SUPPORTING INFORMATION

Toward Reducing hERG Affinities for DAT Inhibitors with a Combined Machine Learning and Molecular Modelling Approach

Kuo Hao Lee^{1,#}, Andrew D. Fant^{1,#}, Jiqing Guo², Andy Guan¹, Joslyn Jung¹, Mary Kudaibergenova³, Williams E. Miranda³, Therese Ku⁴, Jianjing Cao⁴, Soren Wacker^{2,3,5}, Henry J. Duff², Amy Hauck Newman⁴, Sergei Y. Noskov³, Lei Shi^{1,*}

¹Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA

²Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary,

Calgary, AB T2N 4N1, Canada

³Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary,

Calgary, AB T2N 1N4, Canada

⁴Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore,

MD 21224, USA

⁵Achlys Inc., 7-126 Li Ka Shing Center for Health and Innovation, Edmonton, AB T6G 2E1,

Canada

[#]contributed equally

*corresponding author: lei.shi2@nih.gov

S1

Figure S1. The workflow of building the machine learning-based QSAR models and using them to make predictions. Black boxes indicate data, blue boxes denote operations.

S3

Figure S2. The number of models needed for each set of XGBoost regression models. For each set of models, we randomly select certain number (n=1, ..., 35) of models by a bootstrapping sampling with 100 repeats, and calculated the averages (red curves) and standard deviations (pink areas) of R² values for n models. On the right panels, slope is the change of the standard deviations of R² shown on the corresponding left panels for each number of models. The number of models for each dataset that starts to have the slope <0.001 was indicated by red bar, which we define as the converging number of models.

Figure S3. Comparison of the rDAT and hDAT binding datasets. (A) rDAT and hDAT binding datasets have 18 overlapping molecules. (B) Distribution of Δp Ki of 18 molecules. The Δp Ki was calculated using pKi_{rDAT} – pKi_{hDAT}. (C) Distribution of pairwise similarity. The Tanimoto similarity was calculated based on the Morgan fingerprint of each molecule.

Figure S4. Correlations between the predicted and experimentally measured hDAT and rDAT affinities. See Figure 3 for the color scheme.

Figure S5. Correlations between the predicted and experimentally measured DAT affinities using models built with the in-house DAT dataset. When removing the two high affinity points (pKi \geq 8.5, highlighted with red circles), the R values increase to 0.84 for the predictions with the XGBoost models and 0.82 for those with the RF models.

Figure S6. MD simulations of hDAT show that the nitrogen atom on JJC8-016 can form one Hbond with Asp79, while the protonated nitrogen and the hydroxy group of JJC8-088 can form two stable H-bonds with Asp79. The blue and red represent the H-bond interaction from the nitrogen and oxygen atoms on the ligand.

Figure S7. The compound pairs found in the ChEMBL datasets showing opposite affinity trends at hERG and DAT. We use the criteria of one compound is >90 fold better in DAT, and the other compound is >2 fold better in hERG. The accumulation of the numbers of compound pairs with Tanimoto similarity cutoff is reported in the bar plot.

Figure S8. Cross predictions between hDAT and rDAT binding XGBoost models. (A) Predictions of the hDAT binding models on the rDAT binding dataset. (B) Predictions of the rDAT binding models on the hDAT binding dataset.

Figure S9. Counter screening of the NCI open database compounds. The hERG clamp models and all-DAT binding models are used for the prediction, with the training data including both the ChEMBL and the validation datasets.

Figure S10. The testing and validation datasets are covered by the applicability domains of the QSAR models built from different datasets. For the models used in the benchmarking, examples of using one random splitting show that the testing datasets are covered by the applicability domains of corresponding training datasets for the (A) all-DAT binding, (B) all-DAT uptake, (C) hDAT binding, (D) hDAT uptake, (E) rDAT binding, (F) rDAT uptake, (G) hERG binding and (H) hERG clamp. The validation dataset is also covered by the applicability domains of the datasets used to build the final models: (I) all-DAT binding, (J) all-DAT uptake , (K) hDAT binding, (L) hDAT uptake, (M) rDAT binding, (N) rDAT uptake, (O) hERG binding and (P) hERG clamp.

Table S1. The filters and the numbers of datapoints after applying each filter.

		hEF	G			all-D	DAT			hD	AT			rD	AT	
Starting data		20695			13273		7138			5909						
After confidence score filter		200	56			8392			5832			2442				
After assay type filter		193	30		8369			5809			2442					
	ICS	50	Ki		IC	50	ĸ	(i	IC	50	к	i	IC	50	K	(i
After Ki / IC50 filter	104	54	246	6	34	32	34	18	25	06	23	16	88	37	10	87
After standard units filter	895	57	154	6	26	571	26	59	17	45	15	57	88	37	10	87
After activity relationship type fixes	668	35	120	6	22	2253 2368		1381 13		23 833		1030				
		hEF	G			all-DAT			hDAT			rDAT				
	bind	ing	clarr	р	bin	ding	upt	ake	bind	ling	upt	ake	bind	ling	upt	ake
	IC50	Ki	IC50	Ki	IC50	Ki	IC50	Ki	IC50	Ki	IC50	Ki	IC50	Ki	IC50	Ki
After assay description filter	2456	730	2021	52	845	1616	822	484	383	935	597	156	442	666	218	328
Reserving hERG calibration compounds	n/a	n/a	1968	49	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
After data set size filter	2337	678	1542	44	807	1561	784	481	353	895	564	153	434	649	204	328
Desalting pass	2337	678	1542	44	805	1559	784	480	351	893	564	152	434	649	204	328
After oddball element filter	2337	678	1542	44	805	1559	784	480	351	893	564	152	434	649	204	328
After molecular weight filter	2317	667	1519	44	793	1540	767	477	339	874	560	149	434	649	191	328
After pChEMBL value filter	2317	667	1519	44	793	1540	767	477	339	874	560	149	434	649	191	328
After edge case filter	2317	667	1519	44	793	1540	767	477	339	874	560	149	434	649	191	328
After deduplication pass	2043	634	1405	44	538	1189	554	350	279	684	414	126	260	541	140	229
Excluding 5-6 pKi/pIC50	1137	334	783	42	434	887	383	219	213	503	277	45	222	424	110	177
Binders	549	251	284	41	417	798	294	200	199	438	234	38	219	401	64	165
Nonbinders	588	83	499	1	17	89	89	19	14	65	43	7	3	23	46	12

Table S2. Keywords used in assay description filter to divide the data into hERG binding, hERG clamp, DAT binding, and DAT uptake datasets.

Dataset	Description keyword
	[3H] Astemizole
	[3H]astemizole
	[3H]-astemizole
	[3H] astemizole
	[3H]Astemizole
	radiolabeled astemizole
	[3H]bufuralol
	[3H]Dofetilide
	[3H] dofetilide
	[3H]dofetilide
	3H-dofetilide
	[3H]-dofetilide
	[3H]-Dofetilide
	radiolabeled dofetilide
	Displacement of dofetilide
	Displacement of labeled dofetilide
	Inhibition of dofetilide binding
	[3H]dofetidile
	Displacement of doferilide
	Cy3b-Dofetilide-based
	[35S]MK-499
hERG hinding	[35S]MK499
nend binding	[35S]-MK-499
	35[S] MK-499
	MK499
	Displacement of MK-499
	radiolabeled MK-499
	radio-labeled MK-499
	MK-0499
	[35S]N-[(4R)-1'-[(2R)-6-cyano-1,2,3,4-tetrahydro-2-naphthalenyl]-3,4-dihydro-4-
	hydroxyspiro[2H-1-benzopyran-2,4'-piperidin]-6-yl]methanesulfonamide
	[35S]N-[(4R)-10-[(2R)-6-cyano-1,2,3,4-tetrahydro-2-naphthyl]-3,4-dihydro-4-
	hydroxyspiro[2H-1-benzopyran-2,40-piperidin]-6-yl]methanesulfonamide
	[35S]N-[(4R)-1'-[(2R)-6-cyano-1,2,3,4-tetrahydro-2-naphthyl]-3,4-dihydro-4-
	hydroxyspiro[2H-1-benzopyran-2,4'-piperidin]6-yl]methanesulfonamide
	3, /-Bis[2-(4-nitro[3,5-3H]phenyl)ethyl]-3, /-diazabicyclo[3.3.1]nonane
	3,7-Bis[2-(4-nitro[3,5]-[3H]phenyl)ethyl]-3,7-diazabicyclo[3.3.1]nonane
	radioligand displacement
	radioligand binding assay
	radioligand-binding competition
	Inhibition of binding to hERG
	Displacement of dofetidine
	Inhibition of Cy3B-labeled ligand binding
	Displacement of Tracer Red

Dataset	Description keyword
	manual electrophysiology
	electronhysiology
	electronhysiological assay
	electronhysiology study
	whole-cell plate-based electrophysiology
	natch plate method
	clamp
hERG clamp	PatchXnress
	O-patch
	Onatch
	natch express assav
	ion works assay
	IONWORKS
	IonWorks
	ionworks HT assay
	ВСТР
	[3H]BTCP
	radiolabeled BTCP
	CIT
	mazindol
	Mazindol
	Vanoxerine
	[125]]PE2I
	IPT
	[125I]N-(3'-iodopropen-2'yl)-2-beta-carbomethoxy-3-beta-(4-chlorophenyl)tropane
	CFT
	WIN-
	WIN-35
	WIN35428
DAThinding	WIN5428
DAT binding	WIN 35428
	WIN 35,428
	WIN-35428
	WIN-35,428
	WIN35,428
	[125I]methyl 3-(4-iodophenyl)-8-methyl-8-aza-bicyclo[3.2.1]octane-2-carboxylate
	GBR
	GBR12935
	GBR-12935
	GBR-12,935
	RT155
	RTI55
	RTI -55
	RTI-55
	KII-121
	[3H]dopamine reuptake
	[3H]-dopamine
DAT uptake	[3H]dopamine
	[3H]-DA
	Inhibition of dopamine (DA) uptake

Matrice	XGBoo	st		Random Forest			
Metrics	Ave.	St.Dev.	Best	Ave.	St.Dev.	Best	
R ²	0.48	0.13	0.71	0.46	0.15	0.67	
RMSE	0.61 0.09	0.09		0.63	0.10		
Accuracy	0.97	0.02		0.98	0.02		
Sensitivity	0.99	0.01		1.00	0.01		
Specificity	0.00	0.00		0.20	0.41		
F Score	0.98	0.01		0.99	0.01		
	Metrics R ² RMSE Accuracy Sensitivity Specificity F Score	MetricsXGBoo Ave.R²0.48RMSE0.61Accuracy0.97Sensitivity0.99Specificity0.00F Score0.98	XGBoost Ave. St.Dev. R ² 0.48 0.13 RMSE 0.61 0.09 Accuracy 0.97 0.02 Sensitivity 0.99 0.01 Specificity 0.00 0.00 F Score 0.98 0.01	XGBoost Ave. St.Dev. Best R ² 0.48 0.13 0.71 RMSE 0.61 0.09 Accuracy 0.97 0.02 Sensitivity 0.99 0.01 Specificity 0.00 0.00 F Score 0.98 0.01	Metrics XGBoost Random Ave. St.Dev. Best Ave. R ² 0.48 0.13 0.71 0.46 RMSE 0.61 0.09 0.63 Accuracy 0.97 0.02 0.98 Sensitivity 0.99 0.01 1.00 Specificity 0.00 0.00 0.20 F Score 0.98 0.01 0.99	$\begin{tabular}{ c c c c c c } \hline XGBoost & Random Forest \\ \hline Ave. St.Dev. Best Ave. St.Dev. \\ \hline Ave. St.Dev. Best Ave. St.Dev. \\ \hline Ave. 0.48 0.13 0.71 0.46 0.15 \\ \hline RMSE 0.61 0.09 & 0.63 0.10 \\ \hline Accuracy 0.97 0.02 & 0.98 0.02 \\ \hline Sensitivity 0.99 0.01 & 1.00 0.01 \\ \hline Specificity 0.00 0.00 & 0.20 0.41 \\ \hline F Score 0.98 0.01 & 0.99 0.01 \\ \hline \end{tabular}$	

Table S3. Benchmarks of the models trained with the in-house DAT binding dataset.

Ave., averages of 35 models for each dataset for the regression modeling, or 25 models for each dataset for the classification modeling (see Methods and Figure S2); S.D., standard deviation.

Table S4. Benchmarks of the XGBoost classification models trained with equal numbers of binders and non-binders from the all-DAT binding dataset. We randomly reduced the number of binders to match number of nonbinders, and the randomization was performed 9 times to prepare 9 different training datasets. For each dataset, models were built using 25 different random splittings. The averages and standard deviations of the benchmarks were then calculated for the resulting 225 models. Compared to Table 2, the accuracy is not as good as using the entire dataset, but the sensitivity and specificity are improved.

	Ave.	St. Dev.
Accuracy	0.87	0.07
Sensitivity	0.88	0.09
Specificity	0.87	0.09
F Score	0.86	0.07

Detect	10 most positively correlated features		10 most negatively correlated features		
Dataset	Descriptor	R	Descriptor	R	
	NumAliphaticHeterocycles	0.50	BalabanJ	-0.41	
	NumSaturatedHeterocycles	0.49	SlogP_VSA11	-0.27	
	Chi3n	0.44	SlogP_VSA1	-0.23	
	Chi4n	0.44	qed	-0.21	
DAThinding	Chi3v	0.43	fr_allylic_oxid	-0.21	
DAT binding	Chi4v	0.42	SMR_VSA9	-0.21	
	RingCount	0.41	TPSA	-0.18	
	NumSaturatedRings	0.40	NHOHCount	-0.18	
	Chi2n	0.39	fr_NH2	-0.17	
	Chi2v	0.39	PEOE_VSA1	-0.17	
	fr_unbrch_alkane	0.34	fr_COO	-0.34	
	MolLogP	0.30	fr_COO2	-0.34	
	EState_VSA5	0.21	TPSA	-0.33	
	MinAbsEStateIndex	0.20	fr_Ar_COO	-0.33	
hERG clamp	VSA_EState5	0.19	VSA_EState2	-0.28	
	PEOE_VSA7	0.18	NumHDonors	-0.26	
	EState_VSA8	0.18	NOCount	-0.25	
	fr_sulfide	0.18	fr_C_O	-0.25	
	NumRotatableBonds	0.16	NHOHCount	-0.23	
	PEOE_VSA6	0.16	PEOE_VSA2	-0.23	
	RingCount	0.86	BalabanJ	-0.80	
	Kappa2	0.84	qed	-0.79	
	NumRotatableBonds	0.83	fr_priamide	-0.61	
	Chi1	0.83	NHOHCount	-0.61	
DATvalidation	MolMR	0.82	PEOE_VSA12	-0.61	
DAT valuation	Chi1n	0.82	fr_NH2	-0.61	
	LabuteASA	0.82	SMR_VSA4	-0.61	
	Карра3	0.81	fr_amide	-0.49	
	HeavyAtomCount	0.81	fr_C_O_noCOO	-0.49	
	Chi3n	0.80	fr_C_O	-0.49	
	NumRotatableBonds	0.87	qed	-0.88	
hERG validation	MolLogP	0.81	BalabanJ	-0.81	
	Kappa2	0.79	SMR_VSA4	-0.70	

Table S5. Most correlated descriptors for DAT and hERG ligands.

КарраЗ	0.76	fr_priamide	-0.70
RingCount	0.76	NHOHCount	-0.70
Chi1	0.74	fr_NH2	-0.70
NumAromaticCarbocycles	0.73	PEOE_VSA12	-0.70
fr_benzene	0.73	TPSA	-0.69
NumAromaticRings	0.73	FpDensityMorgan1	-0.61
Chi1n	0.72	VSA_EState2	-0.58

Protein	Ligand	Number of runs	Simulation length
	JJC8016	7	15.5 μs
DAT	JJC8088	5	11.1 µs
hERC	JJC8016	6	4.86 μs
	JJC8088	3	3.6 µs

Table S6. Summary of MD simulations.