Supplementary Information

Direct N- or C-terminal protein labeling via a sortase-mediated swapping approach

Min Cong^{1*}, Soheil Tavakolpour^{1*}, Lea Berland^{1*}, Hannah Glockner¹, Bohdan Andreiuk¹, Taha Rakhshandehroo¹, Safak Uslu¹, Shruti Mishra¹, Louise Clark¹, and Mohammad Rashidian^{1**}

¹ Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.

^{*} These authors contributed equally to this work

** Correspondence: mohammad_rashidian@dfci.harvard.edu

Figure S1. Fusion tag cleavage using sortase. A, B, C) GST-BCMA, SUMO-IL2, and SUMO-anti-CD4 scFv fusion proteins were rapidly and quantitatively cleaved via the addition of sortase and Gly3 substrate. LC-MS analyses confirmed the formation of the products.

1. Sequences of recombinant protein substrates produced in this study. Sortase recognition tags are underlined.

1.1. GFP:

1.2. GST-BCMA:

MSPILGYWKIKGLVQPTRLLLEYLEEKYEEHLYERDEGDKWRNKKFELGLEFPNLPYYIDGDVKLTQSMAIIRYI ADKHNMLGGCPKERAEISMLEGAVLDIRYGVSRIAYSKDFETLKVDFLSKLPEMLKMFEDRLCHKTYLNGDHVT HPDFMLYDALDVVLYMDPMCLDAFPKLVCFKKRIEAIPQIDKYLKSSKYIAWPLQGWQATFGGGDHPPKSDLE VLFQGPGSHHHHHHHHHGGGGSSLPETGSDYKDDDDKGGSMLQMAGQCSQNEYFDSLLHACIPCQLRCSS NTPPLTCQRYCNASVTNSVKGTNAGGGGSDYKDDDDKLPETGG

1.3. SUMO-BCMA:

MKYLLPTAAAGLLLLAAQPAMAGSMSDSEVNQEAKPEVKPEVKPETHINLKVSDGSSEIFFKIKKTTPLRRLME AFAKRQGKEMDSLRFLYDGIRIQADQTPEDLDMEDNDIIEAHREQIGGGGSDYKDDDDK GGGDYKDDDDKMLQMAGQCSQNEYFDSLLHACIPCQLRCSSNTPPLTCQRYCNASVTNSVKGTNAGSDYKD DDDKHHHHHH

*In red is the pelB sequence that is cleaved upon periplasmic expression.

1.4. SUMO-IL2

MKYLLPTAAAGLLLLAAQPAMAGSMSDSEVNQEAKPEVKPEVKPETHINLKVSDGSSEIFFKIKKTTPLRRLME AFAKRQGKEMDSLRFLYDGIRIQADQTPEDLDMEDNDIIEAHREQIGGGGSDYKDDDDKLPETG GGGSGGGPTSSPTSSSTAEAQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPRMLTFKFYLPKQAT ELKDLQCLEDELGPLRHVLDLTQSKSFQLEDAENFISNIRVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAF CQSIISTSPQDYKDDDDKHHHHHH

*In red is the pelB sequence that is cleaved upon periplasmic expression.

1.5. SUMO-anti-CD4 scFv

GSMSDSEVNQEAKPEVKPEVKPETHINLKVSDGSSEIFFKIKKTTPLRRLMEAFAKRQGKEMDSLRFLYDGIRIQ ADQTPEDLDMEDNDIIEAHREQIGGGGGSDYKDDDDKLPETG SSGSEVQLVQSGAELVKPGASVKLSCKVSDY NIRRTYMHWVRQRPGKGLEWIGRIDPANGNTIYGEKFKSKATLTADTSSNTAYMQLSQLKSDDTAIYYCAIGVQ YLDYWGQGTTVTVSSGGGGSGGGGSGGGGSGIVLTQSPALAVSPGERVTISCRATESVSTLIHWYQQRPGQ QPKLLIYLTSHLDSGVPARFSGSGSGTDFTLTIDPVEADDTATYYCQQTWNDPWTFGGGTKLELKRGGGSDY KDDDDKLPETG

2. Structures, Mass Spectra, and HPLC analyses of the sortase substrates used in this study (peptides were custom synthesized at GenScript company):

2.1. azide-LPETG

Peptide sequence: {Lys(N3)}GSLPETGG; C-terminal: amide; Theoretical MW: 869.93

2.2. alkyne-LPETG

Peptide sequence: {Pra}SLPETGS; C-terminal: amide; Theoretical MW: 783.83

min

2.3. Gly₃-Biotin

Peptide sequence: GGG{PEG3}{Lys(biotin)}; Theoretical MW: 747.14

MS analysis:

