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A. STRAINS, PLASMIDS, OLIGONUCLEOTIDES

Table A: Bacterial strains used in this study.

Strain Genotype, relevant features Reference

Vibrio cholerae

KDV101 Wild type strain N16961 (O1 El Tor) Meibom et al. [2]

KDV148 N16961, vpvCW240R (matrix hyperproducer phenotype) Drescher et al. [3]

KDV611 N16961, vpvCW240R ∆crvA Hartmann et al. [1]

KDV613 N16961, vpvCW240R ∆crvA, contains plasmid pNUT542 Hartmann et al. [1]

KDV615 N16961, vpvCW240R, contains plasmid pNUT542 Hartmann et al. [1]

KDV1082 N16961, vpvCW240R, ∆crvA, ∆rbmA, contains plasmid pNUT1519 Hartmann et al. [1]

KDV1232 N16961, vpvCW240R, ∆crvA, mreBA53K. Codon “AAA” used to encode lysine
This study, MreB point mu-
tation according to Ref. [4]

KDV1248 N16961, vpvCW240R, ∆crvA, mreBA53K, contains plasmid pNUT542 This study

KDV1291 N16961, vpvCW240R, ∆crvA, mreBA53L. Codon “CTG” used to encode leucine
This study, MreB point mu-
tation according to Ref. [4]

KDV1295 N16961, vpvCW240R, ∆crvA, mreBA53L, contains plasmid pNUT542 This study

KDV1403 N16961, vpvCW240R, ∆crvA, mreBA53G. Codon “GGT” used to encode glycine
This study, MreB point mu-
tation according to Ref. [4]

KDV1404 N16961, vpvCW240R, ∆crvA, mreBA53G, contains plasmid pNUT542 This study

KDV1688 N16961, vpvCW240R, ∆crvA, mreBA53K, ∆rbmA This study

KDV1690 N16961, vpvCW240R, ∆crvA, mreBA53L, ∆rbmA This study

KDV1692 N16961, vpvCW240R, ∆crvA, mreBA53G, ∆rbmA This study

KDV1694 N16961, vpvCW240R, ∆crvA, mreBA53K, ∆rbmA, contains plasmid pNUT1519 This study

KDV1696 N16961, vpvCW240R, ∆crvA, mreBA53L, ∆rbmA, contains plasmid pNUT1519 This study

KDV1698 N16961, vpvCW240R, ∆crvA, mreBA53G, ∆rbmA, contains plasmid pNUT1519 This study

Escherichia coli

KDE474 E. coli AR3110 wild type Serra et al. [5]

KDE671 AR3110, point mutation inside csgD promoter according to Grantcharova et al. [6] Vidakovic et al. [7]

KDE2011 KDE671 strain carrying plasmid pNUT1361. This study

S17-1 λpir ∆lacU 169 (φlacZ∆M15), recA1, endA1, hsdR17, thi-1, gyrA96, relA1, λpir de Lorenzo et al. [8]

TOP10
mcrA, ∆(mrr-hsdRMS-mcrBC ), φ80lacZ (del)M15, ∆lacX 74, deoR, recA1, araD139,
∆(ara-leu)7697, galU, galK, rpsL(SmR), endA1, nupG Invitrogen

Salmonella enterica

MAE52 UMR1 PagfD1/rdar28/37 Römling et al. [9]

KDS38 MAE52, contains plasmid pNUT541 plasmid Drescher lab stock

Pseudomonas aeruginosa

UJP505 Pseudomonas aeruginosa PAO1 wild type Malone et al. [10]

KDP63 UJP505, contains plasmid pNUT1636 This study
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Table B: Plasmids used in this study. Abbreviations: Kan = kanamycin, Amp = ampicillin, Gent = gentamicin,
Spect = spectinomycin. Superscript “R” indicates resistance, and “-“ indicates a fusion.

Plasmid Origin, marker, and relevant features Reference

pKAS32 pR6K, AmpR Skorupski and Taylor [11]

pNUT144 pR6K, AmpR, KanR Drescher et al. [12]

pNUT336
pR6K, AmpR, with 1 kb upstream and downstream region of rbmA to
create ∆rbmA strains Nadell et al. [13]

pNUT541 pSC101*, SpectR, Ptac-sfgfp-sfgfp Drescher lab stock

pNUT542 pSC101*, GentR, Ptac-sfgfp-sfgfp Singh et al. [14]

pNUT1519 pSC101*, GentR, Ptac-sfgfp-sfgfp, PBAD -rbmA Hartmann et al. [1]

pNUT1636 pBBR1, GentR, pX2-ypet Drescher lab stock

pNUT1361 pSC101*, KanR, Ptac-sfgfp-sfgfp Drescher lab stock

pNUT1711
pR6K, AmpR, KanR, contains 500 bp upstream and 500 bp downstream
of codon for amino acid 53 in mreB This study

pNUT1727
pR6K, AmpR, KanR, contains mreBA53K mutation and 500 bp up-
stream and 500 bp downstream from that region This study

pNUT1745
pR6K, AmpR, KanR, contains mreBA53L mutation and 500 bp up-
stream and 500 bp downstream from that region This study

pNUT1744
pR6K, AmpR, KanR, contains mreBA53G mutation and 500 bp up-
stream and 500 bp downstream from that region This study

Table C: DNA oligonucleotides used in this study.

Name Sequence (5’ to 3’ direction) Description

KDO2144 CGGAATATTAATGGAGCAGGGGCTCTTGGTGT pNUT1711 construction

KDO2147 ATGCATCCTAGGCCTTTGATCTTTTCTGCAGTGGCTTCAC pNUT1711 construction

KDO2145 AGCCCCTGCTCCATTAATATTCCGGAGTATACGTAGCCGG pNUT1711 construction

KDO2146 TGCAGAAAAGATCAAAGGCCTAGGATGCATATGGCG pNUT1711 construction

KDO1879 AACGGTTTTACCGCCACGACCTTTG
pNUT1727, pNUT1744 and pNUT1745
construction

KDO1878 AAAGCGGTTGGCCATGCCGCAA pNUT1727 construction

KDO2179 GGTGCGGTTGGCCATGCCGCAA pNUT1744 construction

KDO2178 CTGGCGGTTGGCCATGCCGCAA pNUT1745 construction



4

B. IMAGE ANALYSIS METHODS

Adaptations to segmentation algorithm from Ref. [1]

The segmentation algorithm defined in Ref. [1] is optimized for V. cholerae bacteria, whose aspect ratio is typically
around 2-3. For longer cells, such as E. coli bacteria with an aspect ratio up to 5, oversegmentation was observed
when applying this standard algorithm, making adjustments necessary. To avoid such oversegmentation, we reduced
the number of watershed seeds prior to applying the watershed algorithm, greatly improving the accuracy of E.coli
segmentation.

In order to identify watershed seeds to remove, we first determine which watershed seeds lie within the same
bacterial cell. We achieve this by using the filtered intensity image to identify whether connecting lines between pairs
of seeds experience a drop in intensity. This is to be expected when the seeds lie within different cells. In contrast, if
there is no intensity drop along the connecting line, it is likely that the seeds are located within the same cell.

For a pair of seeds pa and pb we first calculate the pixels pi that represent the connecting line between them. By
convention we set p0 = pa and pN = pb, where N is the number of pixels representing the line. Denoting the value of
the filtered intensity image at pixel pi as Ii, we define the expected intensity Ei at pi to be

Ei = Ia +
i

N
· (Ib − Ia) (S1)

and the deviation Di of from this expectation as

Di = (Ii − Ei)/Ei . (S2)

With this definition, a large negative value for Di corresponds to a significant intensity drop between the seeds,
indicating that they are located in different cells. If any of the pixels pi correspond to background, the deviation Di

is set to − inf. The intensity drop da,b for the pair of seeds pa and pb is defined as min(Di).

After determining da,b for each pair of seeds with a distance of 100 pixels (63µm) or less between them, a cutoff c is
then calculated by applying Otsu’s method to the distribution of all finite values of da,b. All pairs of seeds above this
cutoff value are considered to belong to the same cell. After clustering all seeds located in the same cell and choosing
only one representative seed for each cell, the watershed algorithm and all subsequent steps are applied as described
in [1].

Quantification of biofilm architecture

To quantify the architecture of biofilms, cells were segmented using the algorithm described in [1], with modifications
as described above. This segmentation was then imported into BiofilmQ [15] and used for subsequent analysis.

For each biofilms, we measured both single-cell properties (cell size, length, aspect ratio, etc.), and collective
multicellular properties (local cell density, nematic order, etc.); where by definition, the computation of collective
multicellular properties requires input information from two or more cells, whereas the single-cell properties can be
determined by only knowing information about a single cell. All measured properties are listed in Table D. All
properties were calculated with BiofilmQ, some of which were calculated using standard BiofilmQ functionality and
some of which required the use of a custom BiofilmQ user-defined parameter script. We have indicated properties
where a custom script was required in Table D, and for these properties, we explain their definition in detail below.

Single-cell properties

To obtain the cell size parameters and orientations, an ellipsoidal fit was applied to each segmented cell. This fit
yielded a vector for each of the three axes of symmetry. The length and orientation of the longest axis of symmetry is
assigned to be the cell length and cell orientation respectively, and the second longest axis defines the cell diameter.
The alignment with the z-axis and the direction of flow is defined to be π minus the relative angle between those axes
and the cell orientation obtained by the ellipsoidal fit. To calculate the radial alignment, the vector pointing from
cell to the biofilm center of mass projected to the substrate is used as a reference, π minus the relative angle between
this vector and the cell’s orientation defines the radial alignment.
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Collective multicellular properties

Let Sα(r) be the sphere of radius r around cell α, and Nα(r) the set of other cells with centroids in Sα(r). The
local density at cell α is defined to be the volume fraction occupied by cells in Sα(r). The local number density is
defined to be number of cells in Nα(r) divided by the volume of Sα(r). For this work, we chose r = 2µm to determine
the local density.

To determine the nematic order parameter, we set r = 3µm, such that about 5-8 cells can be expected to be within
the sphere Sα(r). Let n̂α be the normalized orientation vector for the cell α and for each γ ∈ Nα(r), let n̂γ be the
corresponding normalized orientation vector. Then, the nematic order parameter of the cell α is defined as

NOα =

 1

|Nα|
∑
γ∈Nα

3

2
(n̂α · n̂γ)2

− 1

2
(S3)

For calculating the cell-cell spacing, the outline of each cell is approximated by a triangulated mesh using the MATLAB
isosurface implementation. Along the direction of the normal vector of each face of the mesh, the distance to the
next object surface is determined. The cell-cell spacing is given by the mean of these distances, the cell-cell spacing
fluctuations by the standard deviation of them.

Characterization of biofilms in terms of histogram of measured properties

Each biofilm is characterized by a collection of histograms summarizing the single-cell properties (centroid coordi-
nates, cell length, aspect ratio, cell orientation, etc.) and collective cell properties (local density, local nematic order,
etc.). A quantitative comparison of two biofilms can thus be performed by comparing their sets of corresponding
histograms. Below, we describe a systematic procedure for comparing two biofilms based on spectral Chebyshev
approximations of the measured histograms.

Kernel smoothing of histogram

To reconstruct the probability density function from the histograms, we first remove the outliers of the measurements
(if any) for each property and each biofilm, defined as measurements that are 4 standard deviations away from the
mean. We then compute the range of each biofilm property across a set of biofilms by finding the minimum and the
maximum of the measurements from all biofilms, and normalize those measurements so that they lie between −1 and
1. This normalization step allows us to combine biofilm properties with different units when comparing biofilms. For
each property and each biofilm, we use kernel density estimation to fit the underlying probability density function
by applying a Gaussian kernel with a standard deviation of 0.08 to the normalized measurements. Fig A shows the
histograms of the normalized measurements, and the resulting kernel density estimates of the probability density
function for all biofilm properties.
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Parameter
Parameter name in

BiofilmQ Parameter description Unit

Cell aspect ratio
Custom parameter

(Ellipsoidal fit)
Ratio of longest axis to second-longest axis from

ellipsoidal fit None

Cell convexity Shape Convexity Ratio of cell volume to convex cell volume None

Cell diameter
Custom parameter

(Ellipsoidal fit) Second longest axis length of ellipsoidal fit µm

Cell length
Custom parameter

(Ellipsoidal fit) Longest axis length of ellipsoidal fit µm

Cell volume Shape Volume Volume of the object µm3

Alignment with
flow

Custom parameter
(Ellipsoidal fit)

Angle between direction of flow and ellipsoidal
longest axis direction Radian

Alignment with
z-axis

Custom parameter
(Ellipsoidal fit)

Angle between z-axis and ellipsoidal longest axis
direction Radian

Radial
alignment

Custom parameter
(Ellipsoidal fit)

Angle between vector pointing to center of biofilm
at substrate and ellipsoidal direction Radian

Nematic order
parameter Custom parameter

Nematic order parameter based on all neighbors
found within a sphere of radius 3 µm around the

cell’s centroid None

Bacterial
volume fraction

Architecture Local
Density range32

Occupied volume fraction in a sphere of radius
2 µm around the cell centroid None

Number density

Architecture Local
Number

Density range32

Number density of cell centroids present in a
sphere of radius 2 µm around the object (including

itself) None

Distance to
biofilm center
at substrate

Distance ToBiofilm
CenterAtSubstrate

Distance of the cell to the center of mass of the
biofilm projected onto the substrate µm

Distance to
biofilm center

Distance ToBiofilm
CenterOfMass

Distance of the cell to the center of mass of the
biofilm µm

Distance to
nearest

neighbor
Distance ToNearest

Object ch1
Centroid-centroid distance of the cell to the

closest different cell µm

Cell-cell spacing Custom parameter

Distance from the cell’s surface to the closest
surface of another cell in a defined direction,

averaged over directions across the cell body given
by an isosurface approximation µm

Cell-cell spacing
fluctuations Custom parameter

Standard deviation of the distance between cell
surfaces as described for cell-cell spacing across all

directions used µm

Table D: Summary of biofilm properties measured for architecture quantification. Single cell properties are listed
first and separated from collective multicellular properties by a double line. Measurements based on custom code are

described in more detail. All other properties were calculated using BiofilmQ version 0.1.6, available at
https://drescherlab.org/data/biofilmQ/docs/usage/installation.html.

https://drescherlab.org/data/biofilmQ/docs/usage/installation.html
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Fig A: Kernel density estimation and Chebyshev polynomial approximation for all the properties of a 2,300-cell V.
cholerae biofilm (parental strain, 1% arabinose concentration), using the Chebyshev quantification method. Our
kernel density estimations (orange lines) capture the overall shape of distributions, and are well-approximated by

the Chebyshev expansion of degree 20 (green lines). Source data is available at DOI: 10.5281/zenodo.7077624.
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C. CHEBYSHEV DISSIMILARITY

Here we introduce a method that allows us to distinguish and classify biofilms both within a species and across
species based on the Chebyshev representation of the kernel density estimate.

Spectral approximation of probability distributions

One can approximate a continuous normalized probability density f(x) ≥ 0 on [−1, 1] by its Chebyshev expansion

Fd(x) =

d∑
k=0

fkTk(x) (S4)

where Tk(x) = cos(k arccosx) denotes the Chebyshev polynomials of the first kind.
To compute the Chebyshev features for a set of biofilms, we fit a Chebyshev polynomial with degree d = 20 to

the kernel-smoothed probability density function to obtain 21 Chebyshev coefficients for each measured property of a
biofilm. Fig A shows the resulting Chebyshev polynomial approximations for all the properties for a biofilm.

Chebyshev dissimilarity

Let Fd(x) =
d∑
k=0

fkTk(x) and Gd(x) =
d∑
k=0

gkTk(x) be two Chebyshev expansions of degree d that approximate

functions f(x) and g(x) on the interval x ∈ [−1, 1]. The Chebyshev dissimilarity between f(x) and g(x) is defined by

Cd[f, g] :=

d∑
k=0

wk |fk − gk| , wk =

∫ 1

−1
dx |Tk(x)| ≤ 2. (S5)

Cd gives an upper bound of the L1-norm between Fd(x) and Gd(x), because

1∫
−1

dx

∣∣∣∣∣
d∑
k=0

(fk − gk)Tk(x)

∣∣∣∣∣ ≤
1∫
−1

dx

d∑
k=0

|(fk − gk)Tk(x)|

=

1∫
−1

dx

d∑
k=0

|fk − gk| |Tk(x)|

=

d∑
k=0

|fk − gk|
∫ 1

−1
dx |Tk(x)| = Cd[f, g] (S6)

In practice, we choose to compute Cd as an approximation of the L1-norm between Fd(x) and Gd(x), as Cd can be
evaluated much more efficiently. With this measure, modes are approximately equally weighted since 1 ≤ wk ≤ 2.

Comparing two biofilms by the statistical properties

Denote the probability density function of a property p in biofilm b as fp,b. The Chebyshev dissimilarity between
two biofilms b1 and b2 is computed as the average of the Chebyshev dissimilarities of all p = 1, . . . , P measured
properties between two biofilms,

Cdb1,b2 =
1

P

P∑
p=1

Cd[fp,b1 , fp,b2 ]. (S7)

Using this method, we computed the pairwise Cd between biofilms of four different species (panel B in Fig 1 in the
main text), between V. cholerae biofilms (Fig B) and between V. cholerae biofilms and simulations to fit undetermined
simulations parameters, as described in Simulation parameters.
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Fig B: Pairwise Chebyshev dissimilarity for 72 V. cholerae biofilms (Ncell ∼ 2000) grown under different
experimental conditions. The labels on x and y axis indicate the strain and the arabinose concentration level of each

biofilm. Source data is available at DOI: 10.5281/zenodo.7077624.

Comparing two properties across a collection of biofilms

The Cd between two measured properties p1 and p2 is computed as the average of the Chebyshev dissimilarities
between p1 and p2 in all b = 1, . . . , B biofilms,

Cdp1,p2 =
1

B

B∑
b=1

Cd[fp1,b, fp2,b]. (S8)
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We computed the pairwise between all 16 measured properties of biofilms of four different species (Fig C and in panel
C in Fig 1 in the main text) to identify highly-correlated clusters of properties, as described below.

Avoiding over-weighting similar properties

C
h
eb

ysh
ev d

issim
ilarity

Biofilm properties

Biofilm properties

Alignment with Flow

Radial Alignment
Alignment with Z-Axis

Bacterial Volume Fraction

Number Density
Nematic Order Parameter

Cell-cell Spacing Fluctuations

Cell-cell Spacing

Distance to Biofilm Center
Distance to Nearest Neighbor

Cell Convexity

Cell Diameter

(Cell Length)

(Distance to Biofilm Center of Mass)

Cell Aspect Ratio

(Cell Volume)

0

6

4

2

Fig C: Pairwise Cd between 16 properties measured in biofilms of four different species (15 biofilms each for E. coli,
V. cholerae, P. aeruginosa and S. enterica; Ncell ∼ 2000 for all the biofilms). Using silhuoette coefficient and

hierarchical clustering, the optimal number of properties was identified to be 13. Clusters are highlighted by red
squares. Source data is available at DOI: 10.5281/zenodo.7077624.

To avoid double counting highly-correlated biofilm properties in our comparison between two biofilms, we calculate
pairwise Cd between all 16 measured properties of biofilms of four different species (15 biofilms each for E. coli, V.
cholerae, P. aeruginosa and S. enterica; Ncell ∼ 2000 for all the biofilms) and identify highly-correlated clusters of
properties using hierarchical clustering. For each number of clusters, starting with 1 up until the total number of
properties, we calculate the silhuoette coefficient for the clustering based on the hierarchical tree and found that the
optimum is achieved at 13 clusters. As depicted in Fig C, which is also shown in panel B in main Fig 1, two clusters
containing two and three properties respectively are identified and collapsed into single property measurements by
choosing a representative.

Contributions of each property to the principal components

When applying a principal component analysis to the Chebyshev coefficient space, all four species can be distin-
guished clearly in the projection of the first two principal components, as shown in main text Fig 1. The contribution
of each biofilm property to these components can be estimated by calculating the norm of the weight vector of the
Chebyshev coefficients associated with the biofilm property. Fig D shows this contribution estimate for each biofilm
property to the principal components 1 and 2, revealing that the aspect ratio as well as cell density in the form of
number density and cell-cell spacing have a strong impact on the PCA results and therefore the biofilm architecture.
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Fig D: The aspect ratio appears within the top two contributions for both PC1 and PC2, indicating that it plays in
important role in biofilm architecture. Properties related to the cell density such as number density and cell-cell

spacing also rank highly, which implies that the cell density also has a great impact on architecture. Source data is
available at DOI: 10.5281/zenodo.7077624.
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D. PROPERTIES OF MUTANT STRAINS

To systematically explore the effect that aspect ratio and local number density have on the biofilm architecture,
mutants of Vibrio cholerae were constructed. For changing the aspect ratio of bacterial cells, mreB point mutations
were introduced according to Ref. [4], leading to cell shapes with smaller aspect ratios as shown in the main text
panel A in Fig 2. In each of those mutants as well as in the parental strains, additional mutations were introduced
to allow for controlling the production of RbmA through addition of arabinose to the medium (see main text and
material and methods). All strains, plasmids, and oligonucleotides that were used in this study are listed in Table A,
Table B, and Table C, respectively.

Impact of mreB mutations on biofilm growth rate

To measure the growth rate of mreB mutants in biofilms, all single cells were detected in 3D confocal microscopy
image time series of biofilm growth up to 2000 cells, using BiofilmQ [15] and the semgentation technique from Ref.
[1]. We observed exponential growth under these conditions and extracted the growth rate as the inverse cell doubling
time, excluding the lag phase from the calculation. Fig E shows the growth rates of each of the mreB mutants as well
as the parental strain. While a general trend towards higher growth rates for lower aspect ratios can be observed, the
differences are not statistically significant.

Fig E: The mreB mutations used in this study have no significant impact on cell doubling time in biofilms. Growth
rates, defined as the inverse of the cell doubling time, are plotted for the parental strain and the three different

mreB mutants. Source data is available at DOI: 10.5281/zenodo.7077624.

Impact of arabinose concentration on biofilm growth rate

In our experiments, V. cholerae biofilms are grown in M9 minimal medium with 0.5% glucose. For experiments
involving strains that harbor a plasmid with the arabinose-inducible rbmA expression system PBAD-rbmA, we mea-
sured the growth rate in biofilms as a function of arabinose concentration, because arabinose could potentially be used
as a carbon source, even though glucose is a preferred carbon source. Fig F shows the growth rate of each biofilm as a
function of arabinose concentration with individual data points colored by strain and bars and error bars representing
the mean and standard deviation of all biofilms at a given arabinose concentration. A significant increase in growth
rates between low and high arabinose concentrations can be observed, increasing the growth rate from ≈0.47/h to
0.67/h. It is therefore reasonable to assume that arabinose is in part used as a carbon source during biofilm growth in
our conditions. However, since this project focused on end-point measurements at a fixed cell number, comparability
of the data is still ensured, even when growth rates between individual biofilms differ.
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Fig F: High arabinose concentrations increase growth rates of V. cholerae biofilms in M9 medium with 0.5% glucose.
Growth rates, defined as the inverse of the cell doubling time in the biofilm, are plotted for each biofilm as a

function of different arabinose concentrations added to the medium. Grey bars and error bars represent mean and
standard deviation of all biofilms grown at a given arabinose concentration. Data points represent data for

individual biofilms, colored by strain. Source data is available at DOI: 10.5281/zenodo.7077624.

Influence of arabinose concentration and mreB mutations on RbmA production

First, we wanted to test whether the mreB mutations have an impact on RbmA levels. We therefore measured the
fold-change of extracellular RbmA between each of the three mreB mutants and the parental strain, all harboring
the ∆rbmA mutation and the PBAD-rbmA construct, at a constant arabinose concentration of 0.08%. RbmA levels
were determined by measuring the extracellular proteome using mass spectrometry. The results, shown in panel a
in Fig G, indicate that there are small but significant differences in extracellular RbmA levels between the parental
strain and the strains with mreB mutation A53K and A53L.

In strains carrying the ∆rbmA mutation and the PBAD-rbmA construct, growth in increased arabinose concentra-
tions should lead to increased RbmA levels. To test whether this is indeed observed in our conditions, we measured
the extracellular proteome using mass spectrometry (media: M9 + 0.5%glucose + variable arabinose concentration).
The proteome measurements were used to determine the extracellular RbmA levels. This experiment was performed
for arabinose concentrations ranging from 0% (control) to 0.5%. Comparing the RbmA levels of the induced strains
to the base level of RbmA production at 0% arabinose, shown in panel b in Fig G, reveals a significant increase of
RbmA levels with increasing arabinose concentration.

Overall, these results indicate, that the PBAD-rbmA construct has the expected influence on RbmA production,
and that the mreB mutations have a small but significant impact on RbmA production.

Influence of arabinose concentration and mreB mutations on cell density in biofilms

Fig 2 of the main text shows the local number density as a function of arabinose concentration, displaying the mean
and standard deviation, where data was pooled across the parental strain and the three mreB mutants. Different
aspect ratios, however, may lead to differences in cell packing and therefore cell density, and the mreB mutations
also have a slight impact on RbmA production as described above. It is therefore useful to disentangle the pooled
mean from Fig 2 to ensure that it is justified to combine all mutants into a single average. Fig H shows the same
graph as Fig 2, where in addition to the mean and standard deviation of all strains, depicted by grey bars and error
bars respectively, the values for each biofilm are shown as points with the color corresponding to the strain. For low
(≤ 0.05%) and high (≥ 0.1%) arabinose concentrations, there are no differences in the cell density between strains.
For the intermediate concentrations 0.07%, 0.08% and 0.09% however, a trend towards higher cell number densities for
smaller cell aspect ratios can be observed. In this intermediate range, number densities are also the most sensitive to
small changes in arabinose concentrations, indicating that the biofilm architecture at this RbmA level is particularly
sensitive to pertubations. The magnitude of cell density changes between different species is at a similar level as the
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Fig G: RbmA level measurements in biofilms using mass spectrometry, for different mreB nutants and for biofilms
grown in different arabinose concentrations. (a) Fold changes (FC) of extracellular RbmA levels between the mreB
mutant strains and the parental strain, revealing a small, but significant effect for two of the three mutations. (b)
Fold changes of extracellular RbmA levels of the strain KDV1082 (∆rbmA, PBAD-rbmA) for different arabinose
concentrations, relative to arabinose-free medium. For this strain, a higher concentration of arabinose results in

higher levels of RbmA in the biofilms. All bar heights are calculated based on n = 3 independent biological
replicates, error bars indicate standard deviation. Source data is available at DOI: 10.5281/zenodo.7077624.

magnitude of changes due to small (< 0.02%) differences in arabinose concentration, but significantly lower than the
magnitude of change due to large differences in arabinose concentrations. Overall, the experimental system is therefore
suited to explore the density - aspect ratio space in a systematic manner, because we do not require cell densities
of different mutants to be perfectly identical for identical arabinose concentrations, but rather rely on meaningful
changes to occur across the variation of arabinose concentrations in order to observe different combinations of aspect
ratio and cell densities.

Fig H: The cell number density in V. cholerae biofilms changes with increasing arabinose concentration, for strains
with an arabinose-inducible RbmA production. For each of the four mutant strains with different aspect ratios and
arabinose-inducible RmbA production, three replicates of biofilms were grown in different arabinose concentrations.
The mean and standard deviation of all four strains combined are shown as grey bars and error bars (as in Fig 2),

whereas circles represent the individual data points. Points are colored according to the strain. Source data is
available at DOI: 10.5281/zenodo.7077624.
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E. PROTEOMICS METHODS

Sample Preparation

For LC-MS proteomics analysis, V. cholerae strains carrying a plasmid with a gentamicin resistance and an
arabinose-inducible rbmA expression construct were grown over night in LB medium supplemented with gentam-
icin (final concentration 30 µg mL−1) at 28 °C under shaking conditions. After overnight incubation, cells were
back-diluted to an OD600 0.05 in M9 medium supplemented with gentamycin (final concentration 30 µg mL−1) and
further incubated at 28 °C under shaking conditions. When the cultures reached OD600 0.45, rbmA expression was
induced by the addition of arabinose: 0.08% arabinose was used to compare the production of RbmA between V.
cholerae strains with different mreB alleles (kdv611, kdv1232, kdv1291, kdv1403). Arabinose concentrations between
0 and 0.5% were used to investigate the relationship between the exogenous arabinose concentration and RbmA pro-
duction in V. cholerae (strain kdv1082). After 4 h of incubation at 28 °C, 2.5× 108 cells were collected, washed three
times in PBS and lysed in 50 µL lysis buffer (2% sodium deoxycholate, 0.1 M TRIS, 10 mM TCEP, pH = 8.5) using
strong ultra-sonication (10 cycles, Bioruptor, Diagnode). The protein concentration was determined by tryptophan
fluorescence analysis [16] using a small sample aliquot. Sample aliquots containing 50 µg of total proteins were reduced
for 10 min at 95 °C and alkylated at 15 mM chloroacetamide for 30 min at 37 °C. After diluting samples 1:1 (v:v)
using 0.1 M TRIS (pH = 8.5), proteins were digested by incubation with sequencing-grade modified trypsin (1/50,
w/w; Promega, Madison, Wisconsin) overnight at 37 °C. Then, the peptides were cleaned up using iST cartridges
(PreOmics, Munich) according to the manufacturer’s instructions. Samples were dried under vacuum and stored at
-80 °C until further use.

LC-MS Analysis

Dried peptide samples were dissolved in aqueous 0.1% formic acid solution and 1 µg of peptides were LC-MS
analyzed as described previously [17]. Chromatographic separation of peptides was carried out using an Ultimate
3000 nano-LC (Thermo Fisher Scientific), equipped with a heated RP-HPLC column (75 µm x 30 cm) packed in-house
with 1.9 µm C18 resin (Reprosil-AQ Pur, Dr. Maisch). Peptides were analyzed per LC-MS/MS run using a linear
gradient ranging from 95% solvent A (0.15% formic acid, 2% acetonitrile) and 5% solvent B (98% acetonitrile, 2%
water, 0.15% formic acid) to 30% solvent B over 60 minutes at a flow rate of 300 nL/min. Mass spectrometry analysis
was performed on Q-Exactive HF mass spectrometer equipped with a nanoelectrospray ion source (both Thermo
Fisher Scientific) using data-independent acquisition. For MS1, 3e6 ions were accumulated in the Orbitrap cell over
a maximum time of 100 ms and scanned at a resolution of 120,000 FWHM (at 200 m/z). MS2 scans were acquired
at a target setting of 3e6 ions, accumulation time was set to auto and resolution to 30,000 FWHM (at 200 m/z). 30
MS2 windows of 18 m/z covering a mass range from 399.5 to 910.5 m/z with 1 m/z overall were collected per MS
cycle. The normalized collision energy was set to 28% and all data were acquired in centroid mode.

The acquired raw-files were searched against a protein database containing sequences of the predicted Uniprot entries
of V. cholerae N16961 (www.ebi.ac.uk, release date 2022/5/12) and commonly observed contaminants (in total 3,782
sequences) using the SpectroMine software (Biognosys, version 1.0.20235.13.16424) using default settings. In brief,
the precursor ion tolerance was set to 10 ppm and fragment ion tolerance was set to 0.02 Da. The search criteria
were set as follows: full tryptic specificity was required (cleavage after lysine or arginine residues unless followed by
proline), 3 missed cleavages were allowed, carbamidomethylation (C) was set as fixed modification and oxidation (M)
and N-terminal acetlyation as a variable modification. The false identification rate was set to 1%. For quantification,
the raw files were loaded into SpectroNaut (Biognosys, v15) and searched against the spectral library generated by
SpectroMine. The quantitative data were exported from SpectroNaut and statically analyzed using MSstats (v.4.1.3)
[18].
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F. INDIVIDUAL-BASED MODEL AND SIMULATIONS

Model description

Our single cell model is based on the agent-based framework described in [19], with modifications to include
effective anisotropic friction and cell-floor attachment. Cells are modeled as ellipsoids of half-length lα and half-width
rα. Each cell is described by its position x̂α, orientation n̂α and effective local viscosity µα. For simplicity, we assume
that all the cells have r = 0.3422 µm as their half-width and µm = 1 Pa·s as their effective local viscosity [1], as
recorded in Table E. The dynamics of the cells are approximated as over-damped, as cells live at low Reynolds number
Re ≈ 10−4 [1]. Denoting the identity matrix by I, the over-damped translational and orientational dynamics for a
single cell are

dx̂α
dt

= Γ−1
(
−∂Ubdy

∂x̂α
− ∂Vα
∂xα

− ∂Us,cell
∂x̂α

− ∂Us,bdy
∂xα

)
dn̂α
dt

=
(
I− n̂αn̂

T
α

) [
Ω−1

(
−∂Ubdy

∂n̂α
− ∂Vα
∂n̂α

− ∂Us,cell
∂n̂α

− ∂Us,bdy
∂n̂α

)] (S9)

where Γ, Ω are

Γ = γα
[
γ‖
(
n̂αn̂

T
α

)
+ φγ⊥

(
I− n̂αn̂

T
α

)]
Ω = ωαωRI.

(S10)

Here, γα and ωα are the typical translational and rotational drag coefficients for Stokes’ drag for a spheroid (γα =
6πµαrα, ωα = 8πµαlαr

2
α) [1, 19]. γ‖, γ⊥ and ωR are dimensionless geometric parameters characterizing the longitudinal

and transverse friction parameters that depend only on the aspect ratio a = lα/rα of the cell, as given in [20]. φ is an
anisotropic friction factor that suppresses transverse motions when φ increases (φ = 1 for viscous fluid). We choose
φ = 100 as cells are moving in a matrix polymer network that grows around the cell, which can greatly suppress the
transverse motions of the cell [21, 22].

Part of the interaction between a cell and the wall boundary is modeled with a repulsive-attractive interaction
potential Ubdy, which is is proportional to the overlap between a cell and the wall boundary. The wall boundary is

represented as a plane define by normal vector N̂ and a point on this plane S. To determine this overlap, an overlap
coordinate zo = l|n̂α · N̂ | + r − N̂ · (x̂α − S) is defined such that zo < 0 implies no contact with the boundary and

zo ≥0 implies contact with the boundary. We choose N̂ = [0, 0, 1] and S = [0, 0, 0] such that the wall is the xy-plane
that crosses the origin. The repulsive-attractive interaction from the wall can be represented by

Ubdy =

εbdy,a exp
(
− z2o
σ2
bdy,a

)
+ (εbdy,r − εbdy,a) , zo < 0

εbdy,r exp
(

zo
σbdy,r

)
, zo ≥ 0

(S11)

where εbdy,a captures the magnitude of the cell-boundary attraction, σbdy,a captures the range of the interaction,
εbdy,r captures the magnitude of the cell-boundary repulsion, and σbdy,r captures the range of the repulsion. The
values of these parameters are listed in Table E.

The pairwise cell-cell interactions are described by two potentials Vα and Us,cell, where Vα is the general pairwise
cell-cell interaction that applies to all pairs of cells [1], and Us,cell is the polar attachment that only exists between
two sibling cells after division or between the cell and the boundary. More specifically, Vα is the total potential for

all N − 1 pairwise cell-cell interactions between cell α and other N − 1 cells β (Vα =
∑N
β=1,β 6=α Uαβ). The interaction

between cell α and cell β is governed by the cell-cell interaction potential Uαβ

Uαβ = ε0ε1

exp

(
−
ρ2αβ
λ2r

)
+

ν

1 + exp
(
ρa−ραβ
λa

)
 . (S12)

Here ραβ is the normalized cell-cell distance in [1]. The strength of Uαβ is described by ε0 and adjusted by the shape
factor ε1(lα, lβ , rα, rβ , n̂α, n̂β), depending on the relative cell orientations and cell shapes. λr describes the range
of the osmotic cell-cell repulsion, ν describes the relative strength of cell-cell attraction, ρa describes the attraction
position, and λa describes the width of the cell-cell attraction [1]. The value of ε0 is listed in Table E. For the values
of other interaction parameters, see Simulation Parameters.
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The polar cell-cell attachment Us,cell after cell division is modeled as a harmonic spring between two sibling cells
with spring constant kcell and natural length rcell [19]. As soon as a cell divides, a spring is assigned between the two
closest endpoints of the daughter cells, with the spring potential

Us,cell = kcell (rend − rcell)2 , (S13)

where rend is the distance between the two closest endpoints. The spring breaks at 0.5 · τg after division, where τg is
the average doubling time measured from single-cell experimental data using the same technique as [1]. The values
of kcell, rcell and τg are listed in Table E.

Pili-boundary attachment is modeled as a harmonic spring between a endpoint of cells and a attachment point on
the floor with spring constant kbdy and natural length rbdy, to account for the elastic properties observed for type
IV pili [23]. When the end point of a cell is close enough to the floor (≤ 5 · rbdy), a spring is assigned between the
endpoint and the point on the floor that is closest to the endpoint, with a spring potential

Us,bdy = kbdy (rcell-bdy − rbdy)
2
, (S14)

where rcell-bdy is the distance between the endpoint of cells and the attachment point on the floor. The spring breaks
when its length is longer than 5 · rbdy. When cells with cell-boundary pili divides, the daughter cells will inherit the
cell-boundary pili if they inherit the endpoints that the pili are attached to. The values of kbdy and rbdy are listed in
Table E.

The instantaneous cell length growth follows the growth equation in [1]

dlα
dt

=
lα
τg

ln(2), (S15)

where lα is the instantaneous half-length of the cell and τg is the average doubling time. Cell widths are constant
throughout simulations. A cell divides when it grows an additional length ∆l from its birth length, where ∆l is drawn
from a Gaussian distribution with mean ladd and standard division σadd. Cells divide into two daughter cells that
have half the length of their parent cells and the same orientation as their parent cell. The value of ladd varies to
account for difference V. cholerae mutants used in our experiments, and the value of σadd is list in Table E.

Model implementation

A custom, highly parallelized individual cell-based code employing graphics processing units (GPUs) was developed
to perform the simulations based on [1, 19]. At each time step, cell-cell interactions between all pairs of cells and
cell-floor interaction of all the cells are evaluated. A standard explicit Euler scheme is used to numerically integrate
(S9) and (S15) in non-dimensional form, with r = 0.3422 µm as the length scale, the translational time τt = 5.65 s as
the time scale [1] and ε = 5 · 10−20 J [1] as the energy scale.

Simulation parameters

To determine the values of interaction parameters in this model for different mutant and difference arabinose
concentration level, a systematic scan of division length and four cell-cell interaction parameters (width of cell-cell
repulsion λr, width of cell-cell attraction λa, position of cell-cell attraction ρa and strength of cell-cell attraction ν)
was performed, resulting 6825 biofilm simulations. For a combination of mutant and arabinose concentration level in
experiments, the best-fit simulation is obtained by choosing smallest average Cd to the corresponding experimental
biofilms found within the parameter space searched. To restrict the size of the parameter space searched, we only
searched over simulations which have an average aspect ratio at most 0.6 away from the experimental biofilm. For
combinations of four different mutants and six different arabinose concentration, the renderings of the best-fit simu-
lations are shown in Fig 3 in the main text and their corresponding interaction parameters are plotted in Fig I. The
average and the standard deviation of Cd between the corresponding experiments (n = 3) and the best-fit simulation
are plotted in Fig J. Other simulations parameters are determined from previous single-cell biofilm experiments [1, 19]
and recorded in Table E.
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Parameter Value Unit Description
r 0.3422 µm Average half-width of the bacteria, obtained from experimental measurements of

V. cholerae biofilms.
τg 6130 s Growth time constant [1].
µm 1 Pa·s Estimate of the dynamic viscosity of EPS matrix at room temperature [1].
ε∗bdy,r 10 Ratio comparing the strength of bacteria-boundary repulsion to the strength of the

bacteria-bacteria interaction (ε∗bdy,r = εbdy,r/ε0) [1].
σbdy,r 0.3422 µm Non-dimensional boundary repulsion length scale parameter.
ε∗bdy,a 0.5 Ratio comparing the strength of bacteria-boundary attraction to the strength of

the bacteria-bacteria interaction (ε∗bdy,a = εbdy,a/ε0).
σbdy,a 0.3422 µm Non-dimensional boundary repulsion length scale parameter.
τt 5.65 s Translational time scale due to repulsion in matrix (typical time needed for daugh-

ter cells in matrix to reach their equilibrium configurations due to repulsion after
cell division) [1].

σadd 0.08 µm Standard deviation of length added to bacteria after division to compute division
length [19].

ε0 5·10−20 J Strength of the osmotic pressure-mediated cell-cell repulsion.
kcell 8.5·10−20 J·µm−2 Spring constant for the additional directional cell-cell attraction.
rcell 0.3422 µm Natural length of the spring between sibling cells.
kbdy 8.5·10−20 J·µm−2 Spring constant for the additional directional cell-cell attraction.
rbdy 0.3422 µm Natural length of the spring between sibling cells.

Table E: Key simulation parameters in individual-based simulations.

Fig I: Cell-cell interaction parameters of the best-fit simulations in the main text Fig 3. Source data is available at
DOI: 10.5281/zenodo.7077624.
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Fig J: Average (a) and standard deviation (b) of Cd between the experiments (n = 3) and the best-fit simulation in
the main text Fig 3. Source data is available at DOI: 10.5281/zenodo.7077624.



20

[1] R. Hartmann, P. K. Singh, P. Pearce, R. Mok, B. Song, F. Dı́az-Pascual, J. Dunkel, and K. Drescher, Nat. Phys. 15, 251
(2019).

[2] K. L. Meibom, X. B. Li, A. T. Nielsen, C.-Y. Wu, S. Roseman, and G. K. Schoolnik, Proc. Natl Acad. Sci. U.S.A. 101,
2524 (2004).

[3] K. Drescher, J. Dunkel, C. D. Nadell, S. Van Teeffelen, I. Grnja, N. S. Wingreen, H. A. Stone, and B. L. Bassler, Proc.
Natl Acad. Sci. U.S.A. 113, E2066 (2016).

[4] R. D. Monds, T. K. Lee, A. Colavin, T. Ursell, S. Quan, T. F. Cooper, and K. C. Huang, Cell Rep. 9, 1528 (2014).
[5] D. O. Serra, A. M. Richter, G. Klauck, F. Mika, and R. Hengge, mBio 4 (2013), 10.1128/mBio.00103-13.
[6] N. Grantcharova, V. Peters, C. Monteiro, K. Zakikhany, and U. Römling, J. Bacteriol. 192, 456 (2010).
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[21] T. Munk, F. Höfling, E. Frey, and T. Franosch, Euro. Phys. Lett. 85, 30003 (2009).
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