) = 1.00$, $SE = 0.14$, $p = .317$; AGE*STATUS : $\beta = 0.23$, $t(289) = 2.58$, $SE = 0.09$, $p = .010$; AGE² : $\beta = 0.03$, $t(289) = 4.98$, $SE = 0.01$, $p < .001$; d = 0.05	= -1.85, $SE = 0.82$, $p =$.065; MO : $\beta = 0.02$, $t(289) =$ 1.75, $SE = 0.01$, $p = .081$; STATUS : $\beta = -0.19$, $t(289)$ = -0.26, $SE = 0.73$, $p =$.798; AGE : $\beta = 3.98$, $t(51) =$ 28.66, $SE = 0.14$, $p < .001$; AGE*STATUS : $\beta = 0.29$, t(51) = 4.00, $SE = 0.07$, $p <.001;AGE2: \beta = -0.06, t(289) = -16.09, SE = 0.004, p <.001;d = 0.21$
Object Touching Body (OTB)	Intercept : $\beta = 2.46$, $t(51) = 2.29$, $SE = 1.07$, $p = .026$; OTB : $\beta = -0.01$, $t(238) = -1.17$, $SE = 0.01$, $p = .244$; STATUS : $\beta = 1.99$, $t(51) = 3.06$, $SE = 0.65$, $p = .004$; AGE : $\beta = 3.57$, $t(52) = 22.88$, $SE = 0.16$, $p < .001$; AGE ² : $\beta = -0.06$, $t(238) = -12.86$, $SE = 0.01$, $p < .001$; d = 0.15	Intercept: $\beta = -0.13$, $t(51)$ = -0.12, $SE = 1.06$, $p =$.905; OTB: $\beta = -0.01$, $t(289) = -$ 1.60, $SE = 0.01$, $p = .111$; STATUS: $\beta = 0.42$, $t(51) =$ 0.75, $SE = 0.56$, $p = .457$; AGE: $\beta = 3.07$, $t(289) =$ 23.20, $SE = 0.13$, $p < .001$; AGE*STATUS: $\beta = 0.09$, t(289) = 2.28, $SE = 0.04$, $p =.024;AGE2: \beta = -0.07, t(289) = -16.33, SE = 0.004, p <.001;d = 0.19$	Intercept: $\beta = 9.39$, $t(289)$ = 11.63, $SE = 0.81$, $p < .001$; OTB: $\beta = -0.02$, $t(289) = -2.20$, $SE = 0.01$, $p = .028$; STATUS: $\beta = -1.47$, $t(289) = -2.93$, $SE = 0.50$, $p = .004$; AGE: $\beta = -0.37$, $t(51) = -3.45$, $SE = 0.11$, $p = .001$; AGE*STATUS: $\beta = 0.27$, $t(51) = 3.33$, $SE = 0.08$, $p = .002$; AGE ² : $\beta = 0.03$, $t(289) = 8.14$, $SE = 0.004$, $p < .001$; d = 0.26	Intercept: $\beta = 8.24$, $t(289)$ = 7.92, $SE = 1.04$, $p < .001$; OTB: $\beta = -0.03$, $t(289) = -3.26$, $SE = 0.01$, $p = .001$; STATUS: $\beta = -0.27$, $t(289)$ = -0.48, $SE = 0.57$, $p = .630$; AGE: $\beta = -0.14$, $t(51) = -0.92$, $SE = 0.15$, $p = .362$; AGE*STATUS: $\beta = 0.22$, $t(51) = 2.60$, $SE = 0.08$, $p = .012$; AGE ² : $\beta = 0.04$, $t(289) = 6.84$, $SE = 0.01$, $p < .001$; d = 0.38	Intercept: $\beta = 2.29$, $t(289)$ = 1.60, $SE = 1.43$, $p = .111$; OTB: $\beta = -0.04$, $t(289) = -$ 2.92, $SE = 0.01$, $p = .004$; STATUS: $\beta = 0.01$, $t(289)$ = 0.02, $SE = 0.75$, $p = .986$; AGE: $\beta = 3.63$, $t(51) =$ 19.38, $SE = 0.19$, $p < .001$; AGE*STATUS: $\beta = 0.28$, t(51) = 3.85, $SE = 0.07$, $p <.001;AGE2: \beta = -0.06, t(289) = -9.69, SE = 0.01, p < .001;d = 0.34$
Looking at Object in Hand (LK)	Intercept: $\beta = 1.22$, $t(51) = 1.73$, $SE = 0.71$, $p = .091$; LK: $\beta = -0.01$, $t(238) = -0.79$, $SE = 0.01$, $p = .428$; STATUS: $\beta = 1.94$, $t(51) = 2.92$, $SE = 0.66$, $p = .005$; AGE: $\beta = 3.76$, $t(52) = 25.85$, $SE = 0.15$, $p < .001$; AGE ² : $\beta = -0.07$, $t(238) = -14.37$, $SE = 0.01$, $p < .001$; d = 0.10	Intercept: $\beta = -1.25$, $t(51)$ = -2.15, $SE = 0.58$, $p =$.036; LK: $\beta = 0.02$, $t(289) =$ 2.10, $SE = 0.01$, $p = .037$; STATUS: $\beta = 0.40$, $t(51) =$ 0.74, $SE = 0.54$, $p = .465$; AGE: $\beta = 3.08$, $t(289) =$ 27.35, $SE = 0.11$, $p < .001$; AGE*STATUS: $\beta = 0.09$, t(289) = 2.23, $SE = 0.04$, p	Intercept: $\beta = 8.01, t(51) = 19.98, SE = 0.40, p < .001;$ LK: $\beta = 0.02, t(289) = 2.03, SE = 0.01, p = .043;$ STATUS: $\beta = -1.62, t(51) = -3.27, SE = 0.49, p = .002;$ AGE: $\beta = -0.32, t(289) = -3.38, SE = 0.10, p < .001;$ AGE*STATUS: $\beta = 0.28, t(289) = 3.54, SE = 0.08, p$	Intercept: $\beta = 5.52$, $t(289)$ = 8.19, $SE = 0.67$, $p < .001$; LK: $\beta = -0.01$, $t(289) = -$ 1.23, $SE = 0.01$, $p = .219$; STATUS: $\beta = -0.42$, $t(289)$ = -0.70, $SE = 0.60$, $p =$.483; AGE: $\beta = 0.20$, $t(51) =$ 1.35, $SE = 0.15$, $p = .182$; AGE*STATUS: $\beta = 0.23$, $t(51) = 2.62$, $SE = 0.09$, $p =$	Intercept: $\beta = -1.04$, $t(289)$ = -1.31, $SE = 0.80$, $p =$.193; LK : $\beta = 0.03$, $t(289) =$ 2.12, $SE = 0.01$, $p = .035$; STATUS : $\beta = -0.10$, $t(289)$ = -0.14, $SE = 0.72$, $p =$.892; AGE : $\beta = 3.82$, $t(51) =$ 24.14, $SE = 0.16$, $p < .001$; AGE*STATUS : $\beta = 0.28$,

		= .027; AGE ² : β = -0.07, $t(289)$ = - 18.62, SE = 0.004, p < .001; d = 0.25	<.001; AGE ² : β = 0.03, t (289) = 8.51, <i>SE</i> = 0.004, p < .001; d = 0.24	.011; AGE ² : $\beta = 0.03$, $t(289) = 4.72$, $SE = 0.01$, $p < .001$; d = 0.14	t(51) = 3.75, SE = 0.07, p < .001; AGE ² : $\beta = -0.07, t(289) = -13.14, SE = 0.01, p < .001;$ d = 0.25
Fingering Object (FN)	Intercept : $\beta = 1.27$, $t(51) = 1.78$, $SE = 0.71$, $p = .081$; FN : $\beta = 0.04$, $t(238) = 0.73$, SE = 0.05, $p = .468$; STATUS : $\beta = 1.94$, $t(51) = 2.96$, $SE = 0.65$, $p = .005$; AGE : $\beta = 3.68$, $t(52) = 26.53$, $SE = 0.14$, $p < .001$; AGE ² : $\beta = -0.07$, $t(238) = -13.98$, $SE = 0.01$, $p < .001$; d = 0.09	Intercept: $\beta = -1.50$, $t(51)$ = -2.68, $SE = 0.56$, $p =$.010; FN: $\beta = 0.08$, $t(289) = 1.39$, SE = 0.06, $p = .167$; STATUS: $\beta = 0.31$, $t(51) =$ 0.56, $SE = 0.55$, $p = .575$; AGE: $\beta = 3.19$, $t(289) =$ 35.09, $SE = 0.09$, $p < .001$; AGE*STATUS: $\beta = 0.10$, t(289) = 2.48, $SE = 0.04$, $p =.014;AGE2: \beta = -0.07, t(289) = -22.66, SE = 0.003, p <.001;d = 0.16$	Intercept: $\beta = 7.91$, $t(51) = 20.36$, $SE = 0.39$, $p < .001$; FN: $\beta = -0.04$, $t(289) = -1.30$, $SE = 0.03$, $p = .193$; STATUS: $\beta = -1.63$, $t(51) = -3.29$, $SE = 0.49$, $p = .002$; AGE: $\beta = -0.20$, $t(289) = -2.49$, $SE = 0.08$, $p = .013$; AGE*STATUS: $\beta = 0.29$, $t(289) = 3.55$, $SE = 0.08$, $p < .001$; AGE ² : $\beta = 0.03$, $t(289) = 7.55$, $SE = 0.004$, $p < .001$; d = 0.15	Intercept: $\beta = 5.63$, $t(289)$ = 8.37, $SE = 0.67$, $p < .001$; FN: $\beta = -0.03$, $t(289) = -$ 0.73, $SE = 0.04$, $p = .467$; STATUS: $\beta = -0.39$, $t(289)$ = -0.66, $SE = 0.59$, $p =$.513; AGE: $\beta = 0.14$, $t(51) =$ 1.07, $SE = 0.14$, $p = .290$; AGE*STATUS: $\beta = 0.22$, t(51) = 2.60, $SE = 0.09$, $p =.012;AGE2: \beta = 0.03, t(289) =5.11, SE = 0.01, p < .001;d = 0.09$	Intercept: $\beta = -1.28$, $t(289)$ = -1.57, $SE = 0.81$, $p =$.117; FN : $\beta = 0.003$, $t(289) =$ 0.04, $SE = 0.07$, $p = .968$; STATUS : $\beta = 0.29$, $t(51) =$ 3.91, $SE = 0.07$, $p < .001$; AGE : $\beta = 4.00$, $t(51) =$ 28.81, $SE = 0.14$, $p < .001$; AGE*STATUS : $\beta = 0.29$, t(51) = 3.91, $SE = 0.07$, $p <.001;AGE2: \beta = -0.07, t(289) = -16.08, SE = 0.004, p <.001;d = 0.01$
Banging Object (BN)	Intercept: $\beta = 1.29$, $t(51) = 1.80$, $SE = 0.71$, $p = .077$; BN : $\beta = -0.03$, $t(238) = -0.53$, $SE = 0.05$, $p = .599$; STATUS : $\beta = 2.00$, $t(51) = 3.00$, $SE = 0.67$, $p = .004$; AGE : $\beta = 3.70$, $t(52) = 27.08$, $SE = 0.14$, $p < .001$; AGE ² : $\beta = -0.07$, $t(238) = -14.49$, $SE = 0.01$, $p < .001$; d = 0.07	Intercept: $\beta = -1.30$, $t(51)$ = -2.27, $SE = 0.57$, $p =$.028; BN : $\beta = 0.13$, $t(289) =$ 3.84, $SE = 0.03$, $p < .001$; STATUS : $\beta = 0.04$, $t(51) =$ 0.06, $SE = 0.58$, $p = .951$; AGE : $\beta = 3.16$, $t(289) =$ 35.89, $SE = 0.09$, $p < .001$; AGE*STATUS : $\beta = 0.11$, t(289) = 2.64, $SE = 0.04$, $p =.009;AGE2: \beta = -0.07, t(289) = -23.29, SE = 0.003, p <.001;d = 0.45$	Intercept: $\beta = 7.89$, $t(51) = 20.53$, $SE = 0.38$, $p < .001$; BN: $\beta = 0.02$, $t(289) = 0.86$, $SE = 0.02$, $p = .391$; STATUS: $\beta = -1.70$, $t(51) = -3.32$, $SE = 0.51$, $p = .002$; AGE: $\beta = -0.22$, $t(289) = -2.72$, $SE = 0.08$, $p = .007$; AGE*STATUS: $\beta = 0.29$, $t(289) = 3.56$, $SE = 0.08$, $p < .001$; AGE ² : $\beta = 0.03$, $t(289) = 7.70$, $SE = 0.004$, $p < .001$; d = 0.10	Intercept: $\beta = 5.61$, $t(289)$ = 8.34, $SE = 0.67$, $p < .001$; BN: $\beta = 0.02$, $t(289) =$ 0.87, $SE = 0.02$, $p = .386$; STATUS: $\beta = -0.44$, $t(289)$ = -0.74, $SE = 0.60$, $p =$.461; AGE: $\beta = 0.13$, $t(51) =$ 0.94, $SE = 0.14$, $p = .352$; AGE*STATUS: $\beta = 0.23$, t(51) = 2.62, $SE = 0.09$, $p =.012;AGE2: \beta = 0.03, t(289) =5.13, SE = 0.01, p < .001;d = 0.10$	Intercept: $\beta = -1.13$, $t(289)$ = -1.43, $SE = 0.79$, $p =$.154; BN : $\beta = 0.15$, $t(289) =$ 2.96, $SE = 0.05$, $p = .003$; STATUS : $\beta = -0.55$, $t(289)$ = -0.77, $SE = 0.71$, $p =$.441; AGE : $\beta = 3.94$, $t(51) =$ 28.66, $SE = 0.14$, $p < .001$; AGE*STATUS : $\beta = 0.31$, t(51) = 4.17, $SE = 0.07$, $p <.001;AGE2: \beta = -0.07, t(289) = -15.91, SE = 0.004, p <.001;d = 0.35$
Object Manipulation (MN)	Intercept: $\beta = 1.31, t(51) = 1.86, SE = 0.70, p = .069;$ MN : $\beta = 0.06, t(238) = 1.19, SE = 0.05, p = .237;$	Intercept: $\beta = -1.44$, $t(51)$ = -2.57, SE = 0.56, $p =$.013; MN: $\beta = 0.10$, $t(289) =$	Intercept: $\beta = 7.88$, $t(51) = 20.19$, $SE = 0.39$, $p < .001$; MN : $\beta = -0.05$, $t(289) = -0.58$, $SE = 0.09$, $p = .563$;	Intercept: $\beta = 5.61$, $t(289)$ = 8.25, $SE = 0.68$, $p < .001$; MN : $\beta = -0.04$, $t(289) = -0.49$, $SE = 0.08$, $p = .626$;	Intercept: $\beta = -1.26$, $t(289)$ = -1.58, $SE = 0.79$, $p =$.115; MN : $\beta = -0.08$, $t(289) = -$

	STATUS: $\beta = 1.97$, $t(51) = 3.03$, $SE = 0.65$, $p = .004$; AGE: $\beta = 3.68$, $t(52) = 26.81$, $SE = 0.14$, $p < .001$; AGE²: $\beta = -0.07$, $t(238) = -14.14$, $SE = 0.01$, $p < .001$; d = 0.15	2.01, $SE = 0.05$, $p = .046$; STATUS : $\beta = 0.43$, $t(51) = 0.77$, $SE = 0.56$, $p = .446$; AGE : $\beta = 3.19$, $t(289) = 36.6$, $SE = 0.09$, $p < .001$; AGE*STATUS : $\beta = 0.08$, $t(289) = 2.20$, $SE = 0.04$, $p = .029$; AGE² : $\beta = -0.07$, $t(289) = -24.30$, $SE = 0.003$, $p < .001$; d = 0.24	STATUS: $\beta = -1.69$, $t(51)$ = -3.31, $SE = 0.51$, $p =$.002; AGE: $\beta = -0.21$, $t(289) = -$ 2.47, $SE = 0.08$, $p = .014$; AGE*STATUS: $\beta = 0.29$, t(289) = 3.58, $SE = 0.08$, $p< .001;AGE2: \beta = 0.03, t(289) =7.63, SE = 0.004, p < .001;d = 0.07$	STATUS : $\beta = -0.43$, $t(289)$ = -0.71, $SE = 0.60$, $p =$.476; AGE : $\beta = 0.14$, $t(51) =$ 1.08, $SE = 0.13$, $p = .288$; AGE*STATUS : $\beta = 0.23$, t(51) = 2.66, $SE = 0.09$, $p =.011;AGE2: \beta = 0.03, t(289) =5.13, SE = 0.01, p < .001;d = 0.06$	0.97, $SE = 0.08$, $p = .333$; STATUS : $\beta = -0.23$, $t(289)$ = -0.32, $SE = 0.71$, $p =.748;AGE: \beta = 4.01, t(51) =28.99, SE = 0.13, p < .001;AGE*STATUS: \beta = 0.30,t(51) = 3.99$, $SE = 0.07$, $p <.001;AGE2: \beta = -0.07, t(289) = -16.18, SE = 0.004, p <.001;d = 0.11$
Transferring Object (TO)	Intercept: $\beta = 1.22$, $t(51) = 1.67$, $SE = 0.74$, $p = .102$; TO: $\beta = -0.06$, $t(238) = -0.47$, $SE = 0.14$, $p = .641$; STATUS: $\beta = 1.93$, $t(51) = 2.93$, $SE = 0.66$, $p = .005$; AGE: $\beta = 3.73$, $t(52) = 24.30$, $SE = 0.15$, $p < .001$; AGE ² : $\beta = -0.07$, $t(238) = -13.58$, $SE = 0.05$, $p < .001$; d = 0.06	Intercept: $\beta = -1.10$, $t(51)$ = -1.90, $SE = 0.58$, $p =$.063; TO: $\beta = 0.24$, $t(289) =$ 2.41, $SE = 0.10$, $p = .017$; STATUS: $\beta = 0.40$, $t(51) =$ 0.65, $SE = 0.62$, $p = .520$; AGE: $\beta = 3.07$, $t(289) =$ 28.42, $SE = 0.11$, $p < .001$; AGE*STATUS: $\beta = 0.10$, t(289) = 2.41, $SE = 0.04$, $p =.017;AGE2: \beta = -0.07, t(289) = -17.39, SE = 0.004, p <.001;d = 0.28$	Intercept: $\beta = 8.06$, $t(289)$ = 19.83, $SE = 0.41$, $p < .001$; TO: $\beta = 0.16$, $t(289) = 1.92$, $SE = 0.09$, $p = .056$; STATUS: $\beta = -1.53$, $t(289)$ = -3.15, $SE = 0.49$, $p = .002$; AGE: $\beta = -0.30$, $t(51) = -3.13$, $SE = 0.10$, $p = .003$; AGE*STATUS: $\beta = 0.28$, $t(51) = 3.49$, $SE = 0.08$, $p < .001$; AGE ² : $\beta = 0.03$, $t(289) = 8.06$, $SE = 0.004$, $p < .001$; d = 0.23	Intercept: $\beta = 5.76$, $t(237)$ = 8.79, $SE = 0.66$, $p < .001$; TO: $\beta = 0.14$, $t(52) = 1.25$, SE = 0.11, $p = .217$; STATUS: $\beta = -0.46$, $t(237)$ = -0.80, $SE = 0.57$, $p =$. .423; AGE: $\beta = 0.07$, $t(51) =$ 0.53, $SE = 0.13$, $p = .597$; AGE*STATUS: $\beta = 0.22$, t(51) = 2.75, $SE = 0.08$, $p =$. .008; AGE ² : $\beta = 0.03$, $t(237) =$ 5.93, $SE = 0.01$, $p < .001$; d = 0.35	Intercept: $\beta = -0.74$, $t(289)$ = -0.90, $SE = 0.82$, $p =$.369; TO: $\beta = 0.40$, $t(289) =$ 2.87, $SE = 0.14$, $p = .004$; STATUS: $\beta = -0.10$, $t(289)$ = -0.15, $SE = 0.71$, $p =$.884; AGE: $\beta = 3.78$, $t(51) =$ 23.31, $SE = 0.16$, $p < .001$; AGE*STATUS: $\beta = 0.29$, t(51) = 4.02, $SE = 0.07$, $p <.001;AGE2: \beta = -0.06, t(289) = -12.68, SE = 0.01, p < .001;d = 0.34$
Bouts of Exploration (BE)	Intercept : $\beta = 1.42$, $t(51) = 1.94$, $SE = 0.73$, $p = .058$; BE : $\beta = -0.01$, $t(238) = -0.87$, $SE = 0.01$, $p = .388$; STATUS : $\beta = 1.99$, $t(51) = 3.01$, $SE = 0.66$, $p = .004$; AGE : $\beta = 3.72$, $t(52) = 27.07$, $SE = 0.14$, $p < .001$; AGE ² : $\beta = -0.07$, $t(238) = -14.37$, $SE = 0.01$, $p < .001$; d = 0.11	Intercept: $\beta = -1.98$, $t(51)$ = -3.86, $SE = 0.51$, $p < .001$; BE: $\beta = 0.06$, $t(289) = 4.70$, SE = 0.01, $p < .001$; STATUS: $\beta = 0.05$, $t(51) = 0.09$, $SE = 0.55$, $p = .927$; AGE: $\beta = 3.04$, $t(289) = 30.15$, $SE = 0.10$, $p < .001$; AGE*STATUS: $\beta = 0.11$, t(289) = 2.81, $SE = 0.04$, $p = .005$; AGE ² : $\beta = -0.06$, $t(289) = -20.01$, $SE = 0.003$, $p < 0.01$	Intercept: $\beta = 7.74$, $t(289)$ = 21.40, $SE = 0.36$, $p <$.001; BE: $\beta = 0.01$, $t(289) = 0.87$, SE = 0.01, $p = .384$; STATUS: $\beta = -1.59$, $t(289)$ = -3.26, $SE = 0.49$, $p =$.001; AGE: $\beta = -0.23$, $t(51) = -$ 2.57, $SE = 0.09$, $p = .013$; AGE*STATUS: $\beta = 0.28$, t(51) = 3.46, $SE = 0.08$, $p =$.001; AGE ² : $\beta = 0.02$, $t(289) =$	Intercept: $\beta = 5.69$, $t(289)$ = 8.47, $SE = 0.67$, $p < .001$; BE: $\beta = -0.01$, $t(289) = -$ 0.98, $SE = 0.01$, $p = .329$; STATUS: $\beta = -0.35$, $t(289)$ = -0.59, $SE = 0.60$, $p =$.559; AGE: $\beta = 0.16$, $t(51) =$ 1.17, $SE = 0.14$, $p = .246$; AGE*STATUS: $\beta = 0.22$, t(51) = 2.56, $SE = 0.09$, $p =.013;AGE2: \beta = 0.03, t(289) =4.86, SE = 0.01, p < .001;$	Intercept: $\beta = -1.83$, $t(289)$ = -2.21, $SE = 0.83$, $p =$.028; BE : $\beta = 0.06$, $t(289) = 3.65$, SE = 0.02, $p < .001$; STATUS : $\beta = -0.47$, $t(289)$ = -0.65, $SE = 0.72$, $p =$.517; AGE : $\beta = 3.83$, $t(51) =$ 26.84, $SE = 0.14$, $p < .001$; AGE*STATUS : $\beta = 0.30$, t(51) = 4.11, $SE = 0.07$, $p <.001;AGE2: \beta = -0.06, t(289) = -$

		.001; d = 0.55	7.37, $SE = 0.004$, $p < .001$; d = 0.10	<i>d</i> = 0.12	14.56, <i>SE</i> = 0.004, <i>p</i> < .001; <i>d</i> = 0.43
Variability of Individual Behaviors (IB)	Intercept : $\beta = 1.20$, $t(51) = 1.42$, $SE = 0.85$, $p = .162$; IB : $\beta = 0.01$, $t(238) = 0.27$, SE = 0.02, $p = .784$; STATUS : $\beta = 1.93$, $t(51) = 2.97$, $SE = 0.65$, $p = .005$; AGE : $\beta = 3.67$, $t(52) = 25.67$, $SE = 0.14$, $p < .001$; AGE ² : $\beta = -0.07$, $t(238) = -13.91$, $SE = 0.01$, $p < .001$; d = 0.04	Intercept: $\beta = -2.80$, $t(51)$ = -5.07, $SE = 0.55$, $p < .001$; IB: $\beta = 0.06$, $t(289) = 5.69$, SE = 0.01, $p < .001$; STATUS: $\beta = 0.04$, $t(51) = 0.07$, $SE = 0.52$, $p = .946$; AGE: $\beta = 2.91$, $t(289) = 27.81$, $SE = 0.10$, $p < .001$; AGE*STATUS: $\beta = 0.11$, t(289) = 2.75, $SE = 0.04$, $p = .006$; AGE ² : $\beta = -0.06$, $t(289) = -19.27$, $SE = 0.003$, $p < .001$; d = 0.67	Intercept: $\beta = 7.60$, $t(289)$ = 19.76, $SE = 0.38$, $p < .001$; IB: $\beta = 0.01$, $t(289) = 1.23$, SE = 0.01, $p = .221$; STATUS: $\beta = -1.59$, $t(289)$ = -3.22, $SE = 0.50$, $p = .001$; AGE: $\beta = -0.26$, $t(51) = -2.76$, $SE = 0.09$, $p = .008$; AGE*STATUS: $\beta = 0.28$, t(51) = 3.41, $SE = 0.08$, $p = .001$; AGE ² : $\beta = 0.03$, $t(289) = 7.58$, $SE = 0.004$, $p < .001$; d = 0.14	Intercept: $\beta = 5.47$, $t(289)$ = 7.72, $SE = 0.71$, $p < .001$; IB: $\beta = 0.01$, $t(289) = 0.52$, SE = 0.01, $p = .607$; STATUS: $\beta = -0.43$, $t(289)$ = -0.72, $SE = 0.59$, $p = .473$; AGE: $\beta = 0.11$, $t(51) = 0.75$, $SE = 0.15$, $p = .459$; AGE*STATUS: $\beta = 0.22$, t(51) = 2.61, $SE = 0.09$, $p = .012$; AGE ² : $\beta = 0.03$, $t(289) = 5.07$, $SE = 0.01$, $p < .001$; d = 0.06	Intercept: $\beta = -2.64$, $t(289)$ = -2.78, $SE = 0.95$, $p =$.006; IB: $\beta = 0.06$, $t(289) = 4.02$, SE = 0.02, $p < .001$; STATUS: $\beta = -0.47$, $t(289)$ = -0.66, $SE = 0.71$, $p =$.512; AGE: $\beta = 3.71$, $t(51) =$ 24.35, $SE = 0.15$, $p < .001$; AGE*STATUS: $\beta = 0.30$, t(51) = 4.11, $SE = 0.07$, $p <$.001; AGE ² : $\beta = -0.06$, $t(289) = -13.22$, $SE = 0.01$, $p < .001$; d = 0.47
Variability of Combined Behaviors (CB)	Intercept : $\beta = 1.03$, $t(51) = 1.42$, $SE = 0.73$, $p = .162$; CB : $\beta = -0.06$, $t(290) = -$ 0.84, $SE = 0.07$, $p = .400$; STATUS : $\beta = 2.79$, $t(51) = 3.26$, $SE = 0.86$, $p = .002$; AGE : $\beta = 3.74$, $t(290) = 25.36$, $SE = 0.15$, $p < .001$; AGE ² : $\beta = -0.07$, $t(290) = -13.57$, $SE = 0.01$, $p < .001$; d = 0.10	Intercept: $\beta = -1.68$, $t(51)$ = -3.27, $SE = 0.51$, $p =$.002; CB : $\beta = 0.27$, $t(289) =$ 5.85, $SE = 0.05$, $p < .001$; STATUS : $\beta = 0.16$, $t(51) =$ 0.32, $SE = 0.50$, $p = .752$; AGE : $\beta = 2.99$, $t(289) =$ 32.14, $SE = 0.09$, $p < .001$; AGE*STATUS : $\beta = 0.11$, t(289) = 3.18, $SE = 0.04$, $p =.002;AGE2: \beta = -0.06, t(289) = -20.84, SE = 0.003, p <.001;d = 0.69$	Intercept: $\beta = 7.78$, $t(289)$ = 21.85, $SE = 0.36$, $p < .001$; CB : $\beta = 0.05$, $t(289) = 1.21$, $SE = 0.04$, $p = .226$; STATUS : $\beta = -1.58$, $t(289)$ = -3.21, $SE = 0.49$, $p = .001$; AGE : $\beta = -0.25$, $t(51) = -2.68$, $SE = 0.09$, $p = .010$; AGE*STATUS : $\beta = 0.28$, $t(51) = 3.45$, $SE = 0.08$, $p = .001$; AGE ² : $\beta = 0.03$, $t(289) = 7.62$, $SE = 0.004$, $p < .001$; d = 0.14	Intercept: $\beta = 5.58$, $t(289)$ = 8.31, $SE = 0.67$, $p < .001$; CB: $\beta = 0.02$, $t(289) =$ 0.51, $SE = 0.05$, $p = .610$; STATUS: $\beta = -0.42$, $t(289)$ = -0.71, $SE = 0.58$, $p =$.477; AGE: $\beta = 0.12$, $t(51) =$ 0.85, $SE = 0.14$, $p = .399$; AGE*STATUS: $\beta = 0.23$, t(51) = 2.64, $SE = 0.09$, $p =.011;AGE2: \beta = 0.03, t(289) =5.17, SE = 0.01, p < .001;d = 0.06$	Intercept: $\beta = -1.44$, $t(289)$ = -1.74, $SE = 0.83$, $p =$.083; CB : $\beta = 0.16$, $t(289) =$ 2.32, $SE = 0.07$, $p = .021$; STATUS : $\beta = -0.27$, $t(289)$ = -0.39, $SE = 0.71$, $p =$.700; AGE : $\beta = 3.87$, $t(51) =$ 27.08, $SE = 0.14$, $p < .001$; AGE*STATUS : $\beta = 0.30$, t(51) = 4.18, $SE = 0.07$, $p <.001;AGE2: \beta = -0.07, t(289) = -14.31, SE = 0.01, p < .001;d = 0.27$

< >	1 33 / Four	345038 nd (Sorted)					Q~ Search	h
Records Show All New Record Delete Record Find Sort Share								
Layout: Coding Dombined 🔨 View As: 🖂 🗮 Preview) A ^a (Modify								
pk_c.	fk_participa	fk_visit	Assessment	Period	Behavior	Behavior_Duration	Behavior_Start_Ti	. Behavior_End
676042	112	6	EXSIT	KEYS	look & touch body	.333333333	25270	25290
676069	112	6	EXSIT	KEYS	finger & look & touch body	1.18333333	25290	25361
693656	112	6	EXSIT	KEYS	look & touch body	.7333333333	25361	25405
676121	112	6	EXSIT	KEYS	look	.9166666667	25405	25460
676084	112	6	EXSIT	KEYS	bang & look & touch body	.016666667	25460	25461
676043	112	6	EXSIT	KEYS	look & touch body	.1	25461	25467
693648	112	6	EXSIT	KEYS	look	.016666667	25467	25468
676122	112	6	EXSIT	KEYS	look	1.38333333	25520	25603
693649	112	6	EXSIT	KEYS	look	.283333333	25603	25620
676044	112	6	EXSIT	KEYS	touch body	.016666667	25707	25708
676085	112	6	EXSIT	KEYS	bang & touch body	.016666667	25708	25709
693650	112	6	EXSIT	KEYS	touch body	1.45	25709	25796
676008	112	6	EXSIT	KEYS	transfer	.133333333	25811	25819
676123	112	6	EXSIT	KEYS	look	2.71666667	26157	26320
693651	112	6	EXSIT	KEYS	look & touch body	.016666667	26320	26321
676086	112	6	EXSIT	KEYS	bang & touch body	.016666667	26321	26322
676045	112	6	EXSIT	KEYS	touch body	.033333333	26322	26324
676087	112	6	EXSIT	KEYS	bang	.1	26356	26362
676046	112	6	EXSIT	KEYS	bang & touch body	.033333333	26362	26364
693652	112	6	EXSIT	KEYS	bang	•533333333	26364	26396
676047	112	6	EXSIT	KEYS	bang & touch body	.1	26396	26402
693653	112	6	EXSIT	KEYS	bang	.383333333	26402	26425
676048	112	6	EXSIT	KEYS	touch body	.216666667	26427	26440
676124	112	6	EXSIT	KEYS	look	.233333333	26555	26569
693654	112	6	EXSIT	KEYS	look & touch body	.416666667	26569	26594
676049	112	6	EXSIT	KEYS	touch body	1.93333333	26594	26710
676050	112	6	EXSIT	KEYS	bang & touch body	.183333333	26738	26749
676088	112	6	EXSIT	KEYS	bang	•4	26749	26773
676051	112	6	EXSIT	KEYS	touch body	.116666667	26773	26780
676089	112	6	EXSIT	KEYS	move	.633333333	26804	26842
676125	112	6	EXSIT	KEYS	look	•533333333	26990	27022
676052	112	6	EXSIT	KEYS	look & touch body	.65	27022	27061
693655	112	6	EXSIT	KEYS	look	.15	27061	27070

Figure S1. This screenshot from the Filemaker Pro Advanced custom database (Filemaker, Inc., Santa Clara, CA) shows data for one participant (112) exploring one toy (KEYS) in the object exploration in sitting assessment (EXSIT) after the database combined the data to identify any overlapping behaviors. The behaviors are listed in order of occurrence. Note that some behaviors occurred in isolation (i.e., individual behavior) while others occurred simultaneously (i.e., combined behaviors). Each row from this example constitutes one bout of behavior.

OBJECT EXPLORATION - CODING PROTOCOL

Summary of the Task: Object Exploration in Sitting

The goal of the object exploration task is to assess exploration amount and variability in young infants. Object exploration behaviors are the behaviors infants perform on objects to learn about their properties and how they can manipulate them. These behaviors provide infants with information they can later use to categorize similar objects and to discriminate different objects. These abilities are foundational for later motor, language, and cognitive development.

The object exploration assessment consists of seven presentations of different toys (**KEYS** – ring with keys, **BRING** – beaded ring, **MAR** - maraca, **ORING** – orange ring, **SRING** – soft ring, **CRAB** – soft crab, **BALL** – rubbery spiky ball) to the infant in sitting position. Each trial lasts up to 30 sec or until the infant has dropped/released the object three times. We code object exploration behaviors using OpenSHAPA.

PASS 1 (column 1): SUBJECT INFORMATION

Subject's ID and visit.

PASS 2 (column 2): ASSESSMENT PERIODS

The assessment period is marked as EXSIT (exploration in sitting).

PASS 3 (column 3): PERIODS WITHIN EACH ASSESSMENT

Each toy has a dedicated period, make sure you code within the specified periods.

PASS 4 (column 4): HOLDING

We are interested in what infants are doing with objects when they are holding them so the first step is determining when within each trial/period an infant is holding the object. You will code each toy period lasting up to 30 sec or until the infant releases the object three times. You will perform this pass at quarter to half speed so you can get accurate start and end times.

In this pass you will code for:

• Holding object with right hand (right hold): The infant is holding the object just with the right hand.

- Holding object with left hand (left hold): The infant is holding the object just with the left hand.
- Holding object with both hands (bilateral hold): The infant is holding / contacting the object with both hands. Note that because it will be hard to determine for coding whether both hands are actually supporting the object versus one hand holding and supporting the weight of the object while the other is just touching or manipulating it, we will code any times both hands are contacting the object as bilateral holding.

If the object is placed in the infant's hand and the infant immediately drops it, do not count any time as holding, but rather count it as an immediate release. As infants get older and gain control, they might let go of an object and then re-acquire it again. This occurrence would not count as one of the 3 releases that will result in the end of a trial. Again, the trial can last up to 30 sec or until the infant releases the object 3 times.

FROM THIS POINT ON, YOU WILL ONLY CODE TIMES WITHIN PERIODS WHERE THE INFANT WAS HOLDING

<u>THE OBJECTS</u>. You will not code times when the object was not held by the infant, such as when the object was released and being placed back in the infant's hand.

PASS 5 (column 5): MANIPULATE

You will code times the infant manipulates the object. By definition, manipulation requires use of both hands so you will only code times of bilateral holding. You will perform this pass watching at full speed since the infants do not perform these behaviors often. If you find the infant performs them frequently, you can watch the video at quarter to half speed. Make sure you pause and review as needed to get accurate start and end times.

In this pass you will code:

- Fingering the object (finger): The infant's fingers move over the surface of the object for at least 2 sec.
- **Banging the object (bang):** The object contacts a surface or the child's body in a repetitive manner.
- Manipulating the object (manipulate): The infant's one hand moves part(s) of the object as it is supported by the other hand.
- Transferring the object from one hand to the other (transfer): The infant moves the object from one hand to the other.

PASS 6 (column 6): OBJECT TOUCHING BODY

You will code times when the object touches the infant's body. You will perform this pass watching at full speed, slowing down to record exact times for the beginning and end of the period.

In this pass you will code:

• **Object touching body (touch body):** The infant brings the object into contact with a part of his/her body, including the head, face, trunk, arms, and legs, but excluding the mouth and other hand.

PASS 7 (column 7): MOUTHING

You will code periods when the object is in contact with mouth/tongue/lips or any other part of the face. You will perform this pass at real-time speed, not slowed down. Your goal is to watch the video continuously through. You can rewind at times if needed and watch parts slowed down to quarter or half speed or multiple times as needed to get accurate start and end times.

• Touching mouth (mouth): The object is being in contact with the mouth, tongue, and/or lips.

PASS 8 (column 8): LOOKING

You will code periods when the infant is looking at the object. You will perform this pass at quarter to half speed. Your goal is to watch the video continuously through.

• Looking at the object (look): The infant's eyes are directed towards the object. If you are unsure, listen for cues from the experimenter, such as "good job looking at the toy" or "are you looking at me?" If you are still unsure, do not count it as looking.

GENERAL NOTES:

For all of the actions you are coding, look for each action in its own pass regardless of what other actions are occurring. When you have completed your coding for a baby's visit, review your coding to make sure that none of your behaviors occurred outside (before or after) the time boundaries (onset and offset) of the assessment duration sub-periods (column 3) and the holding times (column 4) you were coding. It is easiest to perform this in the temporal view of the OpenSHAPA.