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ESM1 – Sampling procedure and post-stratification weights 

Sampling procedure 

The sample was constructed using a multistage, stratified, cluster sampling with unequal probability design. 

Although it is a more complex sampling method than simple random sampling, it comes with several 

advantages. A clustered and stratified design allows for a larger sample to be interviewed in the same time frame 

and with similar resources than a simple random sampling would. Moreover, stratification brings the advantage 

of ensuring sufficient representation of the population on certain variables like age and sex. At the same time, 

stratification can increase efficiency of sample estimates by reducing variability (and thus standard errors) 

compared to random sampling without stratification [1]. In contrast, clustering and weighting can increase 

variability compared to simple random sampling. However, the advantages of feasibility and stratification were 

considered to outweigh the disadvantages of the clustering and weighing aspects of the design. The sampling 

procedure was similar in nature to the procedure used for the Belgian Health Interview Survey [2]. 

To assure a sufficient coverage of the Belgian territory, municipalities were sampled as clusters within provinces 

taking into account unequal probability of inclusion based on population size within the provinces and 

municipalities. This to find a balance between sufficient representativeness and feasibility. Additionally, 

sampling was further stratified on age categories and sex to obtain a sufficient balance in respondent 

characteristics. Age and sex were chosen as strata because of the availability at the National Register for 

sampling and because these variables were deemed important to have weighed proportionally on the construction 

the EQ-5D-5L value set. Age was categorised in eight groups to avoid too small strata ([18,30), [30,40), [40,50), 

[50,60), [60,70), [70,80), [80,90), [90,100)). 

About 1000 successful interviews were targeted to produce the EQ-5D-5L value set with sufficient precision. We 

assumed a conservative estimated response rate of 10% in deciding how many potential participants to sample 

from the National Reguister. For each interview, 10 potential participants were sampled at random in the same 

stratum. Hence, a total of 10000 potential participants were then sampled.a  

Post-stratification weights  

Post-stratification were used to adjust the estimation to correct for differences between the planned and realised 

interviews and subsequently to obtain preference values representative for the Belgian population. Separate 

weights were calculated for the final sample of 892 respondents as well as for the larger sample used in the 

sensitivity analysis (913 respondents in the sample without exclusions based on implausible response patterns). 

They were calculated as follows: 

1. We checked for ‘empty strata’, combinations of province, age category and sex where interviews were 

planned but where, in the end, no interviews were conducted. We found 7 out of 151 original strata to be 

empty. For the calculation of post-stratification weights, the empty strata need to be merged with other non-

 

a  Note that not all 10 000 potential participants were contacted. For each required interview in a specific 
stratum, only one or a few potential participants needed to be contacted in order to find someone willing to 
participate in the survey. Exceptionally, all 10 potential candidates were contacted without successfully 
recruiting a respondent. 
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empty strata to create post-survey strata. We defined post-survey strata as close as possible to the original 

sampling strata and merge an empty stratum with the stratum in the same province and of the same sex, but 

of the age category just below, so that the interviews in that stratum represented the interviews in the empty 

strata as well. 

2. For each post-survey stratum (province, age category, and sex), the number of people that each interview 

represents was calculated as the population size in a given post-survey stratum divided by the number of 

interviews realized in that stratum. 

3. The post-stratification weight of an interview was then calculated as the number of people that each interview 

represents divided by the Belgian adult population on 1 January 2017 (as in the original sampling) [3]. 
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ESM2 – Data collection process 

Data collection time frame, recruitment of interviewers and training 

The data collection process ran from 1 May 2018 to 30 September 2020. The pace of the study, the number of 

interviews, as well as the impact of training and quality control is described in Fig. 1. As shown in this figure, 

the data collection time frame can be divided in 4 phases, each phase beginning with a new training of 

interviewers and pilot studies. 

• Phase 1 (March 2018 to August 2018): In accordance with the EQ-VT protocol, which puts forward to deploy 

between 8 and 14 interviewers, a total of 11 interviewers were recruited at the start of the study. Interviewers 

were selected based on their experience with handling complex interviews. A one-day training as well as 5 

pilot studies per interviewer were performed prior to the fieldwork. While this initial training of interviewers 

was performed at the beginning of March 2018, the actual data collection only started in May 2018 due to an 

unexpected long delay in obtaining a list of randomly sampled candidates from the National Register. During 

phase 1, nearly half of the interviews (44%) did not pass the quality control and 4 interviewers (as well as all 

their conducted interviews) were excluded. 

• Phase 2 (September 2018 to August 2019): Because the quality of interviews was judged insufficient, an 

additional one-day training was organized and 4 new interviewers were enrolled and trained. It was also 

decided that each interviewer would receive a printed version of the EQ-5D-5L questionnaire in their 

language to help respondents to correctly locate the health state described on the screen in the EQ-5D-5L 

questionnaire and so to facilitate the assessment of a state’s severity. During this phase, two interviewers did 

not pass the quality control and were excluded (as well as all their interviews). 

• Phase 3 (September 2019 to June 2020): In May 2019, because the pace of the study was judged insufficient 

and because Profacts was no longer able to keep enough interviewers active in the field to successfully carry 

out the rest of the study, it was decided to temporarily halt the study and to recruit and train new interviewers 

(n=13). This decision was made in agreement with EuroQol. Because the limit of 14 interviewers required in 

the EQ-VT protocol was surpassed, a more intensive training and follow-up was pursued to reduce potential 

interviewers’ bias as much as possible. This intensive training started with a one-day training, during which 

one pilot was done. Next, three additional pilot tests per interviewer were performed on family and friends 

(at the interviewer’s convenience, e.g. at home). A second day of training then consisted in (1) a debriefing 

on the 4 conducted pilot tests, (2) an additional 6 pilot tests on a group of mock interviewees, which were 

monitored by the research team and (3) a final debriefing. The dropout rate on these pilots (i.e. the percentage 

of interviews flagged in the quality control process) had to be 30% or less before an interviewer was 

authorized to work in the field. In case the dropout rate exceeded the threshold, additional pilots were 

performed. During this phase, one interviewer did not pass the quality control and was excluded (as well as 

all his/her interviews). 

• Phase 4 (July 2020 to September 2020): Finally, in March 2020, because of the COVID-19 pandemic and the 

imposed lock-down, it was decided, in consultation and in agreement with the EuroQol group, to stop the 

data collection before having reached the target of 1000 interviews and to only conduct a limited number of 
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interviews in the region of Brussels and in French-speaking Brabant (province Brabant-Wallon) in order to 

increase the representativeness of the sample (not enough interviews were performed in these two areas). 

These last interviews could only be conducted once the lockdown measures were released (i.e. from July 2020 

onwards). Three interviewers working in these area were retrained during a 2 hours training to ensure they 

were ready to be deployed once again in the field after the break imposed by the lockdown. In order to carry 

out these last interviews in respect with the legal protective measures, 2 choices were proposed to the 

respondents: performing the interview at distance via Microsoft Teams (n= 5 interviews) or face-to-face (n= 

43 interviews) by wearing a mask and respecting distancing and other protective rules. The resurgence in the 

number of COVID-19 cases and a second lockdown led to the termination of the study, in accordance with 

EuroQol. At that time, 916 interviews were performed that had passed the quality control process.  

Throughout the study, a total of 22 interviewers were deployed in the field and conducted a total of 916 

interviews that had passed the quality control process, leading to an average of 42 interviews per interviewer.  
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Fig. 1  Pace of the study, number of interviews and impact of training and quality control 

 

Fig. 2  Flow chart on the change over time in the number of interviewers 
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Phase 1
(n = 102)

Phase 2
(n=289)

Phase 3
(n= 477)

Phase 4
(n=48)

On 5 March 2018 (NL) - 6 March 2018 (FR)
6 Dutch-speaking interviewers
4 French-speaking interviewers
1 Bilingual French- and Dutch-speaking interviewer 

On 30 August 2018 (NL) - 31 August 2018 (FR)
6 Dutch-speaking interviewers
4 French-speaking interviewers
1 Bilingual French- and Dutch-speaking interviewer 

On 17 & 24 September 2019 (NL) - 26 September & 4 October 2019 (FR)
13 Dutch-speaking interviewers (9 active)
7 French-speaking interviewers (3 active)
1 Bilingual French- and Dutch-speaking interviewer (1 active)
1 Bilingual French- and German-speaking interviewer (1 active)

Only new interviewers and one old interviewer (FR/NL) were trained and 
were active between October 19 and March 20

4 interviewers excluded (3NL - 1FR)

80 interviews excluded by the quality control

4 new interviewers 
(3 NL- 1 FR)

13 new interviewers 
(9 NL- 3 FR - 1 FR/DE)

2 interviewers excluded (2NL)

15 interviews excluded by the quality control

On 7 July 2020 (FR)
13 Dutch-speaking interviewers (0 active)
7 French-speaking interviewers (2 active)
1 Bilingual French- and Dutch-speaking interviewer (1 active)
1 Bilingual French- and German-speaking interviewer (0 active)

Only 3 interviewers were trained on 7 July and were active from this period

1 interview excluded by the quality control

11 new interviewers 
(6 NL- 4 FR - 1 FR/NL)
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ESM3 – Four core model specifications 

The EuroQol protocol does not specify a standard regression model to be used to generate utility values for an 

EQ-5D-5L value set. The regression models selected for the EQ-5D-5L value set vary between countries, 

reflecting the differences in underlying data characteristics, evaluation process and model selection criteria. 

Nonetheless, a set of four core regression specifications – one additive model and three multiplicative models – 

exists and serves as backbone for the approach followed in the current study [4-7]. 

First, the modelling strategy for the estimation of cTTO models is discussed. While cTTO was the main 

technique to determine utility values within the EQ-5D framework, it has been accompanied by a set of DCE 

questions in more recent valuations. DCE has a strong theoretical foundation in random utility theory and has 

been increasingly used to quantify stated preferences for health [8-10]. Therefore, also models estimated using 

the DCE data are presented as well as the hybrid approach, combining cTTO and DCE data in one model.  

Modelling cTTO valuation 

cTTO models can be described as follows 

𝐷𝑈𝑖𝑗 = 1 − 𝑈𝑖𝑗 = 𝐼 + 𝛽𝑐𝑇𝑇𝑂𝑋𝑗 + 𝜀𝑖𝑗 (1) 

where 𝑈𝑖𝑗  and 𝐷𝑈𝑖𝑗  are, respectively, the utility and disutility related to health state 𝑗 reported by respondent 𝑖; I 

is the potential intercept in the regression; 𝛽𝑐𝑇𝑇𝑂𝑋𝑗  represents one of the four core regression specifications that 

we consider (see below) with coefficients (𝛽𝑐𝑇𝑇𝑂) and variables (𝑋𝑗) representing the valuation of the different 

dimensions and levels; 𝜀𝑖𝑗 is the error term. 

Dependent variable 

Disutilities rather than utilities were estimated as dependent variable [11]. Disutility is defined as the deviation in 

utility from the full health state with utility value 1. The reason for this choice is that utility values can be both 

positive and negative – they range from -1 to 1 – which complicates the estimation of coefficients. Disutility, on 

the other hand, is always positive and ranges from 0 to 2. Note that we treat the dependent variable as a 

continuous variable even though this is in reality not the case as respondents can only give 41 distinct values [6]. 

Four core regression specifications 

Generally, there are four main regression specifications to model EQ-5D-5L value sets [4-7]. All specifications 

are made up of the same 20 binary variables, but of a different set of estimated coefficients. For each of the five 

dimensions – i.e. mobility (𝑀𝑂), self-care (𝑆𝐶), usual activities (𝑈𝐴), pain/discomfort (𝑃𝐷), anxiety/depression 

(𝐴𝐷) –, four binary variables were defined (𝑥𝑑𝑙) indicating whether or not the health state is characterized by a 

problem on dimension 𝑑 at level 𝑙 – i.e. levels 2, 3, 4 or 5, with level 1 being the reference level. 

Additive 20-coefficients model (ADD20). One coefficient (𝛽𝑑𝑙) for each binary variable or a different disutility 

associated with each combination of dimension 𝑑 and level 𝑙. The ADD20 is the most flexible specification with 

the highest number of estimated coefficients and can be mathematically described as follows [4, 12]: 
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𝛽𝑐𝑇𝑇𝑂𝑋𝑗 = ∑ ∑ 𝛽𝑑𝑙𝑥𝑑𝑙
𝑙

= 𝛽𝑀𝑂2𝑥𝑀𝑂2 + 𝛽𝑀𝑂3𝑥𝑀𝑂3 + 𝛽𝑀𝑂4𝑥𝑀𝑂4 + 𝛽𝑀𝑂5𝑥𝑀𝑂5   
𝑑

+  𝛽𝑆𝐶2𝑥𝑆𝐶2 + 𝛽𝑆𝐶3𝑥𝑆𝐶3 + 𝛽𝑆𝐶4𝑥𝑆𝐶4 + 𝛽𝑆𝐶5𝑥𝑆𝐶5

+  𝛽𝑈𝐴2𝑥𝑈𝐴2 + 𝛽𝑈𝐴3𝑥𝑈𝐴3 + 𝛽𝑈𝐴4𝑥𝑈𝐴4 + 𝛽𝑈𝐴5𝑥𝑈𝐴5

+ 𝛽𝑃𝐷2𝑥𝑃𝐷2 + 𝛽𝑃𝐷3𝑥𝑃𝐷3 + 𝛽𝑃𝐷4𝑥𝑃𝐷4 + 𝛽𝑃𝐷5𝑥𝑃𝐷5

+ 𝛽𝐴𝐷2𝑥𝐴𝐷2 + 𝛽𝐴𝐷3𝑥𝐴𝐷3 + 𝛽𝐴𝐷4𝑥𝐴𝐷4 + 𝛽𝐴𝐷5𝑥𝐴𝐷5 

(2) 

The remaining three specifications are multiplicative models, which are more restrictive, i.e. with fewer 

coefficients. Given their nonlinear nature, they are less frequently used [4, 5, 13]. 

Multiplicative 8-coefficients model (MULT8). There is one coefficient for each dimension (𝛽𝑑), and one 

coefficient for each severity level (𝐿𝑙) with level 1 and level 5 standardized at 0 and 1, respectively. The 

multiplication of a dimension and a level coefficient gives the disutility associated with each combination of 

dimension and level; 

The dimension coefficient should be interpreted as the disutility of having a problem on dimension 𝑑 at level 5. 

The level coefficients have a value between 0 and 1 and indicate the disutility for level 𝑙 in proportion to level 5. 

There are coefficients for levels 2, 3 and 4, with levels 1 and 5 standardized at a value of, respectively, 0 and 1. It 

is assumed that the relative distance between the levels is identical for all dimensions. The mathematical 

formulation of the MULT8 specification is as follows: 

𝛽𝑐𝑇𝑇𝑂𝑋𝑗 = ∑ (∑ 𝛽𝑑𝑥𝑑𝑙
𝑑

)
𝑙

𝐿𝑙

= (𝛽𝑀𝑂𝑥𝑀𝑂2 +  𝛽𝑆𝐶𝑥𝑆𝐶2 + 𝛽𝑈𝐴𝑥𝑈𝐴2 + 𝛽𝑃𝐷𝑥𝑃𝐷2 + 𝛽𝐴𝐷𝑥𝐴𝐷2)𝐿2

+ (𝛽𝑀𝑂𝑥𝑀𝑂3 + 𝛽𝑆𝐶𝑥𝑆𝐶3 + 𝛽𝑈𝐴𝑥𝑈𝐴3 + 𝛽𝑃𝐷𝑥𝑃𝐷3 + 𝛽𝐴𝐷𝑥𝐴𝐷3)𝐿3

+ (𝛽𝑀𝑂𝑥𝑀𝑂4 + 𝛽𝑆𝐶𝑥𝑆𝐶4 + 𝛽𝑈𝐴𝑥𝑈𝐴4 + 𝛽𝑃𝐷𝑥𝑃𝐷4 + 𝛽𝐴𝐷𝑥𝐴𝐷4)𝐿4

+ (𝛽𝑀𝑂𝑥𝑀𝑂5 + 𝛽𝑆𝐶𝑥𝑆𝐶5 + 𝛽𝑈𝐴𝑥𝑈𝐴5 + 𝛽𝑃𝐷𝑥𝑃𝐷5 + 𝛽𝐴𝐷𝑥𝐴𝐷5) 

(3) 

Multiplicative 9-coefficients model (MULT9) extends the MULT8 specification with one additional coefficient, 

𝐿5. This coefficient allows to make a distinction at level 5 between the dimensions mobility, self-care and usual 

activities on the one hand and pain/discomfort and anxiety/depression on the other hand. The reason for this 

distinction is the difference in wording of level 5 in the different dimensions, described as “unable to” in the 

former three dimensions and “extreme” in the latter two dimensions. Hence, in MULT9, it is assumed that the 

relative distance between levels 1 to 4 is identical for all dimensions, but might differ between levels 4 and 5 for 

the first three and the last two dimensions. The mathematical formulation of the MULT9 specification is as 

follows: 

𝛽𝑐𝑇𝑇𝑂𝑋𝑗 = (𝛽𝑀𝑂𝑥𝑀𝑂2 +  𝛽𝑆𝐶𝑥𝑆𝐶2 + 𝛽𝑈𝐴𝑥𝑈𝐴2 + 𝛽𝑃𝐷𝑥𝑃𝐷2 + 𝛽𝐴𝐷𝑥𝐴𝐷2)𝐿2

+ (𝛽𝑀𝑂𝑥𝑀𝑂3 + 𝛽𝑆𝐶𝑥𝑆𝐶3 + 𝛽𝑈𝐴𝑥𝑈𝐴3 + 𝛽𝑃𝐷𝑥𝑃𝐷3 + 𝛽𝐴𝐷𝑥𝐴𝐷3)𝐿3

+ (𝛽𝑀𝑂𝑥𝑀𝑂4 + 𝛽𝑆𝐶𝑥𝑆𝐶4 + 𝛽𝑈𝐴𝑥𝑈𝐴4 + 𝛽𝑃𝐷𝑥𝑃𝐷4 + 𝛽𝐴𝐷𝑥𝐴𝐷4)𝐿4

+ (𝛽𝑀𝑂𝑥𝑀𝑂5 + 𝛽𝑆𝐶𝑥𝑆𝐶5 + 𝛽𝑈𝐴𝑥𝑈𝐴5) + (𝛽𝑃𝐷𝑥𝑃𝐷5 + 𝛽𝐴𝐷𝑥𝐴𝐷5)𝐿5 

(4) 

Multiplicative 11-coefficients model (MULT11). It is assumed that the difference between the first three and the 

last two dimensions not only affects the relative distance between levels 4 and 5 (as is the case for MULT9), but 

the relative distance between all levels. Hence for the two subgroups of dimensions a separate set of level 

coefficients is defined, i.e. 𝐿𝐸𝑙  for the “extreme”-group and 𝐿𝑈𝑙  for the “unable to”-group. As for the MULT8 
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specification, level 1 and level 5 are standardized for each set at 0 and 1, respectively. It can be mathematically 

specified as follows: 

𝛽𝑐𝑇𝑇𝑂𝑋𝑗 = (𝛽𝑀𝑂𝑥𝑀𝑂2 +  𝛽𝑆𝐶𝑥𝑆𝐶2 + 𝛽𝑈𝐴𝑥𝑈𝐴2)𝐿𝑈2 + (𝛽𝑃𝐷𝑥𝑃𝐷2 + 𝛽𝐴𝐷𝑥𝐴𝐷2)𝐿𝐸2

+ (𝛽𝑀𝑂𝑥𝑀𝑂3 + 𝛽𝑆𝐶𝑥𝑆𝐶3 + 𝛽𝑈𝐴𝑥𝑈𝐴3)𝐿𝑈3 + (𝛽𝑃𝐷𝑥𝑃𝐷3 + 𝛽𝐴𝐷𝑥𝐴𝐷3)𝐿𝐸3

+ (𝛽𝑀𝑂𝑥𝑀𝑂4 + 𝛽𝑆𝐶𝑥𝑆𝐶4 + 𝛽𝑈𝐴𝑥𝑈𝐴4)𝐿𝑈4 + 𝛽𝑃𝐷𝑥𝑃𝐷4 + 𝛽𝐴𝐷𝑥𝐴𝐷4)𝐿𝐸4

+ (𝛽𝑀𝑂𝑥𝑀𝑂5 + 𝛽𝑆𝐶𝑥𝑆𝐶5 + 𝛽𝑈𝐴𝑥𝑈𝐴5) + (𝛽𝑃𝐷𝑥𝑃𝐷5 + 𝛽𝐴𝐷𝑥𝐴𝐷5) 

(5) 

As the mathematical formulations in Equations (2) to (5) make clear, the multiplicative specifications are 

constrained variants of the more flexible additive model, with fewer degrees of freedom.  

Each of these four core specifications can be further adjusted: with/without intercept; with/without random 

effects (a respondent-specific component in the error term, that can be interpreted as individual variation around 

the intercept); with/without heteroscedasticity (a correction for increasing variability in reported cTTO values as 

health states worsen); with/without censoring (correction for respondents who would like to value health states 

below the minimum cTTO value capped at -1 by design). 

Modelling DCE valuation 

In the DCE task, respondents compared a pair of health states 𝐴 and 𝐵 and chose the better one, i.e. the health 

state with the higher utility value. These choices give information on the relative preference of one health state 

over another. Contrary to the cTTO valuation, the DCE valuation did not provide direct utility values that are 

anchored to a scale where a value of 1 represents full health and a value of 0 represents dead, but rather relative 

values between levels and dimensions [12]. 

Let us consider the following utilities for health states 𝐴 and 𝐵 in pair 𝑝 evaluated by respondent 𝑖: 

𝑈𝑖𝑝𝐴 <? > 𝑈𝑖𝑝𝐵 (6) 

As for cTTO valuation, disutilities are modelled rather than utilities. The disutilities can be specified in a similar 

way as in Equation (1) using the same four core specification. 

𝐷𝑈𝑖𝑝𝐴 = 1 − 𝑈𝑖𝑝𝐴 = 𝐼 + 𝛽𝐷𝐶𝐸𝑋𝑝𝐴 + 𝜀𝑖𝑝𝐴 <? > 𝐷𝑈𝑖𝑝𝐵 = 1 − 𝑈𝑖𝑝𝐵 = 𝐼 + 𝛽𝐷𝐶𝐸𝑋𝑝𝐵 + 𝜀𝑖𝑝𝐵 (7) 

The comparison of disutilities can be translated in a binary choice variable (𝐶) indicating whether disutility is 

highest for health state A (𝐶 = 1) or for health state B (𝐶 = 0) 

If 𝐷𝑈𝑖𝑝𝐴 − 𝐷𝑈𝑖𝑝𝐵 = 𝛽𝐷𝐶𝐸(𝑋𝑝𝐴 − 𝑋𝑝𝐵) + (𝜀𝑖𝑝𝐴 − 𝜀𝑖𝑝𝐵) > 0  then 𝐶𝑖𝑝 = 1 (8) 

Else if 𝐷𝑈𝑖𝑝𝐴 − 𝐷𝑈𝑖𝑝𝐵 = 𝛽𝐷𝐶𝐸(𝑋𝑝𝐴 − 𝑋𝑝𝐵) + (𝜀𝑖𝑝𝐴 − 𝜀𝑖𝑝𝐵) ≤ 0  then 𝐶𝑖𝑝 = 0  

The DCE model uses this binary choice variable 𝐶𝑖𝑝 as dependent variable, while difference between the binary 

dimension-level variables for health states A and B are used as independent variables. Under the assumption that 

the errors follow an extreme value distribution, the coefficients can be estimated by a logit model.  

Note that by taking the difference between health states A and B, the intercept has disappeared, because we 

assumed that the intercept is the same for all health states (see Equation (1)). If the intercept is significant, this 

would signify that there is a systematic disutility difference between health states selected as choice A and health 

states selected as choice B, i.e. that the intercept in health state A is significantly different from the intercept in 

health state B [6].  
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For the DCE valuation, the four core specifications are estimated without correction for heteroscedasticity and 

random effects (it can be shown that the random effect cancels out as was the case for the intercept). By design, 

the DCE data are not censored. 

Hybrid model 

In order to maximize the available information in the estimation and hence improve accuracy, a hybrid model 

can be used to estimate simultaneously a single set of coefficients on the cTTO and DCE data. For a detailed 

description of the hybrid model, we refer the interested reader to Ramos-Goñi et al. [14]. The hybrid model has 

been frequently selected as final model to generate EQ-5D-5L utility values [12, 15-19]. 

The main underlying assumption in the hybrid model is that the coefficients in the DCE model (𝛽𝐷𝐶𝐸) can be 

rescaled to match the coefficients from the cTTO model (𝛽𝑐𝑇𝑇𝑂). Following Ramos-Goñi et al. [14], 

proportionality between both coefficients is assumed, or put differently, the same scaling parameter applies to all 

coefficients: 

𝛽𝐷𝐶𝐸 =
𝛽𝑐𝑇𝑇𝑂

𝜃
  𝛽𝐻𝑌𝐵 = 𝛽𝑐𝑇𝑇𝑂 = 𝛽𝐷𝐶𝐸𝜃  (9) 

Although the coefficients from the hybrid model (𝛽𝐻𝑌𝐵) are estimated on both cTTO and DCE data, they have 

exactly the same interpretation as the coefficients from the cTTO model in terms of utility decrements on a scale 

where value 1 represents full health and value 0 represents dead. Moreover the rescaling parameter 𝜃 can also be 

used to rescale coefficients from a DCE-only model and make them more comparable to the coefficients from 

the cTTO-only or hybrid model. 

The cTTO part of the hybrid model can be specified in various ways – with/without random effect, intercept, 

correction for heteroscedasticity, censoring etc., while the DCE part of the hybrid model is specified without 

constant term. Of course the same core regression specification – ADD20, MULT8, MULT9, or MULT11 – 

were applied to both the cTTO and DCE part of the hybrid model.  
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ESM4 – Model selection criteria 

A large range of regression models were evaluated and compared with the aim to select one final 

model that is best able to predict utility values for all health states defined by the EQ-5D-5L 

descriptive system based on the cTTO and DCE responses for a small set of these health states. Model 

selection was based on logical consistency of the coefficient estimates, goodness of fit, predictive 

accuracy and theoretical considerations.  

In a first stage, logical consistency, goodness of fit and predictive accuracy were assessed for the 

models using only cTTO data to get a ranking of best potential specifications. In a second stage, 

theoretical considerations as well as the results from the DCE regression models were used to consider 

the use of a censored model and/or a hybrid model. 

Logical consistency 

The estimated coefficients of the final model must be logically consistent. Coefficients are considered logically 

consistent if the disutility in a health dimension does not decrease with the severity level. This implies the 

following: 

• ADD20-model: 𝐼 ≥ 0 and for all dimensions (𝑑) 𝛽𝑑5 ≥ 𝛽𝑑4 ≥ 𝛽𝑑3 ≥ 𝛽𝑑2 ≥ 0 

• MULT8-model: 𝐼 ≥ 0, for all dimensions (𝑑) 𝛽𝑑 > 0, and for the levels 1 ≥ 𝐿4 ≥ 𝐿3 ≥ 𝐿2 ≥ 0 

• MULT9-model: 𝐼 ≥ 0, for all dimensions (𝑑) 𝛽𝑑 > 0, and for the levels min (1, 𝐿5) ≥ 𝐿4 ≥ 𝐿3 ≥ 𝐿2 ≥ 0 

• MULT11-model: 𝐼 ≥ 0, for all dimensions (𝑑) 𝛽𝑑 > 0, and for the levels 1 ≥ 𝐿𝑈4 ≥ 𝐿𝑈3 ≥ 𝐿𝑈2 ≥

0; 1 ≥ 𝐿𝐸4 ≥ 𝐿𝐸3 ≥ 𝐿𝐸2 ≥ 0 

Goodness of fit 

Goodness of fit refers to the ability of an estimated model to fit the observed data. It was evaluated using the 

mean absolute error (MAE), a frequently used measure for predictive accuracy, and the Bayesian information 

criterion (BIC), a measure that combines goodness of fit and model complexity [20, 21]. The goodness of fit of 

the estimated regression models was evaluated by first ranking the models by their performance on each measure 

(MAE and BIC) and then summing up both ranks.  

The mean absolute error is computed as the average of the sum of the absolute values of the difference between 

the predicted and observed utility value for a health state (see Equation (10)). Note that the MAE was not 

assessed at the observation level (i.e. a health state evaluated by a respondent), but at the population mean of the 

health state, as population-level health state utilities are the main outcome of the data analysis. Therefore, in the 

computation of the MAE, the weighted average observed utility of a health state is compared to the predicted 

value derived from the regression model. A lower MAE is favoured as it indicates a better match between 

observed and predicted population values. 
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𝑀𝐴𝐸𝑀 =
1

𝑁
∑ |

∑ 𝑤𝑖𝑈𝑖𝑗𝑖

∑ 𝑤𝑖𝐼𝑖𝑗𝑖

− 𝑈̂𝑀𝑗|

𝑗

 
(10) 

Where 𝑀𝐴𝐸𝑀 is the MAE value of regression model M; 𝑁 equals the number of observed health states that are 

taken into account in the computation of the MAE, i.e. 86 health states in case of the cTTO data; 𝑤𝑖  is the 

population weight of respondent 𝑖; 𝐼𝑖𝑗  is a dummy indicating that respondent 𝑖 evaluated health state 𝑗; 𝑈𝑖𝑗  is the 

utility and disutility related to health state 𝑗 reported by respondent; and 𝑈̂𝑀𝑗 represent the predicted utility value 

for health state 𝑗 based on the estimated coefficients in regression model 𝑀. 

The ability of the model to have a good fit with the data is important, but a narrow focus on goodness of fit may 

be misleading as the inclusion of additional coefficients always increases a model’s fit. An over-fitted model is, 

however, not able to distinguish the factors driving the utility values from random variation and does not 

produce trustworthy predictions. Therefore, also a second measure was used, the Bayesian information 

criterion. It presents a trade-off between the goodness fit of the model (evaluated by the likelihood value) and 

the complexity or parsimony of the model (evaluated by the number of estimated parameters) and reduces the 

risk of selecting overfitted models. A model with a lower BIC value is preferred and reflects a better fit and/or 

fewer estimated coefficients. Only models using the same input data can be compared to each other using the 

BIC value. Hence, for example cTTO models and hybrid models cannot be compared [10, 19]. The BIC is 

related to another often used measure, the Akaike's information criterion (AIC), but the BIC penalizes more 

heavily for additional parameters [20]. 

𝐵𝐼𝐶𝑀 = −2 ln(𝐿𝑀) + 𝑘𝑀𝑙𝑛(𝑛) (11) 

 

Where 𝐵𝐼𝐶𝑀 is the BIC of regression model 𝑀; ln(. ) is the natural logarithm function; 𝐿𝑀 is the likelihood value 

of regression model 𝑀; 𝑘 is the number of estimated coefficients of regression model 𝑀; and 𝑛 is the number of 

observations used in the estimation. 

Predictive accuracy 

The ability of a model to predict unobserved values is a vital element of the model’s performance and thus 

predictive accuracy is considered a more important selection criterion than goodness of fit. 

Cross-validation techniques were used to assess the predictive accuracy of the cTTO-only models. In this case, 

the modelling data were split into two parts: a training set and a validation set. First, the regression model was 

fitted on the training data. Next, out-of-sample utility values were predicted for health states that were withheld 

from the training data but observed in the validation set. Finally, the MAE was calculated for these health states 

(see above). In addition, the logical consistency of each of the fitted models in the cross-validation was assessed. 

Based on Rand-Hendriksen et al. [4], three different cross-validations were used, using a different split between 

training and validation data.  

1. Leave-one-state-out: one health state was left out of the modelling dataset to create a training dataset with 

85 health states and to predict the utility of the left-out state. Hence, the majority of the data was available to 

fit the model. This subdivision was replicated 86 times, sequentially removing each of the observed health 



13 
 

states once. The final MAE value for the leave-one-state-out cross-validation is the average of the MAE 

resulting from the 86 replications. 

2. Leave-one-block-out: in the cTTO task, the evaluated health states were grouped in ten blocks, randomly 

assigned to the respondents. Hence health states in a particular block were all valued by the same set of 

individuals and are not fully independent. In case only one state is left out, information on how these 

respondents valued other health states was still observed in the training data potentially increasing the 

accuracy of out-of-sample predictions. Therefore a second cross-validation technique consisted in 

sequentially leaving out each of the ten blocks of health states to create the training data, effectively reducing 

the data available for model fitting by about 10%. For each of the 10 replications, this procedure removed all 

information of a subset of respondents. The MAE was not calculated for all health states in the left out block, 

as the worst state (55555) was included in all blocks and the mildest health state (with misery index 6) was 

included in at least one other block. Hence, the predictions for these states were not assessed. The final MAE 

value for the leave-one-block-out cross-validation is the average of the MAE resulting from the 10 

replications. 

3. Leave-random-block-out: the downside of the leave-one-block-out cross-validation is that it can only be 

replicated 10 times. Therefore, a third cross-validation was carried out, in which new blocks were randomly 

generated. Using random Latin squares, the original 10 blocks were mixed to create 10 new random pseudo-

blocks so that each new pseudo-block consisted of one health state from each of the original blocks, including 

the worst state and one of the 5 mildest states. This process of creating new blocks was replicated 10 times, 

leading to 100 pseudo-blocks that can be sequentially left out. As in the leave-one-state-out cross-validation, 

this technique does not lead to the exclusion of full interviews. The final MAE value for the leave-random-

block-out cross-validation is the average of the MAE resulting from the 100 replications. 

The predictive accuracy of the estimated regression models was evaluated by summing up the MAE resulting 

from each of the three different cross-validation techniques and next ranking the models from low to high on the 

combined MAE. 

Theoretical considerations 

Some model features may be desirable from a theoretical point of view, but may reduce the model’s performance 

in terms of predictive accuracy or goodness of fit as measured above. We attempt to substantiate the choices 

based on theoretical considerations with suggestive evidence. These choices relate to the need to correct for 

heteroscedasticity, the presence of censored data and the use of the hybrid model. 

1. Heteroscedasticity. A feature found in several valuation studies is that the variability in reported utility 

values increases with worsening health states. This is indicative of heteroscedasticity in the data and can be 

taken into account by modelling the variance of error term.  

2. Censored data. The minimum reported cTTO utility value is capped at -1 by design. It is possible that some 

respondents would like to value certain health states even lower. If that is the case, the (dis)utility values are 

censored, i.e. we observe a capped value instead of the real value.  
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While there are arguments in favor of censoring, and a number of valuation studies have accounted for it, it 

is impossible to discern from the data whether or not respondents want to value health states lower than they 

currently do when given the opportunity. Alternative explanations exists. One possibility is that respondents 

are (nearly) indifferent between health states once a critical level of ill health is reached and hence might 

value multiple health states at the lowest possible utility value of -1.  

The possible censored nature of the data can be taken into account in the estimation. This would deliberately 

lead to a lower valuation of the more severe health states than observed and reduce the performance of the 

model in terms of goodness of fit or predictive accuracy. Hence, the choice to correct for censoring is typically 

a theoretical consideration. Nonetheless, as DCE data are uncensored by design, a comparison of results from 

DCE-only and cTTO-only models can give some further indication.Hence, the level of between both can 

provide suggestive evidence on the need for treating the cTTO data as censored. Versteegh et al. [21] propose 

to explore the “DCE fit”, i.e. the mean absolute difference between the utility values for all 3125 health states 

predicted by a DCE-only model and those generated by a cTTO-only model once with and once without 

censoring. To generate the DCE value set, the rescaling factor 𝜃 from the hybrid model with the same core 

specification was used to make both value set more comparable. The cTTO-only model (censored or 

uncensored) with the lowest DCE fit is preferred and steers the choice for censoring. 

3. The hybrid model. The hybrid model has been proposed as a pragmatic compromise to combine stated 

preferences from cTTO and DCE valuation techniques and increase precision [10, 16, 18, 22]. The hybrid 

model has been selected in multiple recent valuation studies as preferred model [12, 13, 15-19, 23-30].  

While the desirability of the hybrid model is difficult to assess, we do argue that it can be of added value 

when the same value-function underlies the responses in both cTTO and DCE. In case strong agreement 

between the results from the DCE-only and cTTO-only model was found, this would justify the use of the 

hybrid model. 
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ESM5 – Distribution of cTTO values 

The distribution of observed cTTO values is presented in Fig. 3. The full range of potential cTTO values was 

observed in the data. Overall 25.2% of cTTO values were valued worse than dead. About 9.1% of the cTTO 

tasks resulted in the lowest possible value of -1, indicating that respondents exhausted all available lead time. 

161 respondents (18%) valued multiple heath states at -1.  

Clustering was also observed for other key values, such as 0.5, 0.95 and 1. About 9.5% and 9.9% of the 

responses have a cTTO value of 1 and 0.95, respectively, implying no or a very limited willingness to trade-off 

life-years to avoid health problems. Fig. 3 further indicates digit preference among respondents with a higher 

proportion of responses for round numbers. Responses at -0.5, 0 and 0.5 represent, respectively, 2.8%, 3.6% and 

7.4% of all observations. 

Fig. 3  Distribution of observed cTTO values 

 

The results in Fig. 3 mask important variation observed in the valuation of health states. Not only the worst state 

that was valued at -1 nor did only mild health states receive a value of 1. The individual variation in cTTO 

values by health states is presented in Fig. 4. A higher percentage of responses for a specific combination is 

visualized by the size and transparency of the bubble. Positive values are presented in green, negative values in 

red and a value of 0 in grey. For the 5 mildest health states, the cTTO values are heavily concentrated at 1 or 

0.95, with a high level of agreement between the respondents. The divergence in preferences gradually increases 

and from severity 11 onwards, health states systematically receive negative valuations, while below this 

threshold, negative values occur sporadically. At severity level 17 or higher, a lower share of high cTTO values 

is observed (between 0.5 and 1). 
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Fig. 4  Distribution of observed cTTO values for the 86 health states 

 

Interviewer effects 

In spite of a strict interview protocol, quality control process and training of the interviewers, differences in the 

cTTO valuation between interviewers were observed.  

Fig. 5 presents the difference in cTTO valuation at the interviewer level. Each interviewer is represented by a 

unique symbol while the color of the symbol is related to the number of conducted interviews.  

The results indicate that there is particularly important variation in the fraction of responses clustered at 1 and 

at -1 and in the fraction of responses valued worse than dead (cTTO value < 0). Fig. 3 showed that at the upper 

end of the distribution, there was a clustering of values at both 0.95 and 1. When taking both values together, the 

results in Fig. 5 indicate much less variability between interviewers in the fraction of responses having one of 

these values. The fraction of responses valued at -1 ranges from 0% to 32% across interviewers, while the 

fraction of negatively valued health states ranges from 4% to 50%. The upper and lower ends of the ranges were 

not determined by interviewers with lower numbers of conducted interviews.  
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The fraction of excluded interviews, the fraction of interviews flagged in the feedback modules and the 

percentage of responses clustered at 0.5, 0 or -0.5 appear to be quite consistent across interviewers. 

Summary statistics 

In Table 1, summary statistics (mean, median, variance, p10, p25, p75, p90) are provided for all 86 health states 

of the cTTO valuation as well as the unconscious state. The unconscious state was valued lowest (mean at -

0.454), while the health state with slight problems in walking about and no problems in the other dimensions – 

state 21111 – was valued most closely to full health (mean at 0.958). The 5 mildest states have the highest cTTO 

values, ranging from 0.923 to 0.958. The mean cTTO value for the worst state (55555) and the unconscious state 

are nearly identical, but the variability in valuation is lower for the unconscious state. In addition to these two 

states, 14 other states were negatively valued on average. 
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Fig. 5  Differences in cTTO valuation by interviewer 
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Table 1   Summary statistics for the 86 health states of the cTTO valuation and the unconscious state 

Profile N 
Mean (standard 

error) 
P10 P25 Median P75 P90 Variance Profile N 

Mean (standard 
error) 

P10 P25 Median P75 P90 Variance 

11112 171 0.926 (0.011) 0.85 0.95 0.95 1.00 1.00 0.019 31525 92 0.269 (0.057) -0.70 0.10 0.40 0.60 0.90 0.306 

11121 169 0.945 (0.011) 0.90 0.95 0.95 1.00 1.00 0.020 32314 82 0.444 (0.063) -0.65 0.20 0.65 0.90 0.95 0.328 

11122 89 0.874 (0.026) 0.70 0.90 0.95 1.00 1.00 0.061 32443 96 0.183 (0.066) -1.00 -0.15 0.45 0.65 0.85 0.425 

11211 190 0.941 (0.008) 0.90 0.95 0.95 1.00 1.00 0.011 33253 82 0.177 (0.072) -0.90 -0.50 0.45 0.70 0.90 0.424 

11212 88 0.896 (0.017) 0.75 0.90 0.95 1.00 1.00 0.027 34155 96 -0.247 (0.061) -1.00 -0.90 -0.10 0.30 0.50 0.358 

11221 93 0.892 (0.023) 0.75 0.85 0.95 1.00 1.00 0.046 34232 89 0.560 (0.050) 0.00 0.50 0.70 0.85 0.95 0.221 

11235 93 0.265 (0.065) -1.00 0.00 0.50 0.75 0.85 0.385 34244 88 -0.061 (0.063) -1.00 -0.55 0.00 0.40 0.80 0.371 

11414 79 0.428 (0.063) -0.60 0.30 0.60 0.80 0.95 0.317 34515 93 0.005 (0.069) -1.00 -0.70 0.20 0.55 0.70 0.431 

11421 92 0.828 (0.020) 0.60 0.75 0.85 0.95 1.00 0.037 35143 79 0.236 (0.066) -0.90 0.00 0.45 0.65 0.80 0.347 

11425 94 0.376 (0.055) -0.55 0.20 0.50 0.80 0.95 0.285 35245 93 -0.151 (0.065) -1.00 -0.90 0.00 0.40 0.65 0.391 

12111 182 0.923 (0.013) 0.80 0.95 0.95 1.00 1.00 0.030 35311 89 0.670 (0.041) 0.25 0.55 0.80 0.90 1.00 0.146 

12112 88 0.881 (0.019) 0.75 0.85 0.95 0.95 1.00 0.032 35332 94 0.605 (0.043) 0.30 0.50 0.70 0.90 0.95 0.175 

12121 96 0.903 (0.015) 0.75 0.90 0.95 1.00 1.00 0.022 42115 94 0.281 (0.059) -0.60 0.00 0.45 0.70 0.80 0.322 

12244 92 0.219 (0.056) -0.95 0.00 0.35 0.50 0.80 0.291 42321 89 0.670 (0.039) 0.30 0.60 0.80 0.90 0.95 0.134 

12334 82 0.479 (0.063) -0.50 0.40 0.70 0.90 0.95 0.324 43315 89 0.257 (0.065) -0.95 0.05 0.45 0.70 0.90 0.369 

12344 90 0.178 (0.062) -0.80 -0.15 0.35 0.60 0.85 0.336 43514 88 0.150 (0.067) -1.00 -0.10 0.30 0.60 0.80 0.411 

12513 90 0.651 (0.043) 0.20 0.50 0.70 0.95 1.00 0.159 43542 96 0.056 (0.067) -1.00 -0.50 0.35 0.55 0.80 0.434 

12514 93 0.278 (0.065) -0.95 0.00 0.50 0.75 0.90 0.389 43555 89 -0.217 (0.062) -1.00 -0.80 0.00 0.30 0.55 0.334 

12543 96 0.184 (0.064) -1.00 -0.25 0.40 0.60 0.90 0.395 44125 90 0.165 (0.061) -0.95 -0.10 0.30 0.55 0.80 0.319 

13122 94 0.869 (0.013) 0.70 0.80 0.90 0.95 1.00 0.016 44345 90 -0.086 (0.063) -1.00 -0.60 0.00 0.40 0.55 0.341 

13224 89 0.376 (0.061) -0.70 0.20 0.55 0.80 0.90 0.324 44553 88 -0.231 (0.064) -1.00 -0.90 -0.10 0.20 0.50 0.373 

13313 92 0.793 (0.027) 0.50 0.70 0.90 0.95 1.00 0.069 45133 96 0.339 (0.064) -1.00 0.30 0.60 0.75 0.90 0.405 

14113 89 0.681 (0.045) 0.30 0.55 0.80 0.95 1.00 0.180 45144 93 -0.183 (0.066) -1.00 -0.80 0.00 0.30 0.70 0.394 

14554 90 -0.034 (0.061) -1.00 -0.60 0.10 0.40 0.65 0.323 45233 92 0.383 (0.058) -0.80 0.25 0.50 0.75 0.90 0.316 

15151 89 0.131 (0.073) -1.00 -0.50 0.40 0.70 0.85 0.464 45413 94 0.317 (0.057) -0.70 0.15 0.50 0.70 0.90 0.306 

21111 180 0.958 (0.004) 0.90 0.95 0.95 1.00 1.00 0.004 51152 94 0.113 (0.061) -0.90 -0.40 0.30 0.50 0.70 0.347 

21112 90 0.888 (0.022) 0.70 0.80 0.95 1.00 1.00 0.040 51451 93 -0.030 (0.072) -1.00 -0.80 0.15 0.50 0.80 0.467 

21315 89 0.446 (0.062) -0.60 0.25 0.65 0.90 1.00 0.335 52215 96 0.055 (0.066) -1.00 -0.50 0.30 0.50 0.75 0.424 

21334 82 0.441 (0.064) -0.70 0.35 0.70 0.80 0.95 0.338 52335 89 0.121 (0.064) -1.00 -0.50 0.25 0.60 0.80 0.358 

21345 88 -0.002 (0.063) -1.00 -0.50 0.15 0.50 0.70 0.364 52431 89 0.481 (0.059) -0.70 0.40 0.70 0.90 1.00 0.309 

21444 79 0.093 (0.063) -0.95 -0.10 0.25 0.50 0.70 0.317 52455 92 -0.196 (0.058) -1.00 -0.70 0.00 0.20 0.50 0.321 
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Profile N 
Mean (standard 

error) 
P10 P25 Median P75 P90 Variance Profile N 

Mean (standard 
error) 

P10 P25 Median P75 P90 Variance 

22434 94 0.405 (0.052) -0.30 0.30 0.50 0.70 0.90 0.253 53221 90 0.690 (0.039) 0.30 0.60 0.80 0.95 1.00 0.128 

23152 88 0.215 (0.068) -1.00 -0.20 0.50 0.70 0.90 0.427 53243 79 0.170 (0.066) -0.95 -0.05 0.35 0.60 0.80 0.352 

23242 82 0.345 (0.067) -0.90 0.25 0.55 0.75 0.95 0.369 53244 79 -0.042 (0.066) -1.00 -0.60 0.15 0.35 0.60 0.352 

23514 96 0.163 (0.071) -1.00 -0.50 0.50 0.70 0.90 0.489 53412 82 0.498 (0.060) -0.50 0.40 0.65 0.90 0.95 0.295 

24342 82 0.221 (0.066) -0.80 -0.10 0.45 0.65 0.80 0.356 54153 89 0.031 (0.071) -1.00 -0.65 0.15 0.60 0.70 0.446 

24443 89 0.164 (0.067) -1.00 -0.05 0.35 0.60 0.75 0.394 54231 93 0.441 (0.057) -0.55 0.30 0.60 0.80 0.95 0.298 

24445 89 -0.215 (0.062) -1.00 -0.80 0.00 0.25 0.50 0.334 54342 90 0.183 (0.056) -0.70 -0.10 0.30 0.50 0.75 0.270 

24553 94 0.032 (0.061) -0.95 -0.50 0.20 0.50 0.70 0.341 55225 82 0.056 (0.076) -0.95 -0.65 0.20 0.70 0.95 0.478 

25122 92 0.710 (0.034) 0.35 0.60 0.80 0.95 1.00 0.110 55233 92 0.347 (0.062) -0.70 0.20 0.50 0.80 0.95 0.362 

25222 79 0.668 (0.044) 0.35 0.55 0.80 0.90 1.00 0.152 55424 88 -0.060 (0.064) -1.00 -0.65 0.10 0.40 0.60 0.383 

25331 79 0.689 (0.041) 0.40 0.50 0.80 0.95 1.00 0.136 55555 892 -0.453 (0.017) -1.00 -1.00 -0.55 0.00 0.20 0.270 

31514 79 0.264 (0.065) -0.90 0.00 0.40 0.65 0.80 0.342 Unconscious 189 -0.454 (0.035) -1.00 -1.00 -0.50 0.00 0.05 0.233 

31524 89 0.335 (0.065) -0.95 0.20 0.50 0.70 0.95 0.367           
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ESM6 – Selection process and full regression results 

Taking all selection criteria into consideration, the hybrid version of the multiplicative 8-coefficient model with 

intercept for the cTTO data, with random effects and correction for heteroskedasticity was selected as preferred 

model.  

Selection process 

Logical consistency 

For all cTTO-only models as well as the hybrid models, the ADD20 specification had an inconsistent ordering of 

levels 2 and 3 in the usual activities dimension, with disutility of level 2 exceeding disutility of level 3. Also, the 

DCE-only model with the ADD20 specification shows inconsistencies for level 2 and 3 in the dimensions 

mobility and usual activities. The high level of flexibility in the estimation of the coefficients in the ADD20 

models comes at a cost in terms of consistency. Therefore, the ADD20 models as such are not further 

considered. Alternatively, an adjusted version of the ADD20 specification enforcing consistency in the usual 

activities dimension was estimated; in what follows, it is referred to as adjusted-ADD20.  

Illogically ordered coefficients were found in almost none of the multiplicative specifications for the cTTO-only, 

DCE-only and hybrid models estimated on the modelling dataset.  

Goodness of fit 

All cTTO-only models were evaluated in terms of goodness of fit. Table 2 presents the 15 models with the best 

performance, ordered by the sum of the ranks in BIC value and MAE value. The following conclusions can be 

drawn. 

1. Multiplicative models perform better in terms of BIC, while additive models perform better in terms of MAE.  

2. Models with intercept (12 out of 15 models), random effects (12 out of 15 models) and with correction for 

heteroscedasticity (10 out of 15 models) rank highest and are thus preferred. The inclusion of random effects 

leads in particular to improvements in the likelihood value and hence BIC value, implying that the model is a 

more likely representation of the underlying data. A correction for heteroscedasticity leads to both a better 

BIC and MAE value. The inclusion of an intercept has only a minor effect on the BIC value, but utility values 

predicted by a model with intercept are generally in closer agreement with the observed utility values leading 

to lower MAE value.  

3. Models that accounted for censoring do not perform very well with respect to goodness of fit. This was 

expected as the predicted values of a censored model deliberately deviate from the observed values, under the 

assumption that some respondents would prefer to value certain health states lower than allowed in the cTTO 

valuation.  

Predictive accuracy 

Table 3 presents a summary of the cross-validation results for the 15 cTTO-only models with the lowest sum of 

MAE of the three different techniques. Models that were also among the best performers in terms of goodness of 

fit are indicated in bold. The overlap is substantial with 8 out of 15 models. Models for which 5% or more of the 
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cross-validation estimations showed inconsistent orderings are indicated in red in Table 3. The following 

conclusions can be drawn. 

1. The MULT8 specification with intercept, random effects and correction for heteroscedasticity is the best 

performing model in terms of predictive accuracy, with a high rank in each of the cross-validations. It ranked 

6th in terms of goodness of fit.  

2. Most models in Table 3 have an intercept. The impact of including random effects is less clear, with 8 out of 

15 models having random effects, but 4 of them are ranked in the top 5. Only 5 models in Table 3 correct for 

heteroscedasticity and none for censoring. 

3. The logical consistency of all cross-validation estimations was assessed and revealed a number of 

inconsistencies. Various alternative versions of the adjusted-ADD20 specification had illogically ordered 

coefficients, in particular with regard to levels 2 and 3 as well as 4 and 5 in the self-care dimension and level 

1 and 2 in the pain/discomfort dimension. It was decided to not further enforce consistency in these dimensions 

and to also discard the adjusted-ADD20.  
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Table 2  Evaluation of goodness of fit 

 Specification Options Sum of ranks BIC value BIC rank MAE value MAE rank 

1 Adjusted-ADD20 
Intercept, random effects, correction for 
heteroscedasticity 

11 10 541 7 0.052 4 

2 MULT11 
Intercept, random effects, correction for 
heteroscedasticity 

15 10 513 5 0.055 10 

3 Adjusted-ADD20 
No intercept, random effects, correction for 
heteroscedasticity 

15 10 542 8 0.054 7 

4 MULT9 
Intercept, random effects, correction for 
heteroscedasticity 

21 10 497 2 0.056 19 

5 Adjusted-ADD20 Intercept, random effects 24 10 657 15 0.054 9 

6 MULT8 
Intercept, random effects, correction for 
heteroscedasticity 

24 10 492 1 0.056 23 

7 Adjusted-ADD20 No intercept, random effects 29 10 658 16 0.055 13 

8 Adjusted-ADD20 Intercept, correction for heteroscedasticity 30 12 354 28 0.051 2 

9 MULT11 Intercept, correction for heteroscedasticity 32 12 321 21 0.055 11 

10 MULT8 Intercept, correction for heteroscedasticity 34 12 308 18 0.055 16 

11 MULT11 Intercept, random effects 38 10 638 13 0.057 25 

12 Adjusted-ADD20 
No intercept, random effects, correction for 
heteroscedasticity and censoring 

39 12 390 31 0.054 8 

13 Adjusted-ADD20 
Intercept, random effects, correction for 
heteroscedasticity and censoring 

43 12 390 29 0.054 14 

14 MULT9 Intercept, random effects 45 10 631 10 0.057 35 

15 MULT8 Intercept, random effects 46 10 626 9 0.058 37 

Note: MAE = Mean Absolute Error, BIC = Bayesian Information Criterion  
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Table 3  Evaluation of predictive accuracy 

 
Specification Options Sum of MAE 

MAE state 
out 

rank state 
out 

MAE block 
out 

Rank block 
out 

MAE 
random 
blocks 

Rank 
random 
blocks 

1 MULT8 
Intercept, random effects, correction for 
heteroscedasticity 

0.192 0.062 2 0.066 1 0.064 4 

2 MULT8 Intercept, random effects 0.193 0.063 5 0.066 3 0.064 6 

3 MULT8 Intercept 0.194 0.064 11 0.066 4 0.063 3 

4 Adjusted-ADD20 No intercept, random effects 0.194 0.063 4 0.068 8 0.063 1 

5 MULT9 Intercept, random effects 0.195 0.064 8 0.067 5 0.064 7 

6 MULT9 
Intercept, random effects, correction for 
heteroscedasticity 

0.195 0.062 1 0.068 11 0.065 12 

7 MULT9 Intercept 0.196 0.065 15 0.067 6 0.064 5 

8 Adjusted-ADD20 Intercept, random effects 0.197 0.065 13 0.068 9 0.064 8 

9 Adjusted-ADD20 No intercept 0.197 0.066 19 0.068 12 0.063 2 

10 MULT11 Intercept, random effects 0.197 0.064 12 0.069 14 0.065 11 

11 MULT11 Intercept, correction for heteroscedasticity 0.198 0.064 10 0.066 2 0.068 35 

12 MULT11 Intercept 0.198 0.066 18 0.068 13 0.064 10 

13 MULT8 Intercept, correction for heteroscedasticity 0.198 0.064 7 0.070 17 0.065 16 

14 Adjusted-ADD20 Intercept 0.199 0.066 27 0.068 10 0.064 9 

15 Adjusted-ADD20 
Intercept, random effects, correction for 
heteroscedasticity 

0.200 0.066 24 0.067 7 0.066 22 
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Theoretical considerations 

Additional considerations were used to substantiate the choice to (not) correct for heteroscedasticity, to (not) 

correct for censoring and to (not) use the hybrid model. 

• Heteroscedasticity 

A visual inspection of the variability in the error terms by the predicted values of the estimated models clearly 

showed that the error term is heteroscedastic. An observation that was corroborated by two formal tests of 

heteroscedasticity, the White’s test and the modified Breusch-Pagan test [31]. Both tests were performed for the 

cTTO-only models in each of the four specifications – ADD20, MULT8, MULT9 and MULT11 – using an 

intercept, but without random effects or censoring and confirm the presence of heteroscedasticity (p<0.001).  

Hence, irrespective of the performance in terms of goodness of fit or predictive accuracy, there is a clear 

argument to favour a model that corrects for heteroscedasticity.  

• Censoring 

DCE data are uncensored by design. Under the assumption that responses in the cTTO and DCE task were 

driven by the same underlying preferences, an assessment of the agreement between the predictions of the DCE-

only model and the cTTO-only models with and without correction for censoring, provides suggestive evidence 

on the need of treating the cTTO data as censored.  

Table 4 presents the results of such assessment for the 2 best performing cTTO-only models in term of predictive 

accuracy that account for heteroscedasticity and have a strong goodness of fit. It concerns the MULT8 and 

MULT9 model with intercept, random effects and correction for heteroscedasticity, ranked, respectively, 1st and 

5th for predictive accuracy and 6th and 4th on goodness of fit. Other specifications have also been evaluated (not 

presented here), leading to the same conclusions. 

The DCE fit in Table 4, which was calculated as the mean absolute difference between the utility values of the 

health states predicted by the DCE-only model and the cTTO-only models, indicates that predicted values from 

uncensored cTTO-only models are in better agreement with the predicted values from the DCE-only models than 

the predicted values from censored cTTO-only models. The same conclusion holds when comparing the DCE fit 

of the censored and uncensored hybrid models. This provides suggestive evidence that treating cTTO data as 

censored does not improve the estimation of the underlying preferences and that an uncensored model is 

preferable.  

• Hybrid model 

Fig. 6 demonstrate the high level of correspondence between the predicted values from the uncensored cTTO-

only and DCE-only MULT8 and MULT9 models. The point estimates of the coefficients of the corresponding 

cTTO-only, DCE-only and hybrid models are given in Table 5. The coefficients of the DCE-only models were 

rescaled using the rescaling factor of the hybrid model.  

The preference ranking of the dimensions is consistent between the DCE-only and cTTO-only model. Disutility 

is lowest and not significantly different for the dimensions self-care and usual activities, mobility has a slightly 

higher level of disutility, the disutility associated with anxiety and depression is substantially higher and the most 
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important source of disutility is the dimension pain and discomfort. The results from the MULT8 and MULT9 

model are highly similar. 

The level coefficients are slightly different. In the DCE-only model, there is a higher utility decrement going 

from level 1 to 2 and from level 4 to 5, and a lower decrement moving from level 2 to 3 and from level 3 to 4, 

compared to the results from the cTTO-only model. In both models, the transition from level 3 to 4 is 

accompanied with the sharpest drop in utility. 

The high level of agreement between the cTTO-only and DCE-only results, in particular in the preference 

ranking of the dimensions, warrants the use of a hybrid model in which the coefficients can be estimated with 

higher precision. 

 

Table 4  Evaluation DCE fit 

 MULT8 – intercept, random effects, 

correction for heteroscedasticity 

MULT9 – intercept, random effects, 

correction for heteroscedasticity 

 Not censored cTTO-

only 

Censored cTTO-

only 

Not censored cTTO-

only 

Censored cTTO-

only 

DCE fit 0.040 0.045 0.041 0.045 

Negatively valued 

states (out of 3 125 

states) 

498 (15.9%) 584 (18.7%) 505 (16.1%) 596 (19.1%) 

 

Table 5  Coefficients of cTTO-only, DCE-only and hybrid models of MULT8 and MULT9 with intercept, 

random effects and correction for heteroscedasticity 

MULT8 – intercept, random effects, correction for 

heteroscedasticity 

MULT9 – intercept, random effects, correction for 

heteroscedasticity 

Coefficients cTTO-only DCE-only Hybrid Coefficients cTTO-only DCE-only Hybrid 

𝑰𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕 0.055  0.038 𝑰𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕 0.054  0.037 

𝜷𝑴𝑶 0.214 0.265 0.227 𝛽𝑀𝑂 0.210 0.264 0.222 

𝜷𝑺𝑪 0.162 0.199 0.166 𝛽𝑺𝑪 0.161 0.200 0.169 

𝜷𝑼𝑨 0.160 0.200 0.181 𝛽𝑼𝑨 0.157 0.200 0.179 

𝜷𝑷𝑫 0.476 0.507 0.482 𝛽𝑷𝑫 0.455 0.491 0.456 

𝜷𝑨𝑫 0.438 0.456 0.439 𝛽𝑨𝑫 0.416 0.443 0.415 

𝑳𝟐 0.100 0.178 0.139 𝑳𝟐 0.102 0.184 0.144 

𝑳𝟑 0.254 0.236 0.258 𝑳𝟑 0.268 0.242 0.266 

𝑳𝟒 0.847 0.706 0.788 𝑳𝟒 0.885 0.726 0.824 

    𝑳5 1.056 1.037 1.061 

 

MULT9 not statistically different from MULT8 

The distinguishing factor between the MULT8 and MULT9 specification is the 𝐿5 coefficient relaxing the 

proportionality assumption between the levels in all dimensions by allowing the level 5 coefficient in the 

dimensions pain/discomfort and anxiety/depression to differ from the level 5 coefficient in the dimensions 
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mobility, self-care and usual activities. The level 5 coefficient for the latter three dimensions is standardized at 1. 

In other words, the MULT8 specification can be seen as a special case of the MULT9 model with 𝐿5 constrained 

to 1. As can be seen in Table 5, the 𝐿5 coefficient is, only marginally different from 1. A likelihood ratio test on 

the cTTO-only, DCE-only and hybrid models does not reject the null hypothesis (at p<0.05) that the 

constrained MULT8 model provides as good a fit for the data as the more flexible MULT9 model. In addition, a 

Wald test indicates that the 𝐿5 coefficient is not statistically different from 1 in the cTTO-only, DCE-only and 

hybrid model (at p<0.05).  
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Fig. 6  Agreement between DCE predicted values and cTTO predicted values for the 86 health states used in the valuation 1 

A. MULT8 specification – intercept, random effects, correction for 

heteroscedasticity, not censored 

B. MULT9 specification – intercept, random effects, correction for 

heteroscedasticity, not censored 

  
Note: The diagonal is presented by the red line and indicates an equal value for predictions from DCE-only and cTTO-only models. The dashed black line is the linear 2 

regression line between the values from the cTTO-only and DCE-only values. The R-value is the correlation between both values. 3 
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Full regression results 

Table 6  Coefficients and bootstrapped standard errors of the preferred model  

 Preferred model  

 Coefficient 

value 

Standard 

error 
T-statistic P value  

Model      

𝑰𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕 (cTTO part only) 0.038 0.0148 2.55 0.0054  

𝜷𝑴𝑶 0.227 0.0102 22.19 <0.0001  

𝜷𝑺𝑪 0.166 0.0108 15.32 <0.0001  

𝜷𝑼𝑨 0.181 0.0098 18.37 <0.0001  

𝜷𝑷𝑫 0.482 0.0138 34.84 <0.0001  

𝜷𝑨𝑫 0.439 0.0132 33.13 <0.0001  

𝑳𝟐 0.139 0.0154 9.02 <0.0001  

𝑳𝟑 0.258 0.0158 16.34 <0.0001  

𝑳𝟒 0.788 0.0157 50.26 <0.0001  

Heteroscedasticity (𝐥𝐧 𝝈𝒓𝒆𝒔)      

𝑰𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕 -1.158 0.0665 -17.41 <0.0001  

𝜷𝑴𝑶 0.095 0.0340 2.78 0.0027  

𝜷𝑺𝑪 0.040 0.0324 1.25 0.1064  

𝜷𝑼𝑨 0.027 0.0301 0.90 0.1833  

𝜷𝑷𝑫 0.123 0.0346 3.54 0.0002  

𝜷𝑨𝑫 0.148 0.0489 3.03 0.0013  

𝑳𝟐 -0.204 0.2190 -0.93 0.1764  

𝑳𝟑 0.695 0.2439 2.85 0.0022  

𝑳𝟒 1.229 0.3153 3.90 <0.0001  

Rescaling factor       

𝐥𝐧(𝜽) -0.727 0.0209 -34.83 <0.0001  

Notes: MO = Mobility, SC = Self-care, UA = Usual activities, PD = Pain/discomfort, AD = 

Anxiety/depression; 𝐿𝑥 = Severity level 𝑥; cTTO = composite time trade-off. Standard errors of the 

coefficients were derived using the Rao-Wu bootstrap with 1000 replications [1].  

 

Comparison with competing models 

Table 7 presents a summary of key characteristics of the value set and of competing models that ranked high 

throughout the selection process, showing little divergence between the value sets. The highest impact relates to 

the choice of a hybrid model, i.e. changed preference ranking of the dimensions self-care and usual activities, and 

censoring, i.e. a higher fraction of negative values in censored models. 
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Table 7  Comparison of key characteristics of the value sets produced by different high-performing models 

 Preferred 

model 

cTTO-only 

MULT8, 

intercept, random 

effects, correction 
for 

heteroskedasticity  

cTTO-only 

MULT8, 

intercept, random 

effects, correction 
for censoring and 

heteroskedasticity  

hybrid MULT8, 

intercept, random 

effects, correction 

for censoring and 

heteroskedasticity  

hybrid MULT9, 

intercept, random 

effects, correction 

for 

heteroskedasticity  

hybrid ADD20, 

enforced logical 

consistency, 

intercept, random 
effects, correction 

for 

heteroskedasticity  

% health states 

valued worse than 
dead 

15.0% 15.9% 18.7% 18.0% 15.2% 15.3% 

Preference ranking of 

dimensions  

(ordered from highest 

to lowest utility loss 
at level 5) 

PD 

AD 

MO 

UA 

SC 

PD 

AD 

MO 

SC 

UA 

PD 

AD 

MO 

SC 

UA 

PD 

AD 

MO 

UA 

SC 

PD 

AD 

MO 

UA 

SC 

PD 

AD 

MO 

UA 

SC 

Minimum value  

(state 55555) 

-0.532 -0.505 -0.606 -0.630 -0.531 -0.526 

Maximum value  

(except full health) 

0.939  

(state 12111) 

0.929 

(state 11211) 

0.935 

(state 11211) 

0.950 

(state 12111) 

0.939 

(state 12111) 

0.954 

(states 11211, 
11311) 

Notes: MULT8 = multiplicative 8-coefficients model; MULT9 = multiplicative 9-coefficientys model; 

ADD20 = additive 20-coefficients model; cTTO = composite time trade-off; MO = Mobility, SC = Self-

care, UA = Usual activities, PD = Pain/discomfort, AD = Anxiety/depression.  
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ESM 7 – Variable definitions Belgian EQ-5D-5L value set 

The Belgian EQ-5D-5L value set can be found in CSV format in a separate attachment. Information on the variable 

definitions is given in the Table below. 

 

Table 8  Variable definition value set 

Variable name Type Definition 

state Numeric EQ-5D-5L code of the health state. The code consists of 5 digits, where each digit 

represents the severity level of a dimension. By convention, the order of 

dimensions is mobility, self-care, usual activities, pain/discomfort and 

anxiety/depression. 

state_string Character EQ-5D-5L code of the health state as string (see above) and additionally the label 

“unconscious” for the state of unconsciousness.  

value Numeric Utility value related to the EQ-5D-5L health state. Utility values are expressed 

on a scale where 0 is the value for ‘dead’ and 1 is the value for ‘full health’. 

Negative values are possible for health states considered worse than dead. 

mo Numeric The severity level of dimension mobility. 

sc Numeric The severity level of dimension self-care. 

ua Numeric The severity level of dimension usual activities. 

pd Numeric The severity level of dimension pain/discomfort. 

ad Numeric The severity level of dimension anxiety/depression. 
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