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A Additional figures for the preliminary data analysis

Figure S1 shows cross sections of the exposure-response function estimated with BKMR to
assess modification. Using BKMR there is no evidence of effect modification.

EC Nitrate OC Sulfate

E
C

N
itrate

O
C

S
ulfate

−1 0 1 −1.0−0.5 0.0 0.5 −1 0 1 −0.8−0.4 0.0 0.4 0.8

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

Estimated weighted exposure

E
st

im
at

ed
 e

xp
os

ur
e−

re
sp

on
se

 fu
nc

tio
n 

by
 q

ua
nt

ile
 c

o−
ex

po
su

re
s 

(h
)

quantile

0.1

0.25

0.5

0.75

0.9

h(expos1 | quantiles of expos2)

Figure S1: Estimated exposure response function with BKMR. The exposure-response func-
tion is shown for each pollutant (columns) at different quantiles of one co-pollutant (rows)
and the median of the other two pollutants.

S1



B Additional details on the method

B.1 MCMC approach

To estimate the model parameters, we first integrate out h from (4) in the main text. This

yields Y ∼ N(Zγ, σ2K̃), where K̃ = In + τ 2K. The posterior distribution can be estimated
using the decomposition

p(θ∗1, . . . ,θ
∗
M , τ

2, ν1, . . . , νM ,γ, σ
−2|Y) = (1)

p(γ|θ∗1, . . . ,θ∗M , τ 2, ν1, . . . , νM , σ−2,Y)

p(σ−2|θ∗1, . . . ,θ∗M , τ 2, ν1, . . . , νM ,Y)

p(θ∗1, . . . ,θ
∗
M , τ

2, ν1, . . . , νM |Y).

In (1), p(γ|θ∗1, . . . ,θ∗M , τ 2, ν1, . . . , νM , σ−2,Y) and p(σ−2|θ∗1, . . . ,θ∗M , τ 2, ν1, . . . , τM ,Y) are
multivariate normal and gamma distribution. The final term in (1) takes the form

p(θ∗1, . . . ,θ
∗
M , ν1, . . . , νM , τ

2|Y) ∝ (2)

(τ−2)b1−1
∣∣∣K̃∣∣∣−1/2 ∣∣∣ZT K̃−1Z

∣∣∣−1/2 exp
(
−b2τ−2

)
×
[
a2 + YT K̃−1Y/2

+YT K̃−1Z
(
ZT K̃−1Z

)−1
ZT K̃−1Y/2

]−[(n−p)/2+a1]
×p (θ∗1, . . . ,θ

∗
M |ν1, . . . , νM) p(ν1, . . . , νM)p(τ).

Bobb et al. (2015) updated each of the M scalar parameters in the kernel function
independently with Metropolis-Hastings. This approach is unappealing for our model. We
have

∑M
m=1 Lm parameters in the kernel function and potentially high correlation among

parameters due to the temporal correlation in the exposures. Our MCMC algorithm instead
iteratively samples each θ∗m using an elliptical slice sampler (Murray et al., 2009) and the
kernel of (2). Then we sample τ−2 using random walk Metropolis-Hastings and the same
integrated kernel in (2). Finally, we use a Gibbs sampler to sample σ−2, γ, and ν1, . . . , νM
from their respective full conditionals. The full conditional for νm is a generalized inverse-
Gaussian distribution with density function f(νm;λ, χ, ψ) ∝ νλ−1m exp{−(χ/νm + ψνm)/2},
where λ = −(Lm − 1)/2, ψ = 1, and χ = κ−1m θ∗Tm θ∗m. Algorithm 1 shows the full MCMC
approach used to fit the model.

B.2 Posterior inference for h(·)

Estimates of h(·) for the observed exposure levels can be obtained by sampling from the
conditional distribution of h from (4) in the main text (Bobb et al., 2015). Specifically, for
each MCMC iteration, we sample h from

h|θ∗1, . . . ,θ∗M , σ2, τ 2,γ,Y ∼ N
[
τ 2KK̃−1(Y − Zγ), σ2τ 2KK̃−1

]
. (3)
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Algorithm 1: MCMC algorithm for BKMR-DLM
Initiate parameters
Iterate:

For m in 1, . . . , K do:
θ∗m ← elliptical slice sampler using p(θ∗1, . . . ,θ

∗
M , τ

2|Y) as in (16)
νm ← gen-inv-Gaussian∗ with λ = −(Lm − 1)/2, ψ = 1, and χ = κ−1m θ∗Tm θ∗m.
ρm ← ||θ∗m||−2 (deterministic)

log(τ 2) ← M-H and with kernel as in (16)

σ−2 ← gamma

[
a1 + (n− p)/2, a2 + YT

{
K̃−1 + K̃−1Z

(
ZT K̃−1Z

)−1
ZT K̃−1

}
Y/2

]
γ ← MVN

[(
ZT K̃−1Z

)−1
ZT K̃−1Y,

(
ZT K̃−1Z

)−1]
∗ Generalized-inv-Gaussian with pdf f(ρm;λ, χ, ψ) ∝ ρλ−1

m exp{−(χ/ρm + ψρm)/2}

To predict h(·) at new values, we predict hnew by considering the joint distribution(
h

hnew

)
∼ N

[
0, σ2τ 2

(
K K′′T

K′′ K′

)]
. (4)

The subsequent posterior predictive distribution

hnew|θ∗1, . . . ,θ∗M , σ2, τ 2,γ,Y ∼ (5)

N
[
τ 2K′′K̃−1(Y − Zγ), σ2τ 2

{
K′ − τ 2K′′K̃−1K′′T

}]
.

We use this distribution to visualize h over a regularly spaced grid in the data analysis.
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C Additional results from the simulation study

Figures S2-S5 show the estimated weight functions for the first 100 simulated data sets for
simulation scenario A.
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Figure S2: Simulated and estimated weight functions for scenario A with n = 100 using
BKMR-DLM with a Gaussian kernel. The black line shows the true weight function. The
thin grey lines show the estimated weight functions for the first 100 simulated data sets. The
dashed black line shows the mean weight function across all simulated data sets. The rows
show the residual SD of 3, 7.5, and 15, representing the high, medium, and low signal-to-noise
settings.
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Figure S3: Simulated and estimated weight functions for scenario A with n = 100 using
BKMR-DLM with a quadratic kernel. The black line shows the true weight function. The
thin grey lines show the estimated weight functions for the first 100 simulated data sets. The
dashed black line shows the mean weight function across all simulated data sets. The rows
show the residual SD of 3, 7.5, and 15, representing the high, medium, and low signal-to-noise
settings.
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Figure S4: Simulated and estimated weight functions for scenario A with n = 500 using
BKMR-DLM with a Gaussian kernel. The black line shows the true weight function. The
thin grey lines show the estimated weight functions for the first 100 simulated data sets. The
dashed black line shows the mean weight function across all simulated data sets. The rows
show the residual SD of 3, 7.5, and 15, representing the high, medium, and low signal-to-noise
settings.
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Figure S5: Simulated and estimated weight functions for scenario A with n = 500 using
BKMR-DLM with a quadratic kernel. The black line shows the true weight function. The
thin grey lines show the estimated weight functions for the first 100 simulated data sets. The
dashed black line shows the mean weight function across all simulated data sets. The rows
show the residual SD of 3, 7.5, and 15, representing the high, medium, and low signal-to-noise
settings.
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D Alternative simulation scenario C with smoother weight functions

The natural spline basis used to estimate the weight functions with BKMR-DLM are not
flexible enough to match the shape of the true weight functions in simulation scenarios
A and B presented in the main text. This is evident from Figures S2-S5. This likely
limits the performance of BKMR-DLM in those scenarios. To evaluate the impact of this
misspecification of the weight function in our model we include an additional simulation
scenario that is the same as scenario A in the main text but has smoother weight functions.
Specifically, the weight functions are simulated from a natural spline basis with 4 degrees
of freedom that can be perfectly matched by the BKMR-DLM models. In each case we
projected the original weight function onto a natural spline basis with four degrees of freedom
to perfectly match the parameterization of the BKMR-DLM models used in the simulation
study. Comparing these scenarios to those in the main text isolates the impact of using an
overly smooth basis for the weight function in BKMR-DLM.

Figures S6-S9 illustrate the smoother true weight functions (solid black) and the first 100
estimated weight functions with BKMR-DLM with both a Gaussian and quadratic kernel.
The dashed black line is the mean of all simulated data sets. In the cases with stronger
signal-to-noise ratio and large sample size the BKMR-DLM models with both Gaussian and
quadratic kernel well approximate the true weight function. With smaller sample size and
larger signal-to-noise ratio the weight functions are relatively flat. This was also the case for
scenario A in the main text.

Table S1 show results from simulation scenario C. Comparing scenario C to scenario A
in the main text, BKMR-DLM and BKMR-DLM-quad have lower RMSE on the exposure-
response function (h) and weight functions in scenario C where the models can better approx-
imate the true weight functions. This improvement occurs only in the higher signal-to-noise
and larger sample size cases. As a result, BKMR-DLM-quad shows greater improvement in
estimating the exposure-response function compared to alternative models.

E Alternative simulation scenario D

Scenario D is similar to scenario B in the main text but uses a different exposure-response
relationship. Scenario D includes nonlinear main effects and fewer interaction. The data
generating mechanism included three active exposures (PM2.5, nitrate, and CO). Each model
fit to the data included five exposures. The exposure-response function h between the three
active exposures and the outcome is the only difference in the two scenarios. For scenario
D, the exposure-response function is

hi = 3/[1 + exp(−2Es
1)] + 2Es

21(Es
2>0) − Es

1E
s
2 − 2Es

31(E32s>0) (6)

The weight functions and scaled weighted exposures are as defined in the main text. As in
scenario B, we also include in scenario D two additional exposures that are not associated
with the outcome. All other details are the same as in scenario B and described in the main
text.

Table S2 shows results for scenario D. Overall, the results are similar to the results for
scenario B in the main text. BKMR-DLM-quad was best for inference on the exposure-
response function with lower RMSE on interval coverage near the nominal level. BKMR
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Table S1: Simulation results for scenario C with two active exposures. This is the same as
scenario A in the main text but has smoother true weight functions. The table shows (from
left to right) RMSE for the exposure response function and 0.95 interval coverage for the
exposure-response function, the average pointwise RMSE and pointwise 0.95 coverage for the
two weight functions, and the probability that an interaction is detected by comparing the
difference in an IQR change in PM2.5 at the 75th and 25th percentile of nitrate. A probability
of an interaction near 1 indicates the model consistently finds evidence of an interaction and
a probability near 0.5 indicates no evidence of interaction.

Model RMSE h Coverage h RMSE w(t) Coverage w(t) Pr(interact)
n = 100, noise: sd(ε) = 3.0

BKMR 1.344 0.606 0.746 NA 0.497
BKMR-DLM 1.200 0.979 0.578 0.912 0.505
BKMR-DLM-quad 0.993 0.931 0.505 0.924 0.657
DLM 1.155 0.866 0.862 0.869 NA
DLNM 1.151 0.833 0.932 0.867 NA

n = 100, noise: sd(ε) = 7.5
BKMR 1.664 0.825 0.746 NA 0.497
BKMR-DLM 2.943 0.988 0.758 0.899 0.519
BKMR-DLM-quad 1.735 0.981 0.711 0.894 0.534
DLM 2.363 0.921 1.124 0.831 NA
DLNM 2.172 0.906 1.122 0.847 NA

n = 100, noise: sd(ε) = 15.0
BKMR 2.281 0.933 0.746 NA NA
BKMR-DLM 5.266 0.994 0.785 0.901 NA
BKMR-DLM-quad 2.924 0.995 0.762 0.888 NA

n = 500, noise: sd(ε) = 3.0
BKMR 1.246 0.441 0.746 NA 0.480
BKMR-DLM 0.560 0.956 0.348 0.916 0.489
BKMR-DLM-quad 0.538 0.903 0.317 0.928 0.977
DLM 0.803 0.688 0.651 0.856 NA
DLNM 0.773 0.837 0.868 0.909 NA

n = 500, noise: sd(ε) = 7.5
BKMR 1.406 0.592 0.746 NA 0.473
BKMR-DLM 1.333 0.991 0.618 0.904 0.498
BKMR-DLM-quad 1.080 0.934 0.541 0.916 0.622
DLM 1.273 0.859 0.895 0.860 NA
DLNM 1.352 0.885 0.961 0.887 NA

n = 500, noise: sd(ε) = 15.0
BKMR 1.638 0.763 0.746 NA 0.477
BKMR-DLM 2.560 0.999 0.741 0.897 0.520
BKMR-DLM-quad 1.642 0.976 0.693 0.897 0.541
DLM 2.216 0.906 1.100 0.818 NA
DLNM 2.378 0.914 1.117 0.859 NA
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Figure S6: Simulated and estimated weight functions for scenario C. The thin black line
shows the true weight function. The thin grey lines show the estimated weight functions for
the first 100 simulated data sets. The dashed black line shows the mean weight function
across all simulated data sets. Results from scenario C with n = 100 with BKMR-DLM with
a Gaussian kernel. The rows show the residual SD of 3, 7.5, and 15, representing the high,
medium, and low signal-to-noise settings.

has lower RMSE in some settings but had very low coverage. BKMR-DLM-quad was also
best at making inference on the weight functions. The method had the lower RMSE and
interval coverage close the the nominal level. A primary difference is that BKMR-DLM-
quad had lower power to identify critical windows than in scenario B. Additive DLM and
DLNM had higher power than BKMR-DLM but again had a very high rate of identifying
incorrect critical windows on the two exposures not associated with the outcome. Similar
to in scenario B, BKMR-DLM and BKMR-DLM-quad had a very low rate of identifying
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Figure S7: Simulated and estimated weight functions for scenario C. The thin black line
shows the true weight function. The thin grey lines show the estimated weight functions for
the first 100 simulated data sets. The dashed black line shows the mean weight function
across all simulated data sets. Results from scenario C with n = 100 with BKMR-DLM with
a quadratic kernel. The rows show the residual SD of 3, 7.5, and 15, representing the high,
medium, and low signal-to-noise settings.

incorrect windows and had high precision.
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Table S2: Simulation results for scenario D, three active exposure and two null exposures.
The table shows (from left to right) RMSE for the exposure response function and 0.95 inter-
val coverage for the exposure-response function, the average pointwise RMSE and pointwise
0.95 coverage for the weight functions for the three active exposures, the frequency of detect-
ing a window in the three active exposures, the frequency of detecting a window in the two
exposures not associated with the outcome, and the precision for window detection which is
number of correct windows identified divided by total number of windows identified.
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Figure S8: Simulated and estimated weight functions for scenario C. The thin black line
shows the true weight function. The thin grey lines show the estimated weight functions for
the first 100 simulated data sets. The dashed black line shows the mean weight function
across all simulated data sets. Results from scenario C with n = 500 with BKMR-DLM with
a Gaussian kernel. The rows show the residual SD of 3, 7.5, and 15, representing the high,
medium, and low signal-to-noise settings.
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Figure S9: Simulated and estimated weight functions for scenario C. The thin black line
shows the true weight function. The thin grey lines show the estimated weight functions for
the first 100 simulated data sets. The dashed black line shows the mean weight function
across all simulated data sets. Results from scenario C with n = 500 with BKMR-DLM with
a quadratic kernel. The rows show the residual SD of 3, 7.5, and 15, representing the high,
medium, and low signal-to-noise settings.
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Figure S10: Estimated weight functions from the analysis of BWGAz in ACCESS with
BKMR-DLM using a quadratic kernel. This uses the full ACCESS cohort. The weight
function is constrained and does not reflect the magnitude of the association or the direction
of the association. It only reflects the timing of the association.
.

F BKMR-DLM analysis of the full cohort

The data analysis in Section 5 of the main test included only observations for male babies
with obese mothers. For completeness, we repeated the analysis using BKMR-DLM with a
quadratic kernel using all full term births (n = 661).

Figure S10 shows the estimated weight functions. No critical windows are identified.
Figure S11 shows the estimated exposure-response function. There is evidences of a main
effect of nitrate and some evidence of interactions. Figure S12 shows results of the stratified
DLM analysis for the full cohort.
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Figure S11: Cross sections of the estimated exposure-response function (ĥ) from BKMR-
DLM with a quadratic kernel. This uses the full ACCESS cohort. The panels on the
diagonal show the main effect, which is the association between a weighted exposure (x-
axis) and the outcome at the median level of all other weighted exposures. The dashed line
represents the posterior mean and the shaded ribbon represents the 0.95 credible interval.
The off-diagonals show the exposure-response function at different quantiles of a single co-
exposure. For example, the top right panel shows the sulfate exposure-response relationship
at different quantiles of nitrate and median levels of OC and EC. A fanning or deviation from
parallel lines in the exposure-response relationship represents evidence of an interaction.
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Figure S12: Estimated distributed lag function between exposures and birth weight for
gestational age z-score in ACCESS using the stratified DLMs. This uses the full ACCESS
cohort. The DLM for each exposure is stratified by mean nitrate level over pregnancy
(below and above median nitrate value). The function represents the estimated expected
difference in BWGAz per one standard deviation difference in exposure (y-axis) as a function
of gestational week (x-axis).

S17



References

Bobb, J. F., Valeri, L., Claus Henn, B., Christiani, D. C., Wright, R. O., Mazumdar, M.,
Godleski, J. J., and Coull, B. A. (2015). Bayesian kernel machine regression for estimating
the health effects of multi-pollutant mixtures. Biostatistics, 16(3):493–508.

Murray, I., Adams, R. P., and MacKay, D. J. C. (2009). Elliptical slice sampling. Journal
of Machine Learning Research: W&CP, 9:541–548.

S18


	Additional figures for the preliminary data analysis
	Additional details on the method
	MCMC approach
	Posterior inference for h()

	Additional results from the simulation study
	Alternative simulation scenario C with smoother weight functions
	Alternative simulation scenario D
	BKMR-DLM analysis of the full cohort

