Supporting Information

A multi-gram synthesis to pure HMF and BHMF

Giacomo Trapasso, Giovanna Mazzi, Beatriz Chícharo, Mattia Annatelli, Davide Dalla Torre, Fabio Aricò

Dr. G. Trapasso, Dr. M. Annatelli, G. Mazzi, Dr. B. Chícharo, Dr. D. Dalla Torre, Prof. F. Aricò; Department of Environmental Sciences Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30170 Mestre, Venezia (IT).

Contents

Catalysts properties overview	2
¹ H-NMR spectra of a typical HMF synthesis at different times	3
(samples taken from #6 Table 1 reaction)	3
Additional reactions for the synthesis of HMF in autoclave	4
¹ H-NMR of #3, Table S2 in CDCl ₃ .	4
Crystallization/Purification of HMF	5
Green metrics evaluation	6
Explanation of waste-related Green Metrics:	6
Comprehensive table for the evaluation of green metrics	7
Ecoscale evaluation	
Comparison of Yield, E-factor and PMI of reactions with PMI > 100	9
Radical pentagon analysis	9
¹ NMR and ¹³ C-NMR spectra	14

Catalysts properties overview

	Amberlyst-15	Amberlyst-36	CT151	СТ269	СТ275					
Polymer structure	Macroporous polystyrene crosslinked with divinylbenzene									
Appearance	Spherical Beads									
Functional Group	Sulfonic Acid									
Ionic Form			H⁺ form							
Particle Size Range	< 300 μm	600-850 μm		425 - 1200 μm						
	≥ 4.7 eq/kg	≥ 5.4 eq/kg	5.1 eq/kg	5.2 eq/kg	5.2 eq/kg					
Dry Weight Capacity	(H⁺ form)	(H⁺ form)	(H⁺ form)	(H ⁺ form)	(H⁺ form)					
	≤ 1.6%	51 - 57 %	54 - 59 %	51 - 57 %	51 - 59 %					
Moisture Retention	(H⁺ form)	(H⁺ form)	(H⁺ form)	(H⁺ form)	(H⁺ form)					
Surface Area	53 m²/g	33 m²/g	15 - 25 m²/g	35 - 50 m²/g	20 - 40 m²/g					
Dava Maluma	0.40	0.20	0.15 - 0.30	0.30 - 0.50	0.40 - 0.60					
Pore volume	0.40 mL/g 0.20 mL/§		mL/g	mL/g	mL/g					
Average Pore	200 Å	240 Å			400 700 Å					
Diameter	300 A	240 A	250 - 400 A	250 - 425 A	400 - 700 A					
Temperature Limit	120 °C	150 °C	150 °C	130 °C	130 °C					

Table S1. Purolites and Amberlysts properties.

a) All Purolite[®] information is available on https://www.purolite.com/index. All Amberlyst-15 information are available on the DuPont (https://www.dupont.com/content/dam/dupont/amer/us/en/watersolutions/public/documents/en/45-D00927-en.pdf).

¹H-NMR spectra of a typical HMF synthesis at different times

(samples taken from #6 Table 1 reaction)

Additional reactions for the synthesis of HMF in autoclave

						¹ H-NM	HMF		
#	DMC [mL]	ТЕАВ [%]	Purolite CT275DR [%]	т [C°]	Time [h]	HMF	ML	Other	¹ H-NMR Yield [%]
1	40	10% wt.	5% wt.	120	2	97	3	0	68
2	40	10% wt.	5% wt.	130	2	96	4	0	70
3	40	10% wt.	5% wt.	150	2	68	18	16	46
4	40	10% wt.	5% wt.	150	4	71	4	25	60

Table S2. Synthesis of HMF in autoclave with temperatures higher than 110 °C.

¹H-NMR of #3, Table S2 in CDCl₃.

Crystallization/Purification of HMF

#	Solvent	HMF crystals	Crystal yield %	Crystals		
1 ^b	Et ₂ O	~	ca. 50	Bubble-shape, yellow crystals		
2 ^{b,d}	$Et_2O + Hexane$	~	ca. 30	Needle-shape, yellow-orange crystals.		
3°	t-butyl methyl ether (TBME)	×	/	/		
4 ^c	THF	×	/	/		
5°	2-MeTHF	×	/	1		
6°	Hexane	×	/	/		
7 ^b	Acetone + Hexane	×	/	/		
8 ^{b,e}	AcOEt + Hexane	~	ca. 30	Needle-shape, yellow-orange. They melt faster.		
9°	AcOEt	×	/	/		

Table S3. Solvents used in the HMF crystallization trials.^a

^a After obtaining the dark brown reaction crude, solvent(s) was added, the organic phase was collected in a beaker and put in freezer for 48h; ^b Separation between organic phase and dark brown crude oil; ^c Solvent dissolves the dark brown crude oil; ^d 10 mL of Et_2O were poured in the reaction crude, than hexane was added until the formation of a white-yellow powder; this procedure repeated two more times, the recovered organic phase were then put in the freezer for 48h; ^e Dark brown oil dissolved in 5 mL of AcOEt, than hexane was added until the formation of a white-yellow powder; this procedure repeated two more times, the recovered organic phase were then put in the freezer for 48h.

Green metrics evaluation

Explanation of waste-related Green Metrics:

- E-kernel: Mass contribution to the total E-factor from reaction by-products, reaction side products, and unreacted starting materials;
- E-reaction solvent (E-rxn solv): Mass of reaction solvent necessary for the synthesis of the target product;
- E-catalyst (E-cat): Mass of the catalyst necessary for the synthesis of the target product;
- E-workup: Mass of the reagents used in the work-up procedures necessary to obtain the target product;
- E-purification (E-purif): Mass of the reagents used in purification procedures necessary to obtain the pure target product;

Comprehensive table for the evaluation of green metrics

.

#	Method ^{[b}]	D-Fructose [g]	Catalyst	Rxn solvent	Yield [%]	E- kernel	E- rxn solv.	E-cat	E- workup	E-purif	E-total	ΡΜΙ	Ref.
1*	В	0.64	CeP ₃ ^[c]	DMC-water	68	1.11	44.43	0.33	39.6	0	85.47	86.47	Dibenedetto <i>et al.</i> ²⁸
2 ^[d]	С	1	HCI 0.25M	MIBK	74.3	0.92	23.02	21.54	0	0	45.48	46.48	Brasholz <i>et al.</i> ²⁹
3*	В	1	FeCl ₃ /Et ₄ NBr	NMP ^[e]	78	0.83	18.83	0.55	67.29	0	87.5	88.5	Tong et al. ³⁰
4* ^[f]	В	1.8	HBr/silica	THF	95	0.5	88.8	4.01	0.83	>>0	94.14	95.14	Rajmohan <i>et al.</i> ³¹
5 ^[d]	В	2.1	Ti/Si500	Dist water/TEAC	95.2	0.5	7.14	0.14	5.64	0	13.42	14.42	Novamont ³²
6 ^[g]	В	5	[PPFPy][HSO ₄]	DMSO	82.7	0.73	30.4	0.92	7.6	0	39.65	4.17 ^[h]	Shi <i>et al.</i> ³³
7	В	5	[PPFPy][HSO ₄]	DMSO	82.7	0.73	30.4	0.92	7.6	0	39.65	40.65	Shi et al. ³³
8 ^[g]	В	5	[PPFPy][HSO ₄]	DMSO	84.4	0.69	29.79	0.9	59.58	0	90.97	57.34 ^[h]	Shi <i>et al.</i> ³³
9	В	5	[PPFPy][HSO ₄]	MIBK/water	83	0.72	28.86	0.92	5.49	0	35.99	36.99	Shi <i>et al.</i> ³³
10 ^{[f],[i]}	А	5	CO2	H ₂ O	92	0.55	5.59	0	0	0	6.14	7.14	Motokucho <i>et al.</i> ³⁴
11 ^{[d],[f]}	В	10	H ₂ SO ₄ /LiBr	DMAc	45.3	2.15	29.56	3.26	21.34	0	56.31	57.31	Kovash <i>et al.</i> ³⁵
12 ^[g]	А	10	Pur CT275DR	DMC	50.3	2.03	12.96	0.45	27.3	6.49	49.24	14.25	This work
13	А	10	Pur CT275DR	DMC	72	0.98	8.45	0.3	17.8	0	27.53	5.13	This work
14* ^[f]	В	10	Amb-15	CH ₃ CN:TEAC	78	0.82	21.27	2.18	7.19	0	31.46	32.46	Brown <i>et al.</i> ³⁶
15*	В	20	Amb-15	DMC:TEAB	70	1.04	17.45	0.61	5.52	0	24.62	25.62	Musolino <i>et al.</i> ¹⁴
16*	В	20	Amb-15	water	91	0.57	0.7	7.28	86.84	0	95.39	96.39	Simeonov et al. ⁹
17*	в	20	BF ₃ OEt ₂	DMC	76	0.89	16.14	0.53	2.55	0	20.11	21.11	Musolino <i>et al.</i> ¹⁴
18 ^{[m],[g]}	В	1.5	H ₂ SO ₄	[BMIM][CI]	78	0.83	8.55	0.02	605.74	34.68	649.81	650.81	Galkin <i>et al.</i> ²²
19 ^[m]	В	1.5	H ₂ SO ₄	[BMIM][CI]	78	0.83	8.55	0.02	605.74	0	615.13	616.13	Galkin <i>et al.</i> ²²
20*	В	9	Cationic resin/activate carbon	water	48	1.97	49.5	19.8	260.4	0	331.67	332.67	Vinke <i>et al.</i> ³⁷
21*	В	18	BF ₃ OEt ₂	DMSO-toluene	60	1.37	26.41	0.29	67.74	153.7 9	249.60	250.60	Musau <i>et al.</i> ³⁸
22 ^{[m],[g]}	В	18	H ₂ SO ₄	[BMIM][CI]	72.9	0.96	7.83	0.02	647.79	37.03	693.69	694.69	Galkin <i>et al.</i> ²²
23 ^[m]	В	18	H ₂ SO ₄	[BMIM][CI]	72.9	0.96	7.83	0.02	647.79	0	656.61	657,61	Galkin <i>et al.</i> ²²
24* ^[n]	С	70	WCl ₆ /HY	[BMIM]CI/THF	55	1.62	170.04	0.27	0	0	171.93	172.93	Chan <i>et al.</i> ³⁹

Table S4. Environmental assessment of different procedures with PMI lower than 100 (#1-17) and higher than 100 (#18-25).

^a E-excess is not reported in the table as its value was zero for all the synthetic procedure reported; the reported metrics do not consider the preparation of the catalyst; procedures signed by a star were already reported in our previous article [13] ^b A = Autoclave, B = Batch, C = Continuous flow; ^c CeP₃ is Cerium Phosphate catalyst with formula [(Ce(PO₄)1.5(H₂O)(H₃O)0.5(H₂O)_{0.5})]; ^d Amounts of work-up and/or purification materials are not reported in the original article; ^e NMP = N-Methyl-2-pyrrolidone; ^f Excluding column chromatography; ^g Including purification; ^h DMSO is partially recovered; ⁱ Reaction conducted for 148 h; ¹ NHC is 1,3-bis(2,6-diisopropylbenzyl)imidazolylidene; ^m Aqueous solution of NaCl/NaHCO3 not included; ^a Reaction conducted in continuous biphasic system over a 42 h period where 7 cycles of 10 g each of D-fructose run at 6 h intervals were combined.

Ecoscale evaluation

Reference	Amount of D-fructose g	Ecoscale value	Comments
Brasholz <i>et al</i> . ²⁹	1.00	56	Continuous flow reaction
Galkin <i>et al</i> . ²²	1.5	76	Purification included
Novomont ³²	2.10	89	Ti/Si 500 (catalyst) not included
Novamont	2.10	67	Reagent for catalyst synthesis included
Shi <i>et al</i> . ³³	5.00	83	[PPFPy][HSO ₄] not included, DMSO recovered by distillation from reaction crude
		36	Reagent for catalyst synthesis included
Shi <i>et al</i> . ³³	5.00	81	[PPFPy][HSO ₄] not included, DMSO recovered by distillation from reaction crude; purification by AcOEt/H ₂ O extraction
		34	Reagent for catalyst synthesis included
		82	MIBK/water extraction
Shi et al. ³³	5.00	32	Reagent for catalyst synthesis included
Motokucho <i>et al.</i> ³⁴	5.00	80	Reaction performed for 168 h in autoclave; amount of CO ₂ employed not specified
Kovash <i>et al.</i> ³⁵	10	43	HMF isolated as yellow liquid
This work with purif. (50 % yield)	10	60	Purolite not available in the database (Amb-15 used instead of Purolite)
This work, no purif. (72% yield)	10	71	Purolite not available in the database (Amb-15 used instead of purolite)
Galkin <i>et al.</i> ²²	18	71	Large-scale reaction in rotatory evaporator

Table S5. Ecoscale scores for the selected procedures for HMF synthesis and isolation.

Comparison of Yield, E-factor and PMI of reactions with PMI > 100.

Figure S1. Comparison of yield %, E-total and Process Max Intensity (PMI) of procedures with PMI higher than 100; with the amount of D-Fructose employed below each set of bars.

Radical pentagon analysis

¹NMR and ¹³C-NMR spectra

5-hydroxymethylfurfural (HMF) in CDCl₃

Bis-(hydroxymethyl)furan (BHMF) in MeOD

Dark-brown HMF-rich oil in CDCl₃

