iScience, Volume 25

Supplemental information

KLF15 controls brown adipose

tissue transcriptional flexibility and metabolism

in response to various energetic demands

Liyan Fan, Alexander F. Lesser, David R. Sweet, Komal S. Keerthy, Yuan Lu, Ernest R. Chan, Vinesh Vinayachandran, Olga Ilkayeva, Tapatee Das, Christopher B. Newgard, and Mukesh K. Jain

Figure S1. Baseline metabolic characterization of K15-BKO mouse, Related to Figure 1. (A) *Klf15* expression across multiple organs demonstrating specificity of BAT *Klf15* KO in K15-BKO animals (n=4-6). (B) Relative *Ucp1* expression in BAT of K15F/F vs K15-BKO (n=5-6). (C) Continuous core body temperature measurement using implantable temperature telemetry devices at room temperature (n=6). (D) Body weight (g) measurements starting from 8 weeks of age. (E) Intraperitoneal insulin tolerance test (IPITT) and (F) Intraperitoneal glucose tolerance test in K15F/F and K15-BKO at 8-10 weeks of age (n=8-11). Data represent mean \pm SEM. Comparisons between groups were performed using an unpaired, 2-tailed Student's t test, *p<0.05, **p<0.01, ***p<0.001, ***p<0.001.

Figure S2. K15-BKO mice demonstrate significant deviations from normal transcriptional adaptions to energy demanding states, Related to Figure 2. Comparison of overlap of up- and down-regulated genes identified in K15F/F and K15-BKO BAT in response to cold challenge, fasting, and C+F.

Figure S3. K15-BKO maintain temperature in cold, Related to Figure 3. (A) Continuous core body temperature measurement using implantable temperature telemetry devices at 4°C cold challenge (n=6). (B) Food intake during dark cycle, light cycle, and total across 24h cycle (n=4). (C) Fold change of browning genes in subcutaneous adipose tissue of K15F/F vs K15-BKO in C+F condition (n=8). (D) Fold change in *Klf15* expression in subcutaneous adipose tissue in C+F condition (n=8). (E) Fold change of select lipid metabolism genes in the subcutaneous adipose tissue of K15F/F and K15-BKO mice with C+F condition (n=8). Data represent mean \pm SEM. Comparisons between groups were performed using an unpaired, 2-tailed Student's t test.

Figure S4. K15-BKO experience altered BCAA and FA metabolism in C+F conditions, Related to Figure 4. (A) qPCR of BCAA catabolism genes in BAT of K15 F/F vs K15-BKO mice (n=6-8). (B) qPCR of BCAA catabolism genes in BAT of K15 F/F vs K15-BKO mice (n=6-8). (C) Circulating amino acid levels at C+F, normalized to K15F/F (n=5). (D) Heatmap depicting circulating acylcarnitine levels K15F/F and K15-BKO at RT and after C+F, normalized to K15F/F RT (n=7). Data represent mean \pm SEM. Comparisons between groups were performed using an unpaired, 2-tailed Student's t test, #p <0.1, *p<0.05, **p<0.01, ***p<0.001.

Gene name	Forward	Reverse
Klf15	ACAGGCGAGAAGCCCTTT	CATCTGAGCGGGAAAACCT
Cyclophilin B	TTCTTCATAACCACAGTCAAGACC	ACCTTCCGTACCACATCCAT
Fatp1	GACAAGCTGGATCAGGCAAG	GAGGCCACAGAGGCTGTTC
Cd36	TTGTACCTATACTGTGGCTAAATGAGA	CTTGTGTTTTGAACATTTCTGCTT
Cpt1a	GACGAATCGGAACAGGGATA	TGGCATAGCTGTCAATAGATGC
Cpt1b	GAGTGACTGGTGGGAAGAATATG	GCTGCTTGCACATTTGTGTT
Slc25a20	TGAAGGCCCTGTTACACTCA	CCTCCAGAGAGTCAGCCATC
Cpt2	CCAAAGAAGCAGCGATGG	TAGAGCTCAGGCAGGGTGA
Alt1	CCTTCAAGCAGTTTCAAGCA	GCTCCGTGAGTTTAGCCTTG
Alt2	GGAGCTAGCGACGGTATTTCT	GATACTGGGGGATGGGAATC
Bcat2.1	GCTGCAGCCACACTAGGAC	TCTTTTGGACCCACATAGAAGC
Bcat2	TGCTCTGGTCTGCACTACTCTC	GTAGCATCCTGTCCATGTTGAG
Bckdk	TGCTCAAGAATGCCATGAGA	TGAGATCCTGATGATGAGATCAAT
Bckdha	TTCGGGGCTTGGCTAGAT	GAACTGGGGCTTGTCGTC
Bckdhb	ATTAGCCAAAGACCCCACTG	CGTAAACCAACAGTGCATCG
Ucp1	GGCAATCCTTCTGTTTTTGC	CCAAAGTCCGCCTTCAGA
Mut	TGCAGTGCGGACAATGTTAT	GCACACTGCCAGACATCG
Fah	CCTGCAGACTCTTAGACATGGA	GATTGGCTCTCCGAATCTGT
Glud1	GGTCATCGAAGGTACCG	TCAGTGCTGTAACGGATACCTC
Sds	CTACTCCTCTCGCTCGCTCT	CTTCACATGGAGGGACTCCT
Hmgcl	GTGAAGATGGCGTCAGTGAG	AGTGCCCATGGAGGAGGT
Acaa2	AAATGTGCGCTTCGGAAC	CGGTTAATCCTGCCCACAAAG
Мсее	CACTGGGGAGTCATAGTCCAA	TGCACTGATGTTGTCCACCT
Got1	GCTGTGCTTCTCGCCTAGTT	AAGACTGCACCCCTCCAAC
Got2	ATGGCTGCTGCCTTTCAC	GATCTGGAGGTCCCATTTCA
Acaa1	GGTCTTATGACATTGGCATGG	CTCTGGCTTTCTCACTCTCCA
Aldh6a1	CTGGGCAGAGTCGGTGAG	GGCATTTACCTTAGAAGAAACCTG
Fh1	GCACCCCAATGATCATGTTA	ATTGCTGTGGGAAAGGTGTC
Sdhd	CCTGCTCTGTGGTGGACTACT	CCCATGAACGTAGTCGGTAAC
Aco2	GTTGGGGGTGAGAAAGACCT	GAAGCCCACACCATACTTGG
ldh3a	GAGGTTTTGCTGGTGGTGTT	TGAAATTTCTGGGCCAATTC
ldh3b	ATGCTGCGGCATCTCAAT	CCATGTCTCGAGTCCGTACC
ldh3g	CATCCTCATTGTACGGGAAAA	ACCACTCCTGCTACGCTCTC
Oqdh	TCTCATCCACAGACAAACTTGG	AGGAAGTGCTGGCTCCTGT
Suclq1	CACATTCACAAGAAGGGAAGAAT	GGTTGTTTGGTGAACTGCTTC
Suclg2	GAAAATCTGGGCTTCCTTGG	GAAAATCTGGGCTTCCTTGG
Sdha	TGTTCAGTTCCACCCCACA	TCTCCACGACACCCTTCTG
Cs	GGAAGGCTAAGAACCCTTTGG	TCATCTCCGTCATGCCATAGT
Mdh2	TTGTGATGTGGTGGTCATCC	ACAGGTCATCCCGTGTCATT
Sdhc	GAAGAAGAACACGAGTTCAAACC	GTGCCATAGGAAGAGACCATTT
Sdhb	CTGGTGGAACGGAGACAAGT	GCGTTCCTCTGTGAAGTCGT
Fbp1	ACTTTGACCCTGCCATCAAT	ACCATAGGGGGCTGAACC
Pcx	TCCGTGTCCGAGGTGTAAA	CAGGAACTGCTGGTTGTTGA
G6pc	TCTGTCCCGGATCTACCTTG	GAAAGTTTCAGCCACAGCAA
Crat	GCCATTGCTATGCACTTCAAC	GGTCCGAAGAACATGACACA
Ldha	GGCACTGACGCAGACAAG	TGATCACCTCGTAGGCACTG

Table S1. PCR primers, Related to STAR Methods.

Pgc1a	AATTTTTCAAGTCTAACTATGCAGACC	CAAAATCCAGAGAGTCATCTTGC
Pparg	GAAAGACAACGGACAAATCACC	GGGGGTGATATGTTTGAACTTG
Prdm16	TCTCGGATCCCATCCTCA	GGAAGATCTTGCCACAGTA
Cidea	TTCAAGGCCGTGTTAAGGA	CCTTTGGTGCTAGGCTTGG
Atgl	GAGCTTCGCGTCACCAC	CACATCTCTCGGAGGACCA
Hsl	GCGCTGGAGGAGTGTTTTT	CGCTCTCCAGTTGAACCAA
Plin1	AACGTGGTAGACACTGTGGTACA	TCTCGGAATTCGCTCTCG
Plin2	CTCCACTCCACTGTCCACCT	GCTTATCCTGAGCACCCTGA
Acadl	GCTTATGAATGTGTGCAACTCC	CCGAGCATCCACGTAAGC
Acadm	TCTTCCCCACAGCTCAGGT	GTAATCCAAGCCTGCACCA
Hadh	TGGATACTACAAAGTTCATCTTGGA	AAGGACTGGGCTGAAATAAGG
Acaca	GCGTCGGGTAGATCCAGTT	CTCAGTGGGGCTTAGCTCTG
Acacb	TGAATCTCACGCGCCTACTA	GCCTCTCTTCACCAGATGGA
Fasn	CAACATGGGACACCCTGAG	GTTGTGGAAGTGCAGGTTAGG