Supplementary Information

A versatile in vivo DNA assembly toolbox for fungal strain engineering

Zofia Dorota Jarczynska^{1,†}, Katherina Garcia Vanegas^{1,†}, Marcus Deichmann¹, Christina Nørskov Jensen¹, Marouschka Jasmijn Scheeper¹, Malgorzata Ewa Futyma¹, Tomas Strucko¹, Fabiano Jares Contesini¹, Tue Sparholt Jørgensen², Jakob Blæsbjerg Hoof¹, Uffe Hasbro Mortensen^{1,*}

¹Eukaryotic Molecular Cell Biology, Section for Synthetic Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark

²The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark

[†]Joint authors

*Corresponding author, <u>um@bio.dtu.dk</u>

The Supplementary Information contains 10 figures and 3 tables.

Figures:

Supplementary Figure S1 Construction of plasmid pAC1767.

Supplementary Figure S2 Gap repair of plasmid pAC1767 in the presence of a DNA repair fragment with 25 bp overlapping sequences to the plasmid ends.

Supplementary Figure S3 Plasmid construction by *in vivo* assembly.

Supplementary Figure S4 Southern blot analysis of A. nidulans strains harboring pAMA1-mRFP.

Supplementary Figure S5 E. coli cloning-free gene deletion mediated by in vivo assembly.

Supplementary Figure S6 Marker-free chromosomal integration of a *mCitrine*-GEC cassette by *in vivo* assembly.

Supplementary Figure S7 Marker-free chromosomal integration of a *mRFP*-GEC cassette by *in vivo* assembly.

Supplementary Figure S8 Southern blots of GEC insertion strains generated by *in vivo* assembly.

Supplementary Figure S9 Validation of the tRNA::sgRNA::HDV setup for sgRNA release.

Supplementary Figure S10 Cloning- and marker-free gene deletion by *in vivo* assembly.

Tables:

Supplementary Table S1 Vectors used in this study.

Supplementary Table S2 Strains used in this study.

Supplementary Table S3 List of primers used in this study.

Supplementary Figure S1 Construction of plasmid pAC1767. To prepare the vector for gap-repair experiments, pAC1688 was treated with MfeI. This resulted in excision of a fragment containing the 3'-part of the promoter and the start of the *uidA* gene. The resulting vector backbone was purified from agarose gel and re-ligated by T4 DNA ligase to give pAC1767 with one functional MfeI site and a non-functional *uidA* gene. After propagation of pAC1767, it was digested with MfeI to produce a completely linearized vector applicable for gap repair experiments.

Transformant Number

Supplementary Figure S2 Gap repair of plasmid pAC1767 in the presence of a DNA repair fragment with 25 bp overlapping sequences to the plasmid ends. 15 blue transformants were analyzed for the presence of the insert by diagnostic PCR using genomic DNA from the individual transformants as template. Repair mediated by the DNA repair fragment produces a band of 1 kb and simple plasmid religation produces a band of 200 bp. M1 and M2 represent 1 kb and 100 bp markers, respectively.

Supplementary Figure S3 Plasmid construction by *in vivo* assembly. Transformation of the NHEJ deficient *A. nidulans* strain NID2695 with pAC572, an AMA1-*pyrG* control vector, or with the six PCR fragments required for the *in vivo* assembly of pAMA1-*mRFP*, trial 2 and 3. For details, see main text. Transformation plates were imaged at visible light (VL) and in a setup detecting red fluorescence (FL).

Supplementary Figure S4 Southern blot analysis of *A. nidulans* strains harboring pAMA1-*mRFP*. **(A)** Extracted genomic DNA was digested with BgIII and NotI restriction enzymes liberating a band of 3615 bp if the vector was correctly assembled. **(B)** Samples were loaded in the following order: 1 kb ladder, four different purified transformants (clones 1-4) randomly selected from the transformation plate, and the control strain NID1 (no plasmid). All the transformants showed the correct band size for proper plasmid assembly.

Supplementary Figure S5 *E. coli* cloning-free gene deletion mediated by *in vivo* assembly. NID1 was transformed with plasmid pAC572 (control) or three PCR fragments: one that contains the *pyrG* marker and two that contain 1000 bp of up- and downstream sequences of yA ($yA\Delta$) or up- and downstream sequences of wA ($wA\Delta$). Shown are the results of trial 2 and 3 (for trial 1, see main text).

Supplementary Figure S6 Marker-free chromosomal integration of a *mCitrine*-GEC cassette by *in vivo* assembly. NID2695 contains an artificial insertion site for gene expression, COSI-1 (1). COSI-1 contains the color marker *uidA*. In our system, a GEC is inserted into COSI-1 at the expense of *uidA*. Hence, correct targeting of COSI-1 in NID2695 changes its color from blue to white on X-Gluc plates. **(A)** Transformation of NID2695 with five PCR fragments, which assemble *in vivo* into an *mCitrine*-GEC for targeting into the artificial COSI1-1 site, along with an empty CRISPR plasmid pFC330 (top) or with a CRISPR vector encoding an sgRNA targeting Cas9 to *uidA* site, pDIV073 (bottom). In one trial (left) 0.2 pmol of each PCR fragment was used for transformation, and in second trial (right) the amount was increased to 0.8 pmol. Colonies on solid medium were imaged by visible light (VL) and in a setup detecting yellow fluorescence (FL). **(B)** *A. nidulans* strains expressing *mCitrine*-GEC on X-Gluc media. The randomly selected colonies were transferred to solid MM media containing X-Gluc. In the middle of each plate, a control NID2695 strain expressing functional *uidA* gene, but not *mCitrine*, was positioned for comparison. Plates were imaged at white light (VL) and in a setup detecting yellow fluorescence (FL). White colonies which

also has yellow fluorescence signal represent the successful replacement of *uidA* by *mCitrine*-GEC. Blue colonies with no fluorescence signal represent the colonies in which *mCitrine*-GEC was not integrated into the *uidA* locus. Blue colonies with fluorescence signal represent heterokaryons.

Supplementary Figure S7 Marker-free chromosomal integration of a *mRFP*-GEC cassette by *in vivo* assembly. (A) Transformation of NID2695 with five PCR fragments, which assemble *in vivo* into an *mRFP*-GEC for targeting into the artificial COSI1-1 (1) site containing *uidA*, along with an empty CRISPR plasmid pFC330 (top) or with a CRISPR vector encoding an sgRNA targeting Cas9 to *uidA* site, pDIV073 (bottom). In one trial (left) 0.2 pmol of each PCR fragment was used for transformation, and in second and third trials (middle and right) the amount was increased to 0.8 pmol. Colonies on solid medium were imaged by visible light (VL) and in a setup detecting red fluorescence (FL). (B) *A. nidulans* strains expressing *mRFP*-GEC on X-Gluc media. The randomly selected colonies were transferred to solid MM media containing X-Gluc. In the middle of each plate (or middle of the bottom row for two plates on the right), a control NID2695 strain expressing the *uidA* gene, but not expressing *mRFP*, was positioned for comparison. Plates were imaged at white light (VL) and in a setup detecting red fluorescence signal represent the successful replacement of *uidA* by *mRFP*-GEC. Blue colonies with no fluorescence signal represent the colonies in which *mRFP*-GEC was not integrated into the *uidA* locus. Blue colonies with fluorescence signal represent the colonies in which *mRFP*-GEC was

Supplementary Figure S8 Southern blots of GEC insertion strains generated by *in vivo* assembly. (A) Schematic representation of the *mCitrine* gene inserted into COSI-1. Positions of the EcoRV cut sites and of the detection probe are indicated. (B) A reference NID1 strain and four random colonies were analyzed for integration of the *mCitrine* gene into COSI-1. Genomic DNA was purified and digested with EcoRV and then analyzed by Southern blotting. (C) Schematic representation of the *mRFP* gene inserted into COSI-1. Positions of the EcoRV cut sites and of the detection probe are indicated. (D) A reference NID1 strain and four random colonies were analyzed for integration of the *mRFP* gene into COSI-1. Genomic DNA was purified and digested. (D) A reference NID1 strain and four random colonies were analyzed for integration of the *mRFP* gene into COSI-1. Genomic DNA was purified and digested with EcoRV and then analyzed for integration of the *mRFP* gene into COSI-1. Genomic DNA was purified and digested with EcoRV and then analyzed for integration of the *mRFP* gene into COSI-1. Genomic DNA was purified and digested with EcoRV and then analyzed by Southern blotting.

Supplementary Figure S9 Validation of the tRNA::sgRNA::HDV setup for sgRNA release. **(A)** To demonstrate functionality of the tRNA::sgRNA::HDV cassette, we transformed NID1 strain with pFC330, an empty CRISPR vector (left) and with pAC1935 (*tRNA::yA1-sgRNA::HDV* vector) along with the repair oligonucleotide GE-Oligo1 (right). pAC1935 produces Cas9 and an efficient sgRNA targeting *yA*. The resulting DNA DSB in *yA* can be repaired by GW-Oligo1. If so, a non-sense mutation is introduced into *yA* changing conidia color from green to yellow, for details concerning the sgRNA and GW-Oligo1, see (2). Based on the two experiments, we judge the mutation efficiency is > 90%. **(B)** Construction of a *tRNA::albA-sgRNA::HDV* ESF-CRISPR vector in NID1 strains by *in vivo* assembly. NID1 was transformed with an empty CRISPR plasmid pFC330 (left) or the four different PCR fragments required for *albA* ESF-CRISPR plasmid assembly (right). Note the *albA-sgRNA* does not have a target sequence in the *A. nidulans* genome, but rather matches *albA* in *A. aculeatus*. Hence, it does not introduce toxic DNA DSBs in *A. nidulans* and the number of transformants therefore reflect the efficiency of the assembly process. Three transformants were randomly selected for sequence analysis. In all three cases, the sgRNA expression cassette was correctly assembled.

Supplementary Figure S10 Cloning- and marker-free gene deletion by *in vivo* assembly. **(A)** *in vivo* assembly of the ESF-CRISPR plasmid, and in parallel, *in vivo* assembly of a gene-targeting substrate for marker-free deletion of *uidA* in COSI-1 (1). **(B)** All PCR fragments shown in (A) were co-transformed, in three trials, into NID2695. All transformants from each trial were transferred to solid MM media containing X-Gluc. In the middle of each plate, a control strain NID2695 expressing the *uidA* gene was positioned for comparison. White colonies indicate a successful marker-free deletion of the *uidA* gene in COSI-1 using the gene-targeting substrate assembled by *in vivo* fusion of two PCR fragments for repair.

Supplementary lable SI vectors used in this stud
--

Plasmid ID	Description ^a	Purpose	Reference
pAC1767	An_argB-AMA1::uidA-5tr	For gap repair assay	This study
pAC1688	An_argB-AMA1::uidA	Control vector for gap repair experiments	This study
pDIV083	UP(An)-A-An_PgpdA-uidA-An_TtrpC-B- DW(An)	Vector for amplification of PgpdA- uidA-TtrpC	(1)
pAC573	An_argB-AMA1::PacI/Nt.BbvCI	Vector for constructing pAC1688 and control vector for AMA1 assembly	(2)
pAC572	Af_pyrG -AMA1::PacI/Nt.BbvCl	Control vector for AMA1 assembly and gene deletions	(2)
pDIV088	A-An_PgpdA-mCitrine-An_TtrpC-B	Template for Southern blot probe	
pDIV089	A-An_PgpdA-mRFP-An_TtrpC-B	Template for Southern blot probe	(1)
pFC330	Af_pyrG-AMA1::PacI/Nt.BbvCI-cas9	Control vector for GEC integrations	(3)
pDIV073	pFC330::uidA-gRNA2	Cas9 vector for GEC integrations	(1)
pAC1935	cas9-Af_pyrG-AMA1::Af_U3p-tRNA-yA- sgRNA1-HDV-An_TtrpC Cas9 vector for yA1 targeting		This study
^a An — Aspergillu	ıs nidulans; Af – Aspergillus fumigatus.		

Supplementary Table S2 Strains used in this study.

Strain ID ^a	Genotype	Purpose	Reference
NID1	veA1, argB2, pyrG89, nkuA∆	Gap repair assays; gene deletions	(4)
NID5	veA1, argB2, pyrG89	Gap repair assays	IBT 27263
NID2695	veA1, argB2, pyrG89, nkuA∆, IS1::A-PgpdA- uidA-TtrpC-B	AMA1 assembly; GEC integration	(1)
ACU59	pyrG1, akuAΔ, IS1::A-PgpdA-uidA-TtrpC-B	AMA1 assembly; GEC integration	(1)
NIG158	pyrG1, kusAΔ, IS1::A-PgpdA-uidA-TtrpC-B	AMA1 assembly; GEC integration	(1)
ORY7	ругGΔ, ku70Δ, IS1::A-PgpdA-uidA-TtrpC-B	AMA1 assembly; GEC integration	(1)
^a NID – Aspergillus nidulans; ACU – Aspergillus aculeatus; NIG – Aspergillus niger; ORY – Aspergillus oryzae.			

Primer ID	Sequence³5' → 3'	Purpose ^b	
Primers for fragment amplification with increasing ends-out homologies in gap repair assay			
ZJ142	GGGTTTAAUATTCCCTTGTATCTCTACACACAGG	To amplify a USER cloning compatible <i>uidA</i> reporter gene cassette	
ZJ428	GGTCTTAAUGGGCGCTTACACAGTACACG	To amplify a USER cloning compatible <i>uidA</i> reporter gene cassette	
C407	GCCATTAACCTAGGTACAGAAGTC	To construct 25 bp homology overhang fragment	
C408	TGATCGTTAAAACTGCCTGGC	To construct 25 bp homology overhang fragment	
C409	GTGTATAGCCGTCGGCGAAATAG	To construct 50 bp homology overhang fragment	
C410	ATTACGAATATCTGCATCGGCGAAC	To construct 50 bp homology overhang fragment	
C411	GAGCTTCATCGAATCACCGG	To construct 100 bp homology overhang fragment	
C412	CAACCTTTCGGTATAAAGACTTCGC	To construct 100 bp homology overhang fragment	
C413	GATGATTATTAATCCGGGACCGG	To construct 200 bp homology overhang fragment	
C414	CGTATAGCCGCCCTGATG	To construct 200 bp homology overhang fragment	
C415	CTGGAGTGACCCAGAGGG	To construct 400 bp homology overhang fragment	
C416	GTGGTGTAGAGCATTACGCTG	To construct 400 bp homology overhang fragment	
C417	TTAAATCAGGAGATATAGCATGATCTCTAG	To construct 800 bp homology overhang fragment	
C418	CACCATCAGCACGTTATCGAATC	To construct 800 bp homology overhang fragment	
C419	TTTCGACACTGAAATACGTCGAG	To construct 1600 bp homology overhang fragment	
C420	GACTTCGGTTTGCGGTCG	To construct 1600 bp homology overhang fragment	
Primers for AMA	1 plasmid assembly		
PR_DIV1387	GAACCAGAAAGGCAAGGCAG	Amplification of I half of AMA1	
PR_DIV1390	TGAGGTCTTAATTAAACCCTCAGC	Amplification of I half of AMA1	
PR_DIV1395	AAGATCTCATGGTCATAGCTGTTTCCGCTGAGGGTTTAATTAA	Amplification of ANP <i>gpdA</i> with 50 bp overhang	
PR_DIV1396	GCGGTAGTGATGTCTGCTCAA	Amplification of ANPgpdA	
PR_DIV1397	CATCGCAGCTTGACTAACAGCTACCCCGCTTGAGCAGACATCACTACCGCATGGTGAGC AAGGGCGAG	Amplification of <i>mCitrine</i> with 50 bp overhang	
PR_DIV1398	TATCCAGATCGTCAAGCTGTTTGATGATTTCAGTAACGTTAAGTGGATCCTTACTTGTAC AGCTCGTCCATGC	Amplification of <i>mCitrine</i> with 50 bp overhang	
PR_DIV1399	GGATCCACTTAACGTTACTGAAATC	Amplification of ANT <i>trpC</i>	
PR_DIV1400	CTGCGTCCGGGTCTGTTTCATTAGATGACTACCCCAAAAAACCGCGGAATGGGCGCTTA CACAGTACACG	Amplification of ANT <i>trpC</i> with 50 bp overhang	
PR_DIV1401	ATTCCGCGGTTTTTTGGG	Amplification of AN P-argB-T	
PR_DIV1402	TACGCGTTAAGCTTGGCACTGGCCGTCAGCTGCTTCGTCGATTAAACCCTACAGCC ATTGCGAAACC	Amplification of AN P-argB-T with 50 bp overhang	
PR_DIV1389	AGGGTTTAATCGACGAAGCAG	Amplification of II half of AMA1	
PR_DIV1388	ATCACTTCCAACACTCTTGCTGA	Amplification of II half of AMA1	
PR_DIV1391	AAGATCTCATGGTCATAGCTGTTTCCGCTGAGGGTTTAATTAA	Amplification of ANP <i>TEF1</i> with 50 bp overhang	

Supplementary Table S3 List of primers used in this study.

PR_DIV1390	TGAGGTCTTAATTAAACCCTCAGC	Amplification of ANPTEF1	
PR_DIV1348	CTGAGCACTTCTCCCTTTTATATTCCACAAAACATAACACAACCTTCACCATGGCCTCCTC CGAGGAC	Amplification of <i>mRFP</i> with 50 bp overhang	
PR_DIV1349	TCGTAAAGGCTTTTTTAAGGAAGTCATAACGGCATAAATCGAATGTCCGCTTAGGCGCC GGTGGAGT	Amplification of <i>mRFP</i> with 50 bp overhang	
PR_DIV430	GCGGACATTCGATTTATGCC	Amplification of ANTTEF1	
PR_DIV1392	CCCCGGCCGGGTACCGAGCTCGAATTCGTAATCATGTCATATTACCTAGTGTATTGGGA TGAATTTTGTATGCAC	Amplification of ANT <i>TEF1</i> with 50 bp overhang	
PR_DIV1393	ACTAGGTAATATGACATGATTACGAATTC	Amplification of AF P-pyrG-T	
PR_DIV1394	TACGCGTTAAGCTTGGCACTGGCCGTCAGCTGCTTCGTCGATTAAACCCTAGTGGGGAT GCCTCAATTGT	Amplification of AF P- <i>pyrG</i> -T with 50 bp overhang	
Primers for gene integrations			
PR_DIV432	AGGTGTAAAAGTAGGGAGCGGTAG	Amplification of A	
PR_DIV1344	TCACTGTCCGCTTGCAGAGT	Amplification of A	
PR_DIV1346	TTGGTGGGTAAAGTCTGGCAGGTACCGTCCACTCTGCAAGCGGACAGTGACGAGACAG CAGAATCACCGC	Amplification of ANPTEF1 with 50 bp overhang	
PR_DIV427	GGTGAAGGTTGTGTTATGTTTTGTG	Amplification of ANPTEF1	
PR_DIV1350	CTGAGCACTTCTCCCCTTTTATATTCCACAAAACATAACACAACCTTCACCATGGTGAGCA AGGGCGAG	Amplification of <i>mCitrine</i> with 50 bp overhang	
PR_DIV1351	TCGTAAAGGCTTTTTTAAGGAAGTCATAACGGCATAAATCGAATGTCCGCTTACTTGTAC AGCTCGTCCATGC	Amplification of <i>mCitrine</i> with 50 bp overhang	
PR_DIV430	GCGGACATTCGATTTATGCC	Amplification of ANTTEF1	
PR_DIV1347	GGGAGCTAGGTATTCCCTTCGGTAGAAGTAGCAGGAGTAGCGTACATAGGGTATTGGG ATGAATTTTGTATGCAC	Amplification of ANT <i>TEF1</i> with 50 bp overhang	
PR_DIV1345	CCTATGTACGCTACTCCTGCTACT	Amplification of B	
PR_DIV435	GAGGAGAGTGGATGGATAGTCTGG	Amplification of B	
PR_DIV1348	CTGAGCACTTCTCCCCTTTTATATTCCACAAAACATAACACAACCTTCACCATGGCCTCCTC CGAGGAC	Amplification of <i>mRFP</i> with 50 bp overhang	
PR_DIV1349	TCGTAAAGGCTTTTTTAAGGAAGTCATAACGGCATAAATCGAATGTCCGCTTAGGCGCC GGTGGAGT	Amplification of <i>mRFP</i> with 50 bp overhang	
Primers for gene	deletions		
C606	CGTGGAGTTACCAGTGATTG	Amplification of AF P-pyrG-T	
C607	CTAGATGACTGGTAGGAATCTAAC	Amplification of AF P-pyrG-T	
C608	CGGACCTGACAATTCTCGACG	Amplification of ANyAA TSI	
C610	AGGCAGAACTGTAGAAGATAAAACATTGGTCAATCACTGGTAACTCCACGGCTGGATCC CGGAGGAATC	Amplification of ANyA∆ TSI with 50 bp overhang	
C612	CCCCCAATCGTCAAGGTTTTCCCTTTGTTAGATTCCTACCAGTCATCTAGGGTGAGCTCTC ATATTCGTACTTAC	Amplification of ANyA∆ TSII with 50 bp overhang	
C613	CCGGTCAAAACTGCATCGG	Amplification of ANyAA TSII	
C614	CTCTGGAACAGTCTCGCC	Amplification of ANwAΔ TSI	
C616	AGGCAGAACTGTAGAAGATAAAACATTGGTCAATCACTGGTAACTCCACGGATCAGGA GAAGGAGAGTCAAG	Amplification of AN <i>wA</i> Δ TSI with 50 bp overhang	
C618	CCCCCAATCGTCAAGGTTTTCCCTTTGTTAGATTCCTACCAGTCATCTAGGGCAAAGGAG CTTGCTACTTTC	Amplification of AN <i>wA</i> ∆ TSII with 50 bp overhang	
C619	AAGCCGACACCTGACTCG	Amplification of ANwAΔ TSII	
For construction of pAC1935			
oKST_83	ACCCCAAUGGAAACGGTGAGAGTCCA	AMA FW	
oKST_289	AAGTTGAUAACGGACTAGCCTTATTTTAAC	traRNA sgRNA backbone RV primer	
oKST_288	ATCAACTUGAAAAAGTGGCACCGAGTC	traRNA sgRNA backbone FW primer	
oKST_230	ACTGTTCTUCTAGTGTAGCCGTAGTTAGC	int Ori USER RV	
oKST_229	AAGAACAGUATTTGGTATCTGCGCTCTG	int Ori USER FW	
oKST_82	ATTGGGGUACTAACATAGCCATCAAATGC	AMA RV	
ESF-CRISPR albA test vector bio-blocks			

oKST_335	CAGTCATCTAGCAAGGCGGCCGCAGCTAGCACAATTGAGGCATCCCCACTCGAGACAG CAGAATCACCGC	FW ANT <i>TEF1</i> with 50 bp HR to AF P- <i>pyrG</i> -T	
oKST_337	TACGCGTTAAGCTTGGCACTGGCCGTCAGCTGCTTCGTCGATTAAACCCTGTATTGGGA TGAATTTTGTATGCAC	RV ANT <i>TEF1</i> 50 bp HR AMA part 1	
PR_DIV1389	AGGGTTTAATCGACGAAGCAG	Amplification of II half of AMA1	
PR_DIV1388	ATCACTTCCAACACTCTTGCTGA	Amplification of II half of AMA1	
PR_DIV1387	GAACCAGAAAGGCAAGGCAG	Amplification of I half of AMA1	
oKST_330	GCTATTTCTAGCTCTAAAAACCGATTCTTCAACATGTCGCCTGCATCATCCGTGAATCGAA	60 bp overhang with ACU <i>albA</i> sgRNA RV	
oKST_329	TTCGATTCACGGATGATGCAGGCGACATGTTGAAGAATCGGTTTTAGAGCTAGAAATA GC	60 bp overhang ACU <i>albA</i> sgRNA FW	
oKST_336	AGTGGGGATGCCTCAATTGT	P- <i>pyrG</i> -T Rv	
uidA deletion, ESF-CRISPR vector expressing an sgRNA targeting uidA			
oKST_356	TTCGATTCACGGATGATGCACGCAGGTGATCGGACGCGTCGTTTTAGAGCTAGAAATA GC	60 bp overhang with <i>uidA</i> sgRNA FW	
oKST_357	GCTATTTCTAGCTCTAAAACGACGCGTCCGATCACCTGCGTGCATCATCCGTGAATCGAA	60 bp overhang with <i>uidA</i> sgRNA RV	
oKST_358	GGTCGCGGAGTTCATAATCG	FW IS1-A repair	
oKST_359	TCACTGTCCGCTTGCAGAG	RV IS1-A repair	
oKST_360	TTGGTGGGTAAAGTCTGGCAGGTACCGTCCACTCTGCAAGCGGACAGTGATCCTATGTA CGCTACTCCTG	FW B-IS1 repair with 50 bp overlap to A	
oKST_361	TAGGATTGAGATTGCAATACCC	RV B-IS1 repair	
Primers for diagn	ostic PCR and sequencing		
C413	GATGATTATTAATCCGGGACCGG	Amplification & sequencing of blue gap repair colonies	
C414	CGTATAGCCGCCCTGATG	Amplification & sequencing of blue gap repair colonies	
PR_DIV1745	GCTTGAGAGGGCACGTATGG	Amplification of AMA1 plasmids	
CSN37	TTTATCTGTTGTGCCACCAGTCTC	Amplification of yA∆ locus	
M91	GTAACCTCTGTCGCATCTG	Amplification of yA∆ locus	
PR_DIV1751	CCAGATGATGGCTCAGGCA	Amplification of wA∆ locus	
M87	CACTCTGGAAACGAACTC	Amplification of wA∆ locus	
J43	GGACAACGGGAAGAGGCTCAG	Amplification of mCitrine or RFP in AN <i>uidA</i> locus	
J44	GGAGAGGGAGAAGAAGAAGGG	Amplification of mCitrine or RFP in AN <i>uidA</i> locus	
PR_DIV341	GCATTCCAAGTATTGAACCTTCTC	Amplification of RFP in ACU uidA locus	
PR_DIV342	GATGTCTCGCACGAGTCCAGT	Amplification of RFP in ACU uidA locus	
ZJ79	GTTCCACGGGAGGTGTGAATC	Amplification of RFP in ASN uidA locus	
ZJ96	CTGTGTGACTGGTAGGTTCTGAGTG	Amplification of RFP in ASN uidA locus	
PR_DIV1127	GCAGTTTGGGTGTGTGGTGTT	Amplification of RFP in AO uidA locus	
PR_DIV1128	GAGTGGGTTAATGTTGCGTCG	Amplification of RFP in AO uidA locus	
EDR08	CAAGTCAGCCAACTGCAAACAG	Sequencing of AMA1-mCitrine plasmids	
CSN46	TGCGTCAGTCCAACATTTGT	Sequencing of AMA1-mCitrine plasmids	
PR_DIV1748	GCATCAAGGTGAACTTCAAGATC	Sequencing of AMA1-mCitrine plasmids	
CSN159	CCTATGAGTCGTTTACCCAG	Sequencing of AMA1-mCitrine plasmids	
ZJ301	GGTTTCGTTGTCAATAAGGGAA	Sequencing of AMA1-mCitrine plasmids	

oKST_72	TGCTCGGAATCCATATTG	Sequencing of AMA1-RFP plasmids and integration of mCitrine/RFP- GEC	
CSN364	CTTCTCTGCTCAGCACCTCTACG	Sequencing of AMA1-RFP plasmids and integration of mCitrine/RFP- GEC	
PR_DIV482	CCAATGCGCGATTCAAGAC	Sequencing of AMA1-RFP plasmids and integration of mCitrine/RFP- GEC	
CSN42	TGTAGTGCCAGTACGAGTGTTGTG	Sequencing of AMA1-RFP plasmids	
CSN451	CGACAACCAAGGGAAGTCAACA	Sequencing of of <i>yA</i> ∆ locus	
A262	GGCTGGGAGGGTCAGAGG	Sequencing of of <i>yA</i> ∆ locus	
CSN592	CTTGCCGATGCTACATTGCCT	Sequencing of of wA∆ locus	
PR_DIV1752	GCTGAACACTTAGATGCAGTCTCTC	Sequencing of of wA∆ locus	
MF233	AGGTTCTCCTAACGCTTGGC	Sequencing of AFPU3	
oKST_110	TGATCCACAGCGTCAAGA	Sequencing of ANPTEF1	
oKST_352	CCCGAAACGCGTTTTATTCTTG	Sequencing ANTTRPC	
oKST_358	GGTCGCGGAGTTCATAATCG	FW IS1-A repair	
oKST_361	TAGGATTGAGATTGCAATACCC	RV B-IS1 repair	
Primers for Southern blot probe design			
PR_DIV1428	CGTCATCAAGGAGTTCATGC	mRFP1_probe-F	
PR_DIV1429	CTCGTTGTGGGAGGTGATGT	mRFP1_probe-R	
PR_DIV0226	GTAAACGGCCACAAGTTCAGC	mCitrine_probe-F	
PR_DIV0227	PR_DIV0227 GTAGTGGTTGTCGGGCAGC mCitrine_probe-R		
 ^a Color code: annealing sequence, overhangs, protospacer sequence, thymine-> uracil substitution. ^b AN – Aspergillus nidulans; AF – Aspergillus fumigatus; TS – targeting sequence; ACU – Aspergillus aculeatus; ASN – Aspergillus niger; AO – Aspergillus oryzae. 			

REFERENCES

- 1. Jarczynska, Z.D., Rendsvig, J.K.H., Pagels, N., Viana, V.R., Nødvig, C.S., Kirchner, F.H., Strucko, T., Nielsen, M.L. and Mortensen, U.H. (2021) DIVERSIFY: A fungal multispecies gene expression platform. *ACS Synth. Biol.*, **10**, 579–588.
- Nødvig,C.S., Hoof,J.B., Kogle,M.E., Jarczynska,Z.D., Lehmbeck,J., Klitgaard,D.K. and Mortensen,U.H. (2018) Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli. *Fungal Genet. Biol.*, **115**, 78–89.
- 3. Nødvig,C.S., Nielsen,J.B., Kogle,M.E. and Mortensen,U.H. (2015) A CRISPR-Cas9 system for genetic engineering of filamentous fungi. *PLoS One*, **10**, 1–18.
- 4. Nielsen, J.B., Nielsen, M.L. and Mortensen, U.H. (2008) Transient disruption of non-homologous endjoining facilitates targeted genome manipulations in the filamentous fungus Aspergillus nidulans. *Fungal Genet. Biol.*, **45**, 165–170.