Cell Reports, Volume 41

Supplemental information

Maternal gut microbiota mediate

intergenerational effects of high-fat

diet on descendant social behavior

Claudia M. Di Gesù, Lisa M. Matz, Ian J. Bolding, Robert Fultz, Kristi L. Hoffman, Antonella Marino Gammazza, Joseph F. Petrosino, and Shelly A. Buffington

Supplemental Figure 1 (Di Gesù, Matz et al.)

Figure S1. Four weeks HFD-feeding increases fat mass and shifts gut microbiome composition in female mice. Related to Figure 1. (A) RD- and HFD-fed female total body mass is not significantly different at four weeks on diet (week 0: t(14) = 0.4557, p = 0.9859; week 1: t(12.45) = 1.574, p = 0.4545; week 2: t(9.588) = 1.717, p = 0.3951;

week 4: t(9.979) = 2.504 p = 0.1194). (**B**) No significant differences in lean mass were observed between RD- and HFD-fed females at four weeks on diet (week 0: t(13.94) = 0.2018, p = 0.9994; week 1: t(13.45) = 2.272, p = 0.151; week 2: t(13.76) = 2.451, p = 0.1082; week 4: t(13.26) = 2.451, p = 0.104). (**C**) HFD-fed mice showed a significant increase in fat mass within one week on diet that was sustained at four weeks on diet (week 0: t(12.42) = 0.04358, p > 0.9999; week 1: t(8.111) = 6.061, p = 0.0011; week 2: t(7.51) = 4.518, p = 0.0091; week 4: t(7.634) = 4.287, p = 0.0118) as determined by a mixed-effects model (see Materials and Methods). (**D**) Principal coordinate analysis (PCoA) of Unweighted UniFrac distances from the averaged rarefied 16S rRNA gene amplicon sequencing dataset (3,341 reads/sample, n=1,000 rarefactions) reveal a significant shift in maternal gut microbial ecology within one week on high-fat diet that is maintained at four weeks on diet. (p=0.001, $R^2 = 0.398$). (**E**–**F**) Alpha diversity metrics reveal a statistically significant loss of microbial diversity in HFD compared to RD dams, as measured by (**E**) observed OTUs (t(16) = 3.942, p = 0.0012) and (**F**) Shannon diversity index (t(16) = 4.412, p = 0.0004). (**G**) Phylum-level changes, characterized by a significant increase in the *Firmicutes:Bacteroidetes* ratio are evident after four weeks on diet (Mann-Whitney U = 0, p = 0.0002). Bar graphs show mean ± SEM with individual data points representing biological replicates. N = 8–9 subjects per group.

Supplemental Figure 2 (Di Gesù, Matz et al.)

Whitney U = 57.50, p = 0.0214) and (J) number of contacts (Male MHFD *vs* MRD F₂: t(39) = 1.796, p = 0.0803; Female MHFD *vs* MRD F₂: t(28) = 1.258, p = 0.2188). Bar graphs show mean \pm SEM with individual data points representing biological replicates. A–H, N = 13–25 subjects per group, I and J, N = 14–22 subject pairs per group.

Supplemental Figure 3 (Di Gesù, Matz et al.)

Figure S3. Anxiety-like behavior and locomotor activity are unaltered in MHFD-descendant F₂ offspring. Related to Figure 1. (A) Open field (OF) schematic. No statistically significant differences in OF (B) distance traveled (Males: t(11) = 0.3246, p = 0.7516; Females: t(8) = 0.7396, p = 0.4807), (C) speed (Males: t(11) = 0.3431, p = 0.7380; Females: t(8) = 0.7397, p = 0.4806, females), or (D) time spent in center (Males: t(11) = 1.018, p = 0.3307; Females: t(8) = 0.6608, p = 0.5273, females) were observed between cohorts. (E) Schematic of the 3C habituation stage. Neither (F) distance traveled (Male MRD *vs* MHFD: t(43) = 0.3626, p = 0.7186; Female MRD *vs* MHFD: t(8) = 0.004881, p = 0.9962) or (G) speed (Male MRD *vs* MHFD: t(43) = 0.3706, p = 0.7128; Female MRD *vs* MHFD: t(8) = 0.01752, p = 0.9865) differed between maternal diet lineages in the habituation phase of the 3C task. Bar graphs show mean \pm SEM with individual data points representing biological replicates. A–H, N = 13 – 25 subjects per group; I and J, N = 14–22 subject pairs per group.

Supplemental Figure 4 (Di Gesù, Matz et al.)

Figure S4. Weighted UniFrac analysis of beta diversity in F_1 and F_2 cohorts $\pm L$. *reuteri*, MRD or MHFD F_2 -FMT colonized males. Related to Figures 2, 4, and 5. (A) Principal coordinate analysis (PCoA) of Weighted UniFrac distances from the averaged rarefied 16S rRNA gene amplicon sequencing dataset (8,310 reads/sample; n=1,000 rarefactions) revealed statistically significant clusters based on diet and generation (p = 0.006, $R^2 = 0.129$).

(**B**) Principal coordinate analysis (PCoA) of Weighted UniFrac distances from the averaged rarefied 16S rRNA gene amplicon sequencing dataset (3,370 reads/sample; n=1,000 rarefactions) revealed statistically significant clusters based on diet (p = 0.002, $R^2 = 0.446$). (**C**) Principal coordinate analysis (PCoA) of Weighted UniFrac distances from the averaged rarefied 16S rRNA gene amplicon sequencing dataset (5,508 reads/sample; n=1,000 rarefactions) revealed statistically significant clusters based on diet (p = 0.002, $R^2 = 0.15$). A, N = 5–15 subjects per group; B, N = 7–8 subjects per group; C, N = 24–28 subjects per group. Data points represent biological replicates

Figure S5. Automated 3C chamber times and locomotor data in germ-free (GF)-control, MRD F₂-FMT colonized, or MHFD F₂-FMT colonized males. Related to Figure 4. Automated ANY-maze 3C chamber times for GF-Control and MRD F₂- or MHFD F₂-FMT recipient (**A**) sociability (GF-control: t(40) = 2.336, p = 0.0719; MRD F₂-FMT: t(40) = 4.053, p = 0.0007; MHFD F₂-FMT: t(40) = 5.294, p < 0.0001) and (**B**) preference for social novelty (GF-control: t(40) = 1.698, p = 0.2646; MRD F₂-FMT: t(40) = 3.3221, p = 0.0076; MHFD F₂-FMT: t(40) = 4.211, p = 0.0004). Social preference index for F₂ male (**C**) sociability (GF-control *vs* MRD-FMT: q(20) = 2.66, p = 0.1701; GF-control *vs* MHFD-FMT: q(20) = 2.85, p = 0.1343; MRD F₂-FMT *vs* MHFD F₂-FMT: q(20) = 0.09341, p = 0.9976) and (**D**) social novelty (GF-control *vs* MRD F₂-FMT: q(20) = 0.7191, p = 0.8681; GF-control *vs* MHFD F₂-FMT: q(20) = 2.855, p = 0.1335; MRD F₂-FMT *vs* MHFD F₂-FMT: q(20) = 2.039, p = 0.3393). During 3C habituation, GF-control mice travel significantly farther than their colonized counterparts, as seen in (**E**) distance

(GF-control *vs* MRD F₂-FMT: q(20) = 7.551, p < 0.0001; GF-control *vs* MHFD F₂-FMT: q(20) = 7.483, p = 0.0001; MRD F₂-FMT *vs* MHFD F₂-FMT: q(20) = 0.3218, p = 0.9719) and (F) speed (GF-control *vs* MRD F₂-FMT: q(20) = 7.687, p < 0.0001; GF-control *vs* MHFD F₂-FMT: q(20) = 7.671, p < 0.0001; MRD F₂-FMT *vs* MHFD F₂-FMT: q(20) = 0.2757, p = 0.9793) compared to MRD F₂- or MHFD F₂-FMT males, as determined by one-way ANOVA with Tukey's correction for multiple comparisons. In the open field test, GF-control mice have significantly higher (G) distance traveled (GF-control *vs* MRD F₂-FMT: q(18) = 4.821, p = 0.0084; GF-control *vs* MHFD F₂-FMT: q(18) = 4.425, p = 0.0152; MRD F₂-FMT *vs* MHFD F₂-FMT: q(18) = 0.5635, p = 0.9166) and (H) speed (GF-C *vs* MRD F₂-FMT: q(18) = 4.797, p = 0.0087; GF-control *vs* MHFD F₂-FMT: q(18) = 4.313, p = 0.018; MRD F₂-FMT *vs* MHFD F₂-FMT: q(18) = 0.6437, p = 0.8927), but not (I) time spent in center (GF-control *vs* MRD F₂-FMT: q(18) = 0.6256, p = 0.8984; GF-control *vs* MHFD F₂-FMT: q(18) = 0.5261, p = 0.9269; MRD F₂-FMT *vs* MHFD F₂-FMT: q(18) = 1.097, p = 0.7224) compared to MRD F₂- or MHFD F₂-FMT males, as determined by oneway ANOVA with Tukey's correction for multiple comparisons. Bar graphs show mean ± SEM with individual data points representing biological replicates. A–F, N = 7–8 subjects per group; G–I, N = 6–8.

Supplemental Figure 6 (Di Gesù, Matz et al.)

Figure S6. *L. reuteri*-treated MRD- and MHFD-descendant F₂ mice do not display anxiety-like behavior or abnormal locomotor activity. Related to Figure 6. 3C ANY-maze automated chamber times for $F_2 + L$. *reuteri* (A, B) male and (C, D) female sociability (Male MRD $F_2 + L$. *reuteri*: t(56) = 4.783, p < 0.0001; Male MHFD $F_2 + L$. *reuteri*: t(56) = 3.972, p = 0.0004; Female MRD $F_2 + L$. *reuteri*: t(36) = 1.747, p = 0.1703; Female MHFD $F_2 + L$. *reuteri*: t(36) = 3.952, p = 0.0007) and preference for social novelty (Male MRD $F_2 + L$. *reuteri*: t(56) = 5.969, p < 0.0001; Male MHFD $F_2 + L$. *reuteri*: t(56) = 2.047, p = 0.0887; Female MRD $F_2 + L$. *reuteri*: t(36) = 1.276, p = 0.0001; Male MHFD $F_2 + L$. *reuteri*: t(56) = 2.047, p = 0.0887; Female MRD $F_2 + L$. *reuteri*: t(36) = 1.276, p = 0.0001; Male MHFD $F_2 + L$. *reuteri*: t(56) = 2.047, p = 0.0887; Female MRD $F_2 + L$. *reuteri*: t(36) = 1.276, p = 0.0001; Male MHFD $F_2 + L$. *reuteri*: t(56) = 2.047, p = 0.0887; Female MRD $F_2 + L$. *reuteri*: t(36) = 1.276, p = 0.0001; Male MHFD $F_2 + L$. *reuteri*: t(56) = 2.047, p = 0.0887; Female MRD $F_2 + L$. *reuteri*: t(36) = 1.276, p = 0.0001; Male MHFD $F_2 + L$. *reuteri*: t(56) = 2.047, p = 0.00887; Female MRD $F_2 + L$. *reuteri*: t(36) = 1.276, p = 0.0001; Male MHFD $F_2 + L$. *reuteri*: t(56) = 0.00887; Female MRD $F_2 + L$. *reuteri*: t(56) = 0.00887; Female MRD $F_2 + L$. *reuteri*: t(56) = 0.00887; Female MRD $F_2 + L$. *reuteri*: t(56) = 0.00887; Female MRD $F_2 + L$. *reuteri*: t(56) = 0.00887; Female MRD $F_2 + L$. *reuteri*: t(56) = 0.00887; Female MRD $F_2 + L$. *reuteri*: t(56) = 0.00887; Female MRD $F_2 + L$. *reuteri*: t(56) = 0.00887; Female MRD $F_2 + L$. *reuteri*: t(56) = 0.00887; Female MRD $F_2 + L$. *reuteri*: t(56) = 0.00887; Female MRD $F_2 + L$. *reuteri*: t(56) = 0.00887; Female MRD $F_2 + L$. *reuteri*: t(56) = 0.00887; Female MRD $F_2 + L$. *reuteri*: t(56) = 0.008

0.3762; Female MHFD $F_2 + L$. reuteri: t(36) = 1.549, p = 0.2435), respectively, in the 3C task. Social preference indices for (E, F) male and (G, H) female sociability (Male MHFD vs MRD F₂: t(28) = 0.6876, p = 0.4973; Female MHFD vs MRD F₂: t(4) = 0.7951, p = 0.4711) and social novelty (Male MHFD vs MRD F₂: t(5) = 1.313, p = 0.4711) 0.2463; Female MHFD vs MRD F₂: t(4) = 1.497, p = 0.2088). F₂ + L. reuteri male and female reciprocal social (I) contact duration (Male MHFD $F_2 + L$. reuteri vs MRD $F_2 + L$. reuteri: t(22) = 0.02922, p = 0.9770; Female MHFD $F_2 + L$. reuteri vs MRD $F_2 + L$. reuteri: t(17) = 3.261, p = 0.0046) and (J) number of contacts (Male MHFD $F_2 + L$. reuteri vs MRD $F_2 + L$. reuteri: t(22) = 0.4516, p = 0.6559; Female MHFD $F_2 + L$. reuteri vs MRD $F_2 + L$. reuteri: t(17) = 0.04579, p = 0.9640). Neither male nor female F₂ 3C habituation (**K**) distance (Male MHFD F₂ + L. reuteri vs MRD $F_2 + L$. reuteri: t(5) = 0.9683, p = 0.3774; Female MHFD $F_2 + L$. reuteri vs MRD $F_2 + Lr$: t(18) = 2.064, p = 0.0537) or (L) speed (Male MHFD $F_2 + L$. reuteri vs MRD $F_2 + L$. reuteri: t(5) = 0.9711, p = 0.3761; Female MHFD $F_2 + L$. reuteri vs MRD $F_2 + L$. reuteri: t(18) = 2.097, p = 0.0504) differ between diets. Open field (M) distance (Male MHFD $F_2 + L$. reuteri vs MRD $F_2 + L$. reuteri: t(26) = 0.6324, p = 0.5326; Female MHFD $F_2 + L$. reuteri vs MRD $F_2 + L$. reuteri: t(4) = 0.2862, p = 0.7890), (N) speed (Male MHFD $F_2 + L$. reuteri vs MRD $F_2 + L$. reuteri: t(26) = 0.6384, p = 0.5288; Female MHFD F₂ + L. reuteri vs MRD F₂ + L. reuteri: t(4) = 0.2752, p = 0.2752, 0.7968), and (O) time spent in the center (Male MHFD $F_2 + L$. reuteri vs. MRD $F_2 + L$. reuteri: t(5) = 0.1939, p = 0.19390.8539; Female MHFD F₂ + L. reuteri vs. MRD F₂ + L. reuteri: t(4) = 2.024, p = 0.1129) did not significantly differ between cohorts. Bar graphs show mean ± SEM with individual data points representing biological replicates. A–H, K, and L, N = 10-15 subjects per group; I and J, N = 8-14 pairs per group; M–O, N = 9-15 subjects per group.

Supplemental Figure 7 (Di Gesù, Matz et al.)

Figure S7. F₂ microbiome remodeling in response to *L. reuteri* exhibits sex specificity, with females showing greater divergence between diet cohorts. Related to Figures 5 and 6. (A–B) Principal coordinate analysis (PCoA) of Unweighted (A), but not Weighted (B), UniFrac distances from the averaged rarefied 16S rRNA gene amplicon sequencing dataset (5,508 reads/sample; n=1,000 rarefactions) revealed statistically significant clusters based on diet (Unweighted Unifrac p = 0.001, $R^2 = 0.128$; Weighted Unifrac p = 0.294, $R^2 = 0.0378$) in F₂ male mice treated with L. reuteri. (C–E) Total number of OTUs (C) (MHFD $F_2 + L$. reuteri vs MRD $F_2 + L$. reuteri: t(27) = 2.331, p = 0.0275 and Chao1 index (D) (MHFD F₂ + L. reuteri vs MRD F₂ + L. reuteri: t(27) = 2.326, p 0.0278), but not Shannon Index (E) (MHFD $F_2 + L$. reuteri vs MRD $F_2 + L$. reuteri: t(27) = 1.147, p = 0.2613), are decreased in L. reuteri-treated MHFD F2 male offspring compared to MRD group. (F) Histogram of the LDA scores (log10) computed for genus-level taxa with differential abundance in L. reuteri-treated MHFD and MRD F2 male offspring. (G-H) Principal coordinate analysis (PCoA) of Unweighted (G) and Weighted (H) UniFrac distances from the averaged rarefied 16S rRNA gene amplicon sequencing dataset (5,508 reads/sample; n=1,000 rarefactions) revealed statistically significant clusters based on diet (Unweighted Unifrac p = 0.001, $R^2 = 0.301$; Weighted Unifrac p = 0.294, $R^2 = 0.541$) in F₂ female mice treated with L. reuteri. (I–K) Total number of OTUs (I) (MHFD F₂ + L. reuteri vs MRD F_2 + L. reuteri: t(21) = 7.392, p < 0.0001), Chao1 index (J) (MHFD F_2 + L. reuteri vs MRD F_2 + L. reuteri: t(21) = 4.674, p = 0.0001), and Shannon Index (K) (MHFD F₂ + L. reuteri vs MRD F₂ + L. reuteri: t(21) = 10.25, p < 0.0001), are decreased in *L. reuteri*-treated MHFD F₂ female offspring compared to MRD group. (L) Histogram of the LDA scores (log10) computed for genus-level taxa with differential abundance in L. reuteritreated MHFD and MRD F_2 female offspring. Bar graphs show mean \pm SEM with individual data points representing biological replicates. N = 10-15 subjects per group.

Supplemental Figure 8 (Di Gesù, Matz et al.)

Figure S8. Consistent with F₂, MHFD-descendant F₃ mice do not display anxiety-like behavior or abnormal locomotor activity. Related to Figure 7. 3C ANY-maze automated chamber times for F₃ (A, B) male and (C, D) female sociability (Male MRD F₃: t(66) = 2.166, p = 0.0667; Male MHFD F₃: t(66) = 4.299, p < 0.0001; Female MRD F₃: t(48) = 5.050, p < 0.0001; Female MHFD F₃: t(48) = 2.534, p = 0.0290) and social novelty (Male MRD F₃: t(66) = 3.691, p = 0.0009; Male MHFD F₃: t(66) = 6.330, p < 0.0001; Female MRD F₃: t(48) = 2.038, p = 0.0919; Female MHFD F₃: t(48) = 0.3118, p = 0.9407), respectively. Social Preference Index for (E, F) male and (G,

H) female sociability (Male MHFD *vs* MRD F₃: t(8) = 0.8067, p = 0.4432; Female MHFD *vs* MRD F₃: t(24) = 0.1777, p = 0.8605) and social novelty (Male MHFD *vs* MRD F₃: t(33) = 0.9657, p = 0.3412; Female MHFD *vs* MRD F₃: t(24) = 1,739, p = 0.0949). F₃ male and female reciprocal social (I) contact duration (Male MHFD *vs* MRD F₃: t(24) = 1,739, p = 0.0949). F₃ male and female reciprocal social (I) contact duration (Male MHFD *vs* MRD F₃: t(24) = 1,739, p = 0.0949). F₃ male and female reciprocal social (I) contact duration (Male MHFD *vs* MRD F₃: t(24) = 1,739, p = 0.0949). F₃ male and female reciprocal social (I) contact duration (Male MHFD *vs* MRD F₃: t(24) = 1.0000 mumber of contacts (Male MHFD *vs* MRD F₃: t(22) = 0.4158, p = 0.6816; Female MHFD *vs* MRD F₃: t(24) = 1.426, p = 0.1668). Neither male nor female 3C habituation (K) distance (Male MHFD F₃ *vs* MRD F₃: t(8) = 0.4871, p = 0.6392; Female MHFD *vs* MRD F₃: t(4) = 1.223, p = 0.2885) or (L) speed (Male MHFD *vs* MRD F₃: t(8) = 0.5126, p = 0.6221; Female MHFD *vs* MRD F₃: t(4) = 1.205, p = 0.2947) differ between diets. Open field (M) distance traveled (Male MHFD *vs* MRD F₃: t(8) = 0.6214, p = 0.5516; Female MHFD *vs* MRD F₃: t(4) = 0.2135, p = 0.8395), and (O) time spent in center (Male MHFD *vs* MRD F₃: t(8) = 0.04288, p = 0.9668; Female MHFD *vs* MRD F₃: t(4) = 0.2161, p = 0.8395), and (O) time spent in center (Male MHFD *vs* MRD F₃: t(8) = 0.04288, p = 0.9668; Female MHFD *vs* MRD F₃: t(4) = 0.2177) are not statistically different between cohorts. Bar graphs show mean \pm SEM with individual data points representing biological replicates. A–H, K, and L, N = 12–20 subjects per group; I and J, N = 12–15 pairs per group; M and O, N = 13–20 subjects per group.