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Figure S1. The workflow of building the machine learning-based QSAR models and using them to 
make predictions. Black boxes indicate data, blue boxes denote operations. 
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Figure S2. The number of models needed for each set of XGBoost regression models. For each 
set of models, we randomly select certain number (n=1, …, 35) of models by a bootstrapping 
sampling with 100 repeats, and calculated the averages (red curves) and standard deviations 
(pink areas) of R2 values for n models. On the right panels, slope is the change of the standard 
deviations of R2 shown on the corresponding left panels for each number of models. The number 
of models for each dataset that starts to have the slope <0.001 was indicated by red bar, which 
we define as the converging number of models. 
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Figure S3. Comparison of the rDAT and hDAT binding datasets. (A) rDAT and hDAT binding 
datasets have 18 overlapping molecules. (B) Distribution of ΔpKi of 18 molecules. The ΔpKi was 
calculated using pKirDAT – pKihDAT. (C) Distribution of pairwise similarity. The Tanimoto similarity 
was calculated based on the Morgan fingerprint of each molecule. 
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Figure S4. Correlations between the predicted and experimentally measured hDAT and rDAT 
affinities. See Figure 3 for the color scheme. 
  



S7 
 

 
 
Figure S5. Correlations between the predicted and experimentally measured DAT affinities using 
models built with the in-house DAT dataset. When removing the two high affinity points (pKi ≥ 
8.5, highlighted with red circles), the R values increase to 0.84 for the predictions with the 
XGBoost models and 0.82 for those with the RF models. 
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Figure S6. MD simulations of hDAT show that the nitrogen atom on JJC8-016 can form one H-
bond with Asp79, while the protonated nitrogen and the hydroxy group of JJC8-088 can form 
two stable H-bonds with Asp79. The blue and red represent the H-bond interaction from the 
nitrogen and oxygen atoms on the ligand. 
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Figure S7. The compound pairs found in the ChEMBL datasets showing opposite affinity trends at 
hERG and DAT. We use the criteria of one compound is >90 fold better in DAT, and the other 
compound is >2 fold better in hERG. The accumulation of the numbers of compound pairs with 
Tanimoto similarity cutoff is reported in the bar plot. 
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Figure S8. Cross predictions between hDAT and rDAT binding XGBoost models. (A) Predictions of 
the hDAT binding models on the rDAT binding dataset. (B) Predictions of the rDAT binding 
models on the hDAT binding dataset. 
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Figure S9. Counter screening of the NCI open database compounds. The hERG clamp models and 
all-DAT binding models are used for the prediction, with the training data including both the 
ChEMBL and the validation datasets.  
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Figure S10. The testing and validation datasets are covered by the applicability domains of the 
QSAR models built from different datasets. For the models used in the benchmarking, examples 
of using one random splitting show that the testing datasets are covered by the applicability 
domains of corresponding training datasets for the (A) all-DAT binding, (B) all-DAT uptake, (C) 
hDAT binding, (D) hDAT uptake, (E) rDAT binding, (F) rDAT uptake, (G) hERG binding and (H) 
hERG clamp. The validation dataset is also covered by the applicability domains of the datasets 
used to build the final models: (I) all-DAT binding, (J) all-DAT uptake , (K) hDAT binding, (L) hDAT 
uptake, (M) rDAT binding, (N) rDAT uptake, (O) hERG binding and (P) hERG clamp.  
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Table S1. The filters and the numbers of datapoints after applying each filter.  
 
 hERG all-DAT hDAT rDAT 

Starting data 20695 13273 7138 5909 

After confidence score filter 20056 8392 5832 2442 

After assay type filter 19330 8369 5809 2442 

 IC50 Ki IC50 Ki IC50 Ki IC50 Ki 

After Ki / IC50 filter 10454 2466 3432 3418 2506 2316 887 1087 

After standard units filter 8957 1546 2671 2659 1745 1557 887 1087 

After activity relationship type fixes 6685 1206 2253 2368 1381 1323 833 1030 
                 
 hERG all-DAT hDAT rDAT 

 
binding clamp binding uptake binding uptake binding uptake 

 IC50 Ki IC50 Ki IC50 Ki IC50 Ki IC50 Ki IC50 Ki IC50 Ki IC50 Ki 

After assay description filter 2456 730 2021 52 845 1616 822 484 383 935 597 156 442 666 218 328 

Reserving hERG calibration compounds n/a n/a 1968 49 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

After data set size filter 2337 678 1542 44 807 1561 784 481 353 895 564 153 434 649 204 328 

Desalting pass 2337 678 1542 44 805 1559 784 480 351 893 564 152 434 649 204 328 

After oddball element filter 2337 678 1542 44 805 1559 784 480 351 893 564 152 434 649 204 328 

After molecular weight filter 2317 667 1519 44 793 1540 767 477 339 874 560 149 434 649 191 328 

After pChEMBL value filter 2317 667 1519 44 793 1540 767 477 339 874 560 149 434 649 191 328 

After edge case filter 2317 667 1519 44 793 1540 767 477 339 874 560 149 434 649 191 328 

After deduplication pass 2043 634 1405 44 538 1189 554 350 279 684 414 126 260 541 140 229 

Excluding 5-6 pKi/pIC50  1137 334 783 42 434 887 383 219 213 503 277 45 222 424 110 177 

Binders 549 251 284 41 417 798 294 200 199 438 234 38 219 401 64 165 
Nonbinders 588 83 499 1 17 89 89 19 14 65 43 7 3 23 46 12 
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Table S2. Keywords used in assay description filter to divide the data into hERG binding, hERG 
clamp, DAT binding, and DAT uptake datasets. 
 

Dataset Description keyword 

hERG binding 

[3H] Astemizole 
[3H]astemizole 
[3H]-astemizole 
[3H] astemizole 
[3H]Astemizole 
radiolabeled astemizole 
[3H]bufuralol 
[3H]Dofetilide 
[3H] dofetilide 
[3H]dofetilide 
3H-dofetilide 
[3H]-dofetilide 
[3H]-Dofetilide 
radiolabeled dofetilide 
Displacement of dofetilide 
Displacement of labeled dofetilide 
Inhibition of dofetilide binding 
[3H]dofetidile 
Displacement of doferilide 
Cy3b-Dofetilide-based 
[35S]MK-499 
[35S]MK499 
[35S]-MK-499 
35[S] MK-499 
MK499 
Displacement of MK-499 
radiolabeled MK-499 
radio-labeled MK-499 
MK-0499 
[35S]N-[(4R)-1'-[(2R)-6-cyano-1,2,3,4-tetrahydro-2-naphthalenyl]-3,4-dihydro-4-
hydroxyspiro[2H-1-benzopyran-2,4'-piperidin]-6-yl]methanesulfonamide 
[35S]N-[(4R)-10-[(2R)-6-cyano-1,2,3,4-tetrahydro-2-naphthyl]-3,4-dihydro-4-
hydroxyspiro[2H-1-benzopyran-2,40-piperidin]-6-yl]methanesulfonamide 
[35S]N-[(4R)-1'-[(2R)-6-cyano-1,2,3,4-tetrahydro-2-naphthyl]-3,4-dihydro-4-
hydroxyspiro[2H-1-benzopyran-2,4'-piperidin]6-yl]methanesulfonamide 
3,7-Bis[2-(4-nitro[3,5-3H]phenyl)ethyl]-3,7-diazabicyclo[3.3.1]nonane 
3,7-Bis[2-(4-nitro[3,5]-[3H]phenyl)ethyl]-3,7-diazabicyclo[3.3.1]nonane 
radioligand displacement 
radioligand binding assay 
radioligand-binding competition 
Inhibition of binding to hERG 
Displacement of dofetidine 
Inhibition of Cy3B-labeled ligand binding 
Displacement of Tracer Red 
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Dataset Description keyword 

hERG clamp 

manual electrophysiology 
electrophysiology assay 
electrophysiological assay 
electrophysiology study 
whole-cell plate-based electrophysiology 
patch plate method 
clamp 
PatchXpress 
Q-patch 
Qpatch 
patch express assay 
ion works assay 
IONWORKS 
IonWorks 
ionworks HT assay 

DAT binding 

BCTP 
[3H]BTCP 
radiolabeled BTCP 
CIT 
mazindol 
Mazindol 
Vanoxerine 
[125I]PE2I 
IPT 
[125I]N-(3'-iodopropen-2'yl)-2-beta-carbomethoxy-3-beta-(4-chlorophenyl)tropane 
CFT 
WIN- 
WIN-35 
WIN35428 
WIN5428 
WIN 35428 
WIN 35,428 
WIN-35428 
WIN-35,428 
WIN35,428 
[125I]methyl 3-(4-iodophenyl)-8-methyl-8-aza-bicyclo[3.2.1]octane-2-carboxylate 
GBR 
GBR12935 
GBR-12935 
GBR-12,935 
RT155 
RTI55 
RTI -55 
RTI-55 
RTI-121 

DAT uptake 

[3H]dopamine reuptake 
[3H]-dopamine 
[3H]dopamine 
[3H]DA 
[3H]-DA 
Inhibition of dopamine (DA) uptake 
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Table S3. Benchmarks of the models trained with the in-house DAT binding dataset.  
 

Models Metrics 
XGBoost  Random Forest 
Ave. St.Dev. Best Ave. St.Dev. Best 

Regression 
R2 0.48 0.13 0.71 0.46 0.15 0.67 
RMSE 0.61 0.09 -- 0.63 0.10 -- 

Classification 

Accuracy 0.97 0.02 -- 0.98 0.02 -- 
Sensitivity 0.99 0.01 -- 1.00 0.01 -- 
Specificity 0.00 0.00 -- 0.20 0.41 -- 
F Score 0.98 0.01 -- 0.99 0.01 -- 

 
Ave., averages of 35 models for each dataset for the regression modeling, or 25 models for each 
dataset for the classification modeling (see Methods and Figure S2); S.D., standard deviation. 
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Table S4. Benchmarks of the XGBoost classification models trained with equal numbers of 
binders and non-binders from the all-DAT binding dataset. We randomly reduced the number of 
binders to match number of nonbinders, and the randomization was performed 9 times to 
prepare 9 different training datasets. For each dataset, models were built using 25 different 
random splittings. The averages and standard deviations of the benchmarks were then 
calculated for the resulting 225 models. Compared to Table 2, the accuracy is not as good as 
using the entire dataset, but the sensitivity and specificity are improved. 
 
 
 
 
 
 
 
 
  

 Ave. St. Dev. 
Accuracy 0.87 0.07 
Sensitivity 0.88 0.09 
Specificity 0.87 0.09 

F Score 0.86 0.07 
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Table S5. Most correlated descriptors for DAT and hERG ligands. 
 

Dataset 
10 most positively correlated features 10 most negatively correlated features 

Descriptor R Descriptor R 

DAT binding 

NumAliphaticHeterocycles 0.50 BalabanJ -0.41 

NumSaturatedHeterocycles 0.49 SlogP_VSA11 -0.27 

Chi3n 0.44 SlogP_VSA1 -0.23 

Chi4n 0.44 qed -0.21 

Chi3v 0.43 fr_allylic_oxid -0.21 

Chi4v 0.42 SMR_VSA9 -0.21 

RingCount 0.41 TPSA -0.18 

NumSaturatedRings 0.40 NHOHCount -0.18 

Chi2n 0.39 fr_NH2 -0.17 

Chi2v 0.39 PEOE_VSA1 -0.17 

hERG clamp 

fr_unbrch_alkane 0.34 fr_COO -0.34 

MolLogP 0.30 fr_COO2 -0.34 

EState_VSA5 0.21 TPSA -0.33 

MinAbsEStateIndex 0.20 fr_Ar_COO -0.33 

VSA_EState5 0.19 VSA_EState2 -0.28 

PEOE_VSA7 0.18 NumHDonors -0.26 

EState_VSA8 0.18 NOCount -0.25 

fr_sulfide 0.18 fr_C_O -0.25 

NumRotatableBonds 0.16 NHOHCount -0.23 

PEOE_VSA6 0.16 PEOE_VSA2 -0.23 

DAT validation 

RingCount 0.86 BalabanJ -0.80 

Kappa2 0.84 qed -0.79 

NumRotatableBonds 0.83 fr_priamide -0.61 

Chi1 0.83 NHOHCount -0.61 

MolMR 0.82 PEOE_VSA12 -0.61 

Chi1n 0.82 fr_NH2 -0.61 

LabuteASA 0.82 SMR_VSA4 -0.61 

Kappa3 0.81 fr_amide -0.49 

HeavyAtomCount 0.81 fr_C_O_noCOO -0.49 

Chi3n 0.80 fr_C_O -0.49 

hERG validation 

NumRotatableBonds 0.87 qed -0.88 

MolLogP 0.81 BalabanJ -0.81 

Kappa2 0.79 SMR_VSA4 -0.70 
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Kappa3 0.76 fr_priamide -0.70 

RingCount 0.76 NHOHCount -0.70 

Chi1 0.74 fr_NH2 -0.70 

NumAromaticCarbocycles 0.73 PEOE_VSA12 -0.70 

fr_benzene 0.73 TPSA -0.69 

NumAromaticRings 0.73 FpDensityMorgan1 -0.61 

Chi1n 0.72 VSA_EState2 -0.58 
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Table S6. Summary of MD simulations. 
 

Protein Ligand Number of runs Simulation length 

DAT 
JJC8016 7 15.5 μs 
JJC8088 5 11.1 μs 

hERG 
JJC8016 6 4.86 μs 
JJC8088 3 3.6 μs 

 


