Supplementary Information

The bacterial MtrAB two-component system regulates the cell wall homeostasis responding to environmental alkaline stress

Xiaoyu Qin¹, Kaiduan Zhang¹, Yuzhao Fan², Hui Fang¹, Yong Nie^{1*}, Xiao-Lei Wu^{1,3,4*}

¹College of Engineering, Peking University, Beijing 100871, China

² School of Resources and Environmental Engineering, Hefei University of

Technology, Hefei 230009, China

³ Institute of Ocean Research, Peking University, Beijing 100871, China

⁴ Institute of Ecology, Peking University, Beijing 100871, China

*Corresponding author: Research Scientist, College of Engineering, Peking University.

Tel: +86 10-62759047; Fax: +86 10-62759047; E-mail: nieyong@pku.edu.cn

*Corresponding author: Professor, College of Engineering, Peking University.

Tel: +86 10-62759047; Fax: +86 10-62759047; E-mail: xiaolei_wu@pku.edu.cn

Fig S1. Comparison of the amino acid sequences of MtrA between *Dietzia* sp. DQ12-45-1b and other bacteria in Actinobacteria. The sequence logo was generated with WebLogo (http://weblogo.threeplusone.com/create.cgi). The red triangle represents the phosphorylation site.

Fig S2. Comparison of the amino acid sequences of MtrB between *Dietzia* sp. DQ12-45-1b and other bacteria in Actinobacteria. The sequence logo was generated with WebLogo (http://weblogo.threeplusone.com/create.cgi). The red triangle represents the phosphorylation site.

Figure S3

Fig S3. Cell morphology at different pH conditions. The representative micrographs of *Dietzia* sp. DQ12-45-1b wild/pNV18, $\Delta mtrAB$ /pNV18, and $\Delta mtrAB$ /pNV18-*mtrAB* by transmission electron microscope. Bars show the length in microns. Note the branched phenotype (marked with arrows) present in $\Delta mtrAB$ /pNV18 in pH 10.

Fig S4. Scatter plots of consistency of transcriptomic data between parallel samples of *Dietzia* sp. DQ12-45-1b wild-type and $\Delta mtrAB$ mutant strains under the optimal and alkaline pH conditions.

Figure S5

A pH 10 wild/pH 8 wild

Up-regulated genes

Down-regulated genes

B pH 10 ∆mtrAB/pH 10 wild

Up-regulated genes

Down-regulated genes

Fig S5. Gene Ontology (GO) classification and enrichment analysis. (A) Barplots of GO enriched from up-regulated genes and down-regulated genes of wild-type strain at pH 10 compared to pH 8 in Biological Process (BP) categories. (B) Barplots of GO enriched from up-regulated genes and down-regulated genes of $\Delta mtrAB$ mutant compared to wild-type strains at pH 10 in BP categories.

Fig S6. Growth curves of *Dietzia* sp. DQ12-45-1b wild-type strains overexpressing the genes involved in peptidoglycan homeostasis and cell division at different pH conditions. Black square and red circle represent wild-type strain carrying pNV18 at pH 8 and pH 10 respectively. Blue triangle and green inverted triangle mean wild/pNV18 with different genes at pH 8 and pH 10 respectively.

Fig S7. The representative micrographs of *Dietzia* sp. DQ12-45-1b wild-type strains overexpressing the genes involved in peptidoglycan homeostasis and cell division at different pH conditions.

Figure S8

Fig S8. EMSA analysis of MtrA, MtrA-P binding to non-specific DNA (*Escherichia coli* DNA fragment) used as a negative control. MtrA, and MtrA~P at 0.5, 1, 2.5, and 5 μ M concentration were incubated for 30 min with 0.1 μ M of DIG-labeled DNA.

Table S1

Table S1 List of selected up- and down-regulated genes

Gene ID	Gene name	pH10 w wi	ild/pH8 ld	$p^{]}$ $\Delta m tr A B/$	H10 ⁄pH10 wild	pH8 ∆mi w	<i>trAB</i> /pH8 ild	Gene product description
_		Log ₂ FC	FDR	Log ₂ FC	FDR	Log ₂ FC	FDR	-
Peptidog	glycan synth	esis						
GJR88	murE	-1.45	0.000	2.44	0.000	0.21	0.326	UDP-N-acetylmuramoylalanyl-D-glutamate2,6-
_02065								diaminopimelate ligase
GJR88	murF	-1.55	0.000	2.93	0.000	0.45	0.021	UDP-N-acetylmuramoyl-tripeptideD-alanyl-D-alanine
_02066								ligase
GJR88	mraY	-1.34	0.000	2.85	0.000	0.52	0.003	phospho-N-acetylmuramoyl-pentapeptide-transferase
_02068								
GJR88	murD	-2.27	0.000	2.91	0.000	-0.46	0.028	UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase
_02071								
GJR88	ftsW	-2.70	0.000	2.64	0.000	-0.82	0.000	Cell division protein
_02073								
GJR88	murJ	-1.06	0.000	1.43	0.000	-0.10	0.676	Lipid II flippase
_05430								
GJR88	murG	-1.55	0.000	2.60	0.000	0.44	0.083	UDP-N-acetylglucosamineN-acetylmuramyl-
_02075								pyrophosphoryl-undecaprenol N-acetylglucosamine
GJR88	murC	-1.53	0.000	2.65	0.000	0.56	0.003	UDP-N-acetylmuramateL-alanine ligase
_02077								

GJR88	ftsI	-1.58	0.000	2.61	0.000	-0.09	0.723	Penicillin-binding protein
_02062	(pbpB)							
Peptidog	lycan hydro	olysis						
GJR88	ripA	-2.39	0.000	1.85	0.000	1.63	0.000	Peptidoglycan endopeptidase
_02580								
GJR88	NA	-2.59	0.000	3.89	0.000	1.06	0.000	1,4-beta-N-acetylmuramidase
_04713								
GJR88	cwlO	-1.55	0.000	2.28	0.000	2.41	0.000	Peptidoglycan endopeptidase
_02028								
GJR88	NA	-2.13	0.000	3.54	0.000	0.70	0.001	N-acetylmuramoyl-L-alanine amidase
_00456								
GJR88	mepA	-0.41	0.125	1.84	0.000	2.09	0.000	Murein DD-endopeptidase
_03658								
GJR88	NA	-1.23	0.000	0.82	0.000	0.40	0.059	M23 peptidase domain-containing protein
_RS174								
45								
GJR88	NA	-1.31	0.000	0.79	0.009	0.93	0.001	Membrane-bound lytic murein transglycosylase
_03129								
Cell divi	sion							
GJR88	ftsK	-2.44	0.000	3.47	0.000	-0.43	0.032	Cell division protein
_02816								
GJR88	ftsE	-1.55	0.000	1.24	0.000	-0.13	0.604	Cell division ATP-binding protein
_01576								
GJR88	ftsX	-2.16	0.000	3.45	0.000	0.49	0.054	Cell division protein
_01577								
GJR88	ftsL	-2.91	0.000	3.98	0.000	-0.32	0.137	Cell division protein

_02061	r.	1 4 1	0.000	1 10	0.000	0.24	0.100	
GJR88	sepF	-1.41	0.000	1.18	0.000	0.34	0.108	Cell division protein
_02085	1174	0.54	0.000	2.27	0.000	0.01	0.000	
GJR88	sepIVA	-2.54	0.000	2.27	0.000	-0.81	0.000	Cell division protein
-02952	·	1 1						
Related	transcription	hal regula	tors					
GJR88	mraZ	-3.33	0.000	4.68	0.000	-0.21	0.439	Transcriptional
_02058								regulator
GJR88	envC	-1.36	0.000	2.90	0.000	2.61	0.000	Murein hydrolase activator
_02225								
GJR88	NA	-1.64	0.000	2.06	0.000	1.04	0.000	LytR cell envelope-related transcriptional attenuator
_04446								
GJR88	whiB2	-2.03	0.000	2.75	0.000	0.77	0.001	WhiB family transcriptional regulator
01472	(whmD)							
GJR88	NA	-2.86	0.000	1.34	0.000	-0.93	0.002	Putative AsnC family transcriptional regulator
03645								
MtrAB	ГCS							
GJR88	mtrA	0.57	0.011	-12.85	0.000	-12.54	0.000	DNA-binding response regulator MtrA
01482								
_ GJR88	mtrB	0.76	0.000	-4.11	0.000	-4.30	0.000	Sensor histidine kinase MtrB
01483								
Monova	lent cation/H	H ⁺ antipor	ter					
GJR88	mrnG	-1.21	0.000	-0.63	0.091	-1.83	0.000	Putative monovalent cation/H ⁺ antiporter subunit G
00766	_P 0		0.000	0.00	0.071	1.00	0.000	
_00700 GIR 88	mrnF	-1 23	0.021	0.52	0.480	-1 24	0.013	Putative monovalent cation/H ⁺ antiporter subunit F
00768	in pr	-1.23	0.021	0.52	0.100	-1. 4 7	0.015	i duarve monovalent cation/11° antiporter subdilit 1
_00708								

GJR88	mrpE	-1.33	0.000	0.81	0.012	-1.10	0.000	Putative monovalent cation/H ⁺ antiporter subunit E
$_{00770}$								
GJR88	mrpD	-1.19	0.000	0.30	0.184	-1.07	0.000	Putative monovalent cation/H ⁺ antiporter subunit D
_00771								
GJR88	mrpC	-1.31	0.000	0.04	0.947	-1.34	0.000	Putative monovalent cation/H ⁺ antiporter subunit C
$_{00774}$								
GJR88	mrpA	0.42	0.039	-0.71	0.000	-0.16	0.456	Putative monovalent cation/H ⁺ antiporter subunit A
$_{00777}$								
GJR88	mrpA	0.80	0.000	-0.35	0.140	0.28	0.200	Putative monovalent cation/H ⁺ antiporter subunit A
_04437								
GJR88	mrpC	-0.59	0.064	0.41	0.277	-0.84	0.005	Putative monovalent cation/H ⁺ antiporter subunit C
_04438								
GJR88	mrpD	-0.54	0.023	0.67	0.006	-0.77	0.001	Putative monovalent cation/H ⁺ antiporter subunit D
_04440								
GJR88	mrpE	-0.45	0.100	0.44	0.142	-1.14	0.000	Putative monovalent cation/H ⁺ antiporter subunit E
_04442								
GJR88	mrpF	-1.31	0.001	0.31	0.571	-1.97	0.000	Putative monovalent cation/H ⁺ antiporter subunit F
_04443								
GJR88	mrpG	-0.01	0.990	0.00	1.000	-0.69	0.005	Putative monovalent cation/H ⁺ antiporter subunit G
_04444								

Table S2

Table S2 Strains and plasmids used in the study.

Strain or plasmid	Genotype and description	Source and reference
Dietzia strains		
Dietzia sp. DQ12-45-1b (CGMCC 1.10709)	Wild-type	(1)
DQ12-45-1b/pNV18	Wild-type harboring pNV18; Km ^r	This study
$DQ12-45-1b\Delta mtrAB$	DQ12-45-1b <i>mtrAB</i> deletion mutant; Sm ^r	This study
DQ12-45-1b <i>AmtrAB/</i> pNV18	DQ12-45-1b mtrAB deletion mutant harboring pNV18;	This study
	Km ^r and Sm ^r	
DQ12-45-1b <i>AmtrAB</i> /pNV18- <i>mtrAB</i>	DQ12-45-1b∆ <i>mtrAB</i> harboring pNV18- <i>mtrAB</i> ; Km ^r and	This study
	Sm ^r	
DQ12-45-1b <i>AmtrAB</i> /pNV18- <i>mtrA</i>	DQ12-45-1b\[DeltamtrAB harboring pNV18-mtrA; Km ^r and	This study
	Sm ^r	
DQ12-45-1b Δ mtrAB/pNV18-mtrA _{D56E}	DQ12-45-1b\[Deltambrance] mtrAB harboring pNV18-mtrAD56E; Km ^r	This study
	and Sm ^r	
DQ12-45-1b\DeltamtrAB/pNV18-mtrAD56N	DQ12-45-1b\[DeltamtrAB harboring pNV18-mtrAD56N; Km ^r	This study
	and Sm ^r	
DQ12-45-1b/pJV	Wild-type harboring pJV; Km ^r	This study
DQ12-45-1b/pJV-mraZ	Wild-type harboring pJV-mraZ; Km ^r	This study

DQ12-45-1b∆ <i>mtrAB</i> /pJV	DQ12-45-1b∆mtrAB harboring pJV; Km ^r and Sm ^r	This study
DQ12-45-1b\[]mtrAB/pJV-mraZ-AS	DQ12-45-1b∆mtrAB harboring pJV-mraZ-AS; Km ^r and	This study
	Sm ^r	
DQ12-45-1b/pNV18-murC	Wild-type harboring pNV18-murC; Km ^r	This study
DQ12-45-1b/pNV18-murD	Wild-type harboring pNV18-murD; Km ^r	This study
DQ12-45-1b/pNV18-murE	Wild-type harboring pNV18-murE; Km ^r	This study
DQ12-45-1b/pNV18-murF	Wild-type harboring pNV18-murF; Km ^r	This study
DQ12-45-1b/pNV18-murG	Wild-type harboring pNV18-murG; Km ^r	This study
DQ12-45-1b/pNV18-murJ	Wild-type harboring pNV18-murJ; Km ^r	This study
DQ12-45-1b/pNV18-mraY	Wild-type harboring pNV18-mraY; Km ^r	This study
DQ12-45-1b/pNV18-ftsW	Wild-type harboring pNV18-ftsW; Km ^r	This study
DQ12-45-1b/pNV18-ftsI	Wild-type harboring pNV18-ftsI; Km ^r	This study
DQ12-45-1b/pNV18-ripA	Wild-type harboring pNV18- <i>ripA</i> ; Km ^r	This study
DQ12-45-1b/pNV18-cwlO	Wild-type harboring pNV18-cwlO; Km ^r	This study
DQ12-45-1b/pNV18- <i>mepA</i>	Wild-type harboring pNV18-mepA; Km ^r	This study
DQ12-45-1b/pNV18-ftsEX	Wild-type harboring pNV18-ftsEX; Km ^r	This study
DQ12-45-1b/pNV18-ftsK	Wild-type harboring pNV18-ftsK; Km ^r	This study
DQ12-45-1b/pNV18-ftsL	Wild-type harboring pNV18-ftsL; Km ^r	This study
DQ12-45-1b/pNV18- <i>sepF</i>	Wild-type harboring pNV18- <i>sepF</i> ; Km ^r	This study
DQ12-45-1b/pNV18-sepIVA	Wild-type harboring pNV18-sepIVA; Km ^r	This study

DQ12-45-1b/pNV18-envC	Wild-type harboring pNV18-envC; Km ^r	This study
DQ12-45-1b/pNV18-whmD	Wild-type harboring pNV18-whmD; Km ^r	This study
Escherichia coli strains		
BL21 (DE3)/pET-28a-envZdel	BL21 (DE3) harboring pET-28a-envZdel; Kmr	This study
BL21 (DE3)/pET-28a-mtrA	BL21 (DE3) harboring pET-28a-mtrA; Kmr	This study
BL21 (DE3)/pET-28a-mtrAD56E	BL21 (DE3) harboring pET-28a-mtrAD56E; Kmr	This study
BL21 (DE3)/pET-28a-mtrA _{D56N}	BL21 (DE3) harboring pET-28a-mtrAD56N; Kmr	This study
Plasmids		
pNV18-DsRed.T4	Dietzia-E.coli shuttle vector (p45 promoter); Km ^r	(2)
pNV18	Cloned from pNV18-DsRed.T4 without DsRed; Km ^r	This study
pNV18- <i>mtrAB</i>	pNV18 + <i>mtrA</i> and <i>mtrB</i> from DQ12-45-1b; Km ^r	This study
pNV18- <i>mtrA</i>	pNV18 + <i>mtrA</i> from DQ12-45-1b; Km ^r	This study
pNV18- <i>mtrA</i> _{D56E}	pNV18 + <i>mtrA</i> (phosphorylation-mimic) from DQ12-45-	This study
	1b; Km ^r	
pNV18- <i>mtrA</i> _{D56N}	pNV18 + <i>mtrA</i> (phosphorylation-defective) from DQ12-	This study
	45-1b; Km ^r	
pJV53	Dietzia-E.coli shuttle vector (acetamide-inducible	(3)
	promoter); Km ^r	
pJV	Cloned from pJV53 without Che9cp60 and Che9cp61;	This study
	Km ^r	

pJV-mraZ	pJV + mraZ from DQ12-45-1b; Km ^r	This study
pJV-mraZ-AS	pJV + mraZ in antisense orientation from DQ12-45-1b;	This study
	Km ^r	
pNV18- <i>murC</i>	pNV18 + <i>murC</i> from DQ12-45-1b; Km ^r	This study
pNV18- <i>murD</i>	pNV18 + <i>murD</i> from DQ12-45-1b; Km ^r	This study
pNV18- <i>murE</i>	pNV18 + <i>murE</i> from DQ12-45-1b; Km ^r	This study
pNV18- <i>murF</i>	pNV18 + <i>murF</i> from DQ12-45-1b; Km ^r	This study
pNV18-murG	pNV18 + <i>murG</i> from DQ12-45-1b; Km ^r	This study
pNV18- <i>murJ</i>	pNV18 + <i>murJ</i> from DQ12-45-1b; Km ^r	This study
pNV18-mraY	pNV18 + mraY from DQ12-45-1b; Km ^r	This study
pNV18-ftsW	pNV18 + ftsW from DQ12-45-1b; Km ^r	This study
pNV18-ftsI	pNV18 + <i>ftsI</i> from DQ12-45-1b; Km ^r	This study
pNV18- <i>ripA</i>	pNV18 + ripA from DQ12-45-1b; Km ^r	This study
pNV18-cwlO	pNV18 + <i>cwlO</i> from DQ12-45-1b; Km ^r	This study
pNV18-mepA	pNV18 + <i>mepA</i> from DQ12-45-1b; Km ^r	This study
pNV18-ftsEX	pNV18 + <i>ftsEX</i> from DQ12-45-1b; Km ^r	This study
pNV18-ftsK	pNV18 + <i>ftsK</i> from DQ12-45-1b; Km ^r	This study
pNV18-ftsL	pNV18 + ftsL from DQ12-45-1b; Km ^r	This study
pNV18-sepF	pNV18 + <i>sepF</i> from DQ12-45-1b; Km ^r	This study
pNV18- <i>sepIVA</i>	pNV18 + <i>sepIVA</i> from DQ12-45-1b; Km ^r	This study

pNV18-envC	pNV18 + <i>envC</i> from DQ12-45-1b; Km ^r	This study
pNV18-whmD	pNV18 + <i>whmD</i> from DQ12-45-1b; Km ^r	This study
pET-28a	Overexpression vector; Km ^r	Novagen
pET-28a-envZ _{del}	pET-28a + truncated <i>envZ</i> from <i>E.coli</i> ; Km ^r	This study
pET-28a-mtrA	pET-28a + <i>mtrA</i> from DQ12-45-1b; Km ^r	This study
pET-28a-mtrAD56E	pET-28a + <i>mtrAD56E</i> from pNV18- <i>mtrAD56E</i> ; Km ^r	This study
pET-28a-mtrA _{D56N}	pET-28a + <i>mtrAD56N</i> from pNV18- <i>mtrAD56N</i> ; Km ^r	This study

Table S3

Table S3 Primers used in the study.

Primer	Sequence $(5' \rightarrow 3')$	Application
mtrABLF	TGCTGTTCGCCCTGGACC	∆ <i>mtrAB</i> mutant strain
mtrABLR	CCTTCATCCGTTTCCACGGTTCGTCGTCGACGACGAGGA	
mtrABRF	AAGCGTGCATAATAAGCCCTCTCGACCACTCGGAGTCCAA	
mtrABRR	ACCGGACGGAGAGAAGGTGT	
SmF	ACCGTGGAAACGGATGAAGG	
SmR	AGGGCTTATTATGCACGCTT	
fusionF	GTCCTGCTCGACCGCTACGT	
fusionR	CAGCACGGTGGCGCAGATCG	
mtrAF	CCCAAGCTTCGACATACACGCCGACACAA	Complementary plasmids
mtrAR	CCCAAGCTTTCACGAGACCGGACCGGCCT	
mtrABR	CCCAAGCTTTCACGAACGGACCTCCTCGG	
pNVF	CCCAAGCTTGGCACTGGCCGTCG	
pNVR	CCCAAGCTTGTGCCCGCTGAACTTCTTC	
mraZF	TACGAGATCGGCGGCCGCATCTGATCCCAGGAGGTGGCGG	mraZ overexpression plasmid
mraZR	GTCGGAATTCGCCGGGGGCGCTTAGAATTCGATCCCCAGGG	1 1

pJVF	GCGCCCCGGCGAATTCCGACG	All acetamide-inducible plasmids
pJVR	ATGCGGCCGATCTCGTAA	1
mraZASF	TACGAGATCGGCGGCCGCATCCCCAGGGATGTGCCCTCCA	<i>mraZ</i> antisense expression vector
mraZASR	GTCGGAATTCGCCGGGGCGCGACCCCAACGACTCCGAGCG	1
pNVF2	AAGCTTGTGCCCGCTGAACT	Overexpression plasmids carrying the
pNVR2	GGCACTGGCCGTCGTTTTAC	
murcF	AGTTCAGCGGGCACAAGCTTGCCGCCGGAAAGGCACGGCG	genes involved in peptidoglycan
murcR	GTAAAACGACGGCCAGTGCCTCATGACCCCGTCCCGCTCCC	homeostasis and cell division
murdF	TTCAGCGGGCACAAGCTTCGAGCACATCGGGGTGACGGAC	
murdR	GTAAAACGACGGCCAGTGCCTCACCTCCCGGCGACCCGGCC	
mureF	AGTTCAGCGGGCACAAGCTTACGGAGAACGAGAGGCGGGT	
mureR	GTAAAACGACGGCCAGTGCCTCATGAGGTGTTGTCCTCCGT	
murfF	AGTTCAGCGGGCACAAGCTTCGGACGGAGGACAACACCTC	
murfR	GTAAAACGACGGCCAGTGCCTCATTCGGACATCTCCTCACC	
murgF	AGTTCAGCGGGCACAAGCTTATCCACCGGGGACGGGAGCG	
murgR	GTAAAACGACGGCCAGTGCCTCAACGCCGTGCCTTTCCGGC	
murjF	AGTTCAGCGGGCACAAGCTTCGTCGTCGAGGAGGTCTACGG	
murjR	GTAAAACGACGGCCAGTGCCTCACCGGGTGAGTTGTACCTC	
mrayF	AGTTCAGCGGGCACAAGCTTCGTGGTGAGGAGATGTCCGA	

mrayR	GTAAAACGACGGCCAGTGCCTCACCCCGATGTGCTCGCGAG
ftswF	AGTTCAGCGGGCACAAGCTTGGGTCGCCGGGAGGTAGGGC
ftswR	GTAAAACGACGGCCAGTGCCTCATCGCTCCCGTCCCCGGTG
ftsiF	AGTTCAGCGGGCACAAGCTTGACCTGCGAAAGGCCCCTCG
ftsiR	GTAAAACGACGGCCAGTGCCTCACTGCGCCTGCAGGATCAG
ripaF	AGTTCAGCGGGCACAAGCTTCGGTTATCGGAAGGTGAAAC
ripaR	GTAAAACGACGGCCAGTGCCTCAGGTCAGCCGGACGACCAT
cwloF	AGTTCAGCGGGCACAAGCTTCCAGGAAGAAGAGGAAATC
cwloR	GTAAAACGACGGCCAGTGCCTCAGTAGTAGCGGGTCGCACC
mepaF	AGTTCAGCGGGCACAAGCTTGCCGTTCTGGCCGTCGCCGC
mepaR	GTAAAACGACGGCCAGTGCCTCAGCTGCCGAAGGGGATGGA
ftsexF	AGTTCAGCGGGCACAAGCTTTCGTGTGATCAGTGCTTCCC
ftsexR	GTAAAACGACGGCCAGTGCCTCACTGCCGAACCGTCACCCT
ftskF	AGTTCAGCGGGCACAAGCTTTCTGCGGGGGTGGATGGGCGG
ftskR	GTAAAACGACGGCCAGTGCCTCAGCCCACCGGCGCCTCGTC
ftslF	AGTTCAGCGGGCACAAGCTTCGTATCGACGGGAGAACCCC
ftslR	GTAAAACGACGGCCAGTGCCTCAGTAGAGCGGGCCGGGGAC
sepfF	AGTTCAGCGGGCACAAGCTTATCAGGAAGGTCCCCGGAAG
sepfR	GTAAAACGACGGCCAGTGCCTCAGCGACGGAACGCGCCGTT

sepivaF	AGTTCAGCGGGCACAAGCTTTGAAGGGACGAGTGTGTACC	
sepivaR	GTAAAACGACGGCCAGTGCCTCAGTAGTCCCCGTACCCGTC	
envcF	AGTTCAGCGGGCACAAGCTTACCGAACTCCGAGGTTTCCC	
envcR	GTAAAACGACGGCCAGTGCCTCAGACGGCGACACCCTGCGC	
whmdF	AGTTCAGCGGGCACAAGCTTCGTAACACGAGGGGATGACC	
whmdR	GTAAAACGACGGCCAGTGCCTCACATCACGGCGTCACGCTT	
mtrAD56NF	CCTGCTGAACCTCATGCTCC	MtrA phosphorylation-defective and -
mtrAD56EF	CCTGCTGGAGCTCATGCTCC	
mtrAD56NR	CGAGACCGGACCGGCCTTGTAC	mimic vectors
pNVD56NF	GTACAAGGCCGGTCCGGTCTCG	
pNVD56NR	GGAGCATGAGGTTCAGCAGG	
pNVD56ER	GGAGCATGAGCTCCAGCAGG	
envZF	AAATGGGTCGCGGATCCGAATTCTTAAGCCATCAGATGGCGCA	EnvZ _{del} expression vector
envZR	GCTCGAGTGCGGCCGCAAGCTTTTACCCTTCTTTTGTCGTGCCC	-
pETF	AAGCTTGCGGCCGCACTCGAGCA	
pETR	GAATTCGGATCCGCGACCCATTTGC	
mtrAF	GGGAATTCCATATGGTGACAATGACCCCGAAGAT	MtrA expression vector
mtrAR	CCCAAGCTTTCACGAGACCGGACCGGCCT	-
pETF2	CCCAAGCTTGCGGCCGCACTCGAGCACCACC	
pETR2	GGGAATTCCATATGGCTGCCGCGCGCGCACCAGGC	

mraZDIGFAGGTGGGGGAGAAGTGGGGCG (5'-Digoxigenin)EMSAmraZDIGRCCGCCACCTCCTGGGATCAGEMSA

References

- 1. Wang X-B, Chi C-Q, Nie Y, Tang Y-Q, Tan Y, Wu G, Wu X-L. 2011. Degradation of petroleum hydrocarbons (C6–C40) and crude oil by a novel *Dietzia* strain. Bioresource Technology 102:7755-7761.
- 2. Szvetnik A, Bihari Z, Szabo Z, Kelemen O, Kiss I. 2010. Genetic manipulation tools for *Dietzia* spp. Journal of Applied Microbiology 109:1845-1852.
- 3. Van Kessel JC, Hatfull GF. 2007. Recombineering in *Mycobacterium tuberculosis*. Nature Methods 4:147-152.