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Figure S1. Proteomics analysis of proteins in control and 5-FU-treated Hct116 cells.

A) Cell proliferation analysis of DMSO- or 5-FU-treated Hct116 cells using CCK8 assays.
The OD450 absorbance values were evaluated and normalized to calculate cell proliferation
rates at 0, 24, 48, and 72 h.

B) Visualization of proteins separated by SDS-PAGE (10%) using Coomassie brilliant blue
staining of DMSO- or 5-FU-treated Hct116 cells.
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C) Statistical analysis of total proteins using mass spectrum analysis with two replicates
(Repl/2).

D) Statistical analysis of phosphorylated proteins using mass spectrum analysis with two
replicates (Repl/2). Phosphorylated proteins were enriched by using pan-phosphorylation
antibodies.

E) The number of proteins with different ranges of masses was calculated (Repl as an
example).

F) The protein sequence coverage distributions for detected proteins (Repl as an example).
Over 50% of proteins were covered for less than 20% (0-10%, 32.3%; 10-20%, 20.5%).

G) The protein mass and sequence coverage distributions for detected proteins (Repl as an
example).

H) Clustering analysis of detected proteins between DMSO- or 5-FU-treated Hct116 cells
with two replicates for each group.

I) Protein sequence preference for the upstream (-6) or downstream (+6) of phosphorylated
Ser and Thr.
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Figure S2. Analysis of differentially expressed proteins upon 5-FU treatment.

A-B) Gene ontology (GO) (A) and KEGG pathway (B) analysis of differentially expressed
proteins upon 5-FU treatment (FC > 2).

C-D) Gene ontology (GO) (C) and KEGG pathway (D) analysis of differentially
phosphorylated proteins upon 5-FU treatment (FC > 2).



Figure S3

WILEY-VCH

ZTEPNLS XREN linker linker  P2ASV40 NLS
ASA-BES W]Imtt-

P2A, SV40 NLS

i

oot (e [

KTFN linker

2xBPNLS XTFNIInkEr P2A SV40NLS linker Iirkef ZXBTNLS—I%/NNLS

N-Casgn-N- _ C-Intein-C-

CBE-N1.2 IE> Intein D- BE-C1.2 - Castn
BElN\_s P2A x-rtgmmker linker Iirker ZxErNLS-F‘Z/A/-NLS

C-Intein-C-

N-Cas9n-N- -
CBE-N13 ml I I BEC1.3 IE:>\ Cason m:/_
P2A

XTF N linker

linker  P2A SV40 NLS

|
wers Cp{ e Il

B E 1001
) )
A
L')}u 80+
- b
35 LoY0 T P | T 1 TN | R |
e ]
o o 404
c 2 ]
[«}]
28
o
S
[I'S
C
2xTadA*-linker P2A SV40 NLS
ABE7.10 Casdn (D10A)
2xTadA* linker P2A SV40 NLS 2xBPNLS 2xTadA*-linker F\‘ZAISV‘W NLS
D O 1004
2.
<2 807
<z
R O PR P Y Y PR SR STRIFITRRSIRIRRES  INPYPRPITT! B PYFERIPN IRPURIRIRY | TEER
o ®
g g 40+
85 20- i
z O ["|
£ O . N N
00 2\0 ne Nt ,\‘]’ '\r} ,\',5 \'_5
X & < ¢ o o o s
@ & & & & & &
N 0 N s N¢ A
N X N Ne N N-
» » » = » »
0@ é’/ é’/ Q)«’ e@ é(/
¥ A \al Lo Lad ¥

Figure S3. Construction of split-BE system for highly efficient base editing.

A) The schematic diagram showing the structures of full length or split A3A-BE3. Four

versions (CBE-N1.1 to N1.4) of N-terminal part of A3A-BE3 were constructed, all of which
5
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contain human APOBEC3A (hA3A)-Y130F, N-Cas9n (1-573 aa) and N-Intein, with
TurboGFP and NLS located at indicated positions. Three versions (BE-C1.1 to C1.3) of C-
terminal part of A3A-BE3 were constructed, containing C-Intein, C-Cas9n (574-1382 aa), one
or two repeats of UGI, and BFP (or tagBFP).

B) Sanger sequencing analysis of C-to-T conversion efficiencies in HEK293T cells
transfected with indicated combinations of split cytosine base editors.

C) The schematic diagram showing the structures of full length or N-terminal of split ABE.

D) Sanger sequencing analysis of A-to-G conversion efficiencies in HEK293T cells
transfected with indicated combinations of split ABEs. It is worth noticing that the C-terminal

part of split ABE was same to the C-terminal part of split A3A-BE3 in (A).
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Figure S4. Information for split-A3A-BE3 and -ABE library design.
A) Summary for post-translational modification types and corresponding number of
modification sites. The number of modification sites that can be converted into another amino
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acids by using ABE or CBE or both was also presented. The alterations of the characteristics
of amino acids (A, acidic; B, basic; N, neutral) before or after conversions were calculated.

B) The expected conversions of phosphorylated amino acids (S, T, and Y) into other kinds of
amino acids to mimic dephosphorylation or phosphorylation status.

C) The potential conversion results induced by CBE or ABE with 1-4 kinds of codon
conversions.

D) The detailed information for final constructed CBE or ABE libraries. The types of

converted amino acids were calculated.
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Figure S5
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Figure S5. Quality control of constructed libraries.

A) Summary for constructed CBE and ABE libraries, including target sites with a single
gRNA, target sites with 2 or 3 gRNAs, and non-target control gRNAs.

B) Next generation sequencing (NGS) analysis of CBE and ABE libraries. The quality of the
two libraries was evaluated.

C) The read count distributions of each gRNA for CBE and ABE libraries.
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Figure S6. Analysis of gRNA loss upon 5-FU treatment.

A) Top gRNAs that were lost during 5-FU treatment relative to gRNAS expressed in control
Hct16 cells using MAGeCK algorithm (ranked by MAGeCK RPA scores).

B) GO analysis of genes targeted by gRNAs that were significantly lost upon 5-FU treatment.
Two types of GO terms, including biological process (BP) and molecular function (MF), were

presented.
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Figure S7. Analysis of 5-FU-triggered differentially expressed genes.

A) RNA-seq analysis of DMSO- and 5-FU-treated Hct116 cells. Two replicates treated with
DMSO or 5-FU (WT1 and WT2) and two single clones separated from Hct16 cell lines were
subjected to this experiment. Differentially expressed genes (Down and Up) were presented,
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and representative genes were displayed. Gene ontology and KEGG pathway analyses were
also performed, and top enriched terms with P values were shown.
B) Gene set enrichment analysis (GSEA) was performed for upregulated or downregulated

genes elicited by 5-FU treatment.
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Figure S8. Analysis of 5-FU-triggered differentially expressed genes.

A-B) RNA-seq analysis of control Hct116 (WT1 and WT2) cells and RPS6KA6 mutant cells
(two single clones, mutl and mut2) (A) or FAM83H, ZSWIMS, and MISP mutant cells (B).
Differentially expressed genes were shown as a heatmap, and representative genes were

displayed. Gene ontology analysis was performed, and top enriched terms were shown.
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Figure S9. Analysis of FAM83H, ZSWIM8, and MISP mutant cells in responding to 5-
FU treatment.

A) RNA-seq analysis of FAM83H, ZSWIMS8, and MISP mutant cells relative to control
Hct116 cells (WT1 and WT2) with or without 5-FU treatment. The genes were differentially
expressed in control and mutant cells treated with 5-FU. Representative genes were presented.
B) Relative expression (Rel. Exp.) of LCN2, KRT7, TRIM29, and CCNL1 in control Hct116
cells (WT1 and WT2) and FAM83H, ZSWIM8, and MISP mutant cells with or without 5-FU

treatment.
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Figure S10. Expression of RPS6KA3 and PAK4 in pan-cancers.

A) Analysis of PRS6KA3 expression in tumor (T) and normal (N) tissues in pan-cancers using
GEPIAZ2 (http://gepia2.cancer-pku.cn/).

B) Analysis of PRS6KA3 expression in tumor and normal tissues in colorectal cancer.

C) Analysis of PAK4 expression in tumor (T) and normal (N) tissues in pan-cancers using
GEPIA2.

D) Analysis of PAK4 expression in tumor and normal tissues in colorectal cancer.
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Figure S11. Synergistic effect of 5-FU and RSK2 or PAK4 inhibitors.

A-B) IC50 determination for RSK2 inhibitor (RSK2i; BI-D1870) and PAK4 inhibitor
(PAK4i; LCH-7749944) in Hct116 cells for cell growth inhibition.

C) Gating strategy for apoptosis assays using Annexin V-FITC/Pl Apoptosis Detection Kit
(Vazyme). A negative control without Annexin V and Pl staining was presented.
Fluorescence compensation was executed before sample analysis.

D) Cell morphologies for Hct116 cells treated with increasing concentrations of 5-FU, RSK2
inhibitor, or PAK4 inhibitors at 48 h. Cells upon combinational treatment with 5-FU and
RSK2i or PAK4i were also presented.

E) Western blot analysis of y-H2Ax phosphorylation (S139), p-RSK2 (T577), and GAPDH in
control and 5-FU and/or RSK2i- or PAKA4i- treated cells at 24 h.
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Figure S12
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Figure S12. Synergistic effect of 5-FU and clinical RSK2 or PAK4 inhibitors.
A) The growth rate of DLD1 cells was determined upon DMSO or 5-FU (2, 5, 10 uM) at 0,

24, 48, and 96 h.
B) The growth rate of DLD1 cells was determined upon DMSO or RSK2 inhibitors (2, 10, 20

uM) at 0, 24, 48, and 96 h.
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C) The growth rate of DLD1 cells was determined upon DMSO or PAK4 inhibitors (5, 10, 20,
50 uM) at 0, 24, 48, and 96 h.
D) The growth rate of DLD1 cells was determined upon combinational treatment with 5-FU
(2, 5, or 10 uM) and RSK2 inhibitors (2 or 10 uM).
E) The growth rate of DLD1 cells was determined upon combinational treatment with 5-FU
(2, 5, or 10 uM) and RSK2 inhibitors (5, 10, or 20 uM).
(F) Apoptotic analysis of Hct116 cells co-treated with 5-FU (2 or 10 uM) and B1X02565 (20
or 30 uM; a clinical RSK2 inhibitor) or Kpt9274 (30 or 50 uM; an orally bioavailable PAK4
inhibitor). Proportions of early (Annexin V*/PI") or late (Annexin V*/PI") apoptotic cells were
presented.
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Figure S13
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Figure S13. The role of ERK pathway in 5-FU-induced chemoresistance.

A-B) Apoptotic analysis of Hct116 cells (A) or DLD1 cells (B) treated 5-FU (5 uM) or ERK
inhibitor (Ulixertinib; 10 or 20 uM) or their combinations. Proportions of early (Annexin
V*IPI") or late (Annexin V*/PI") apoptotic cells were presented.

C) Working model for RSK2 functions in 5-FU-induced DNA damage and apoptosis as well

as chemoresistance formation.
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