ACSL1 promotes imatinib-induced chronic myeloid leukemia cell senescence by regulating SIRT1/p53/p21 pathway

Wen Liu¹, Xiaoying Zhu¹, Ling Tang¹, Na Shen², Fanjun Cheng^{1*}, Ping Zou¹, Yong You¹, Guolin Yuan^{3*}, Qing Li^{4*}, Xiaojian Zhu⁵

¹Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China

²Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China

³Department of Hematology, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China

⁴Department of Hematology, Wuhan No.1 Hospital, Wuhan 430000, China

⁵Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

Corresponding authors:

Qing Li, Department of Hematology, Wuhan No.1 Hospital, Wuhan 430000, China. E-mail: liqing54070907@163.com; Telephone: +86 13627100960.

Guolin Yuan, Affiliated Hospital of Hubei University of Arts and Science, Department of Hematology, Xiangyang Hubei, China. E-mail: yuanguo1973@163.com.

Fanjun Cheng, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Road, Wuhan 430022, China. Email: chengfanjun001@sina.com. Telephone: +86 13807186956.

Figure S1

Fig. S1. p53 expression K562 cells. Western blot analysis of p53 in K562 cells.

Table S1. Primer sequences.

Amplicon	Primer FW (5'–3')	Primer RV (5'–3')
ACSL1	CTTATGGGCTTCGGAGCTTTT	CAAGTAGTGCGGATCTTCGTG
p16	TTCGCTAAGTGCTCGGAGTTAATAG	ACCCTGTCCCTCAAATCCTCTG
p21	CACTCCAAACGCCGGCTGATCTTC	TGTAGAGCGGGGCCTTTGAGGCCCTC
p53	CTTTGAGGTGCGTGTTTGTGC	GGTTTCTTCTTTGGCTGGGGA
SIRT1	GAGTGGCAAAGGAGCAGA	TCTGGCATGTCCCACTATC
MDM2	GAATCATCGGACTCAGGTACATC	TCTGTCTCACTAATTGCTCTCCT
GAPDH	GGGAGCCAAAAGGGTCATCA	TGATGGCATGGACTGTGGTC

Figure S2

Supplementary Figure S2.

Gels and blots which are shown cropped in Figure 1i. Note: The blot was cut into multiple strips following the protein transfer. The edges of the PVDF membrane are visible. Here, bands containing the 60-90 kDa and 20-40 kDa regions were imaged, respectively.

Figure S3

Figure 2b

Supplementary Figure S3.

Gels and blots which are shown cropped in Figure 2b. Note: The blot was cut into multiple strips following the protein transfer. The edges of the PVDF membrane are visible. Here, bands containing the 60-90 kDa and 20-40 kDa regions were imaged, respectively.

Figure S4 Figure 3b

Supplementary Figure S4.

Gels and blots which are shown cropped in Figure 3b. Note: The blot was cut into multiple strips following the protein transfer. The edges of the PVDF membrane are visible. Here, bands containing the 60-90 kDa and 20-40 kDa regions were imaged, respectively.

Supplementary Figure S5.

Gels and blots which are shown cropped in Figure 4a, c, e, f, i. Note: The blot was cut into multiple strips following the protein transfer. The edges of the PVDF membrane are visible. Here, bands containing the following regions were separately imaged: p53 (40-60 kDa), p21 (15-30 kDa), p16 (10-25 kDa), Rb (100-130 kDa), SIRT1 (100 -130 kDa), ACSL1 (60-90 kDa) and GAPDH (20-40 kDa).

Figure S6

Supplementary Figure S6.

Gels and blots which are shown cropped in Figure S1. Note: The blot was cut into multiple strips following the protein transfer. The edges of the PVDF membrane are visible. Here, bands containing the 40-60 kDa and 20-40 kDa regions were imaged, respectively.