Supplementary Information

Supplementary Figs and Figure Legends

Supplementary Fig. 1. Elevated Ido1 localizes in regenerated cardiomyocytes (CMs), but not in endothelial cells (ECs) or vascular smooth muscle cells (VSMCs) after heart apical resection (AR) or Sham surgery at postnatal 1 day (P1). a-c, Representative co-immunostaining of IDO1 with Troponin T (TNT, a), CD31 (b) and α SM-actin (α SMA, c) in the apical heart at P7. All immunostaining were performed on four sections per sample and four images were taken from different fields per section. Four samples of each group were experimented. Bar= 20 µm.

Supplementary Fig. 2. Cardiac-specific Ido1 knockout mice develop normally.

a, Western blot analysis of IDO1 expression in cardiomyocytes (CMs) and noncardiomyocytes (non-CMs) in *Ido1^{F/F}* and *Ido1^{mKO}* mice at postnatal 3 days (P3). Four independent western blot experiments were done from four mouse per group. **b**, Ratio of heart weight/body weight at P3. **c**, CM proliferation was determined by co-immunostaining of KI67 or PH3 with TNT at P3. Bar= 50 µm. **d-f**, The cardiac structure and function in both *Ido1^{F/F}* and *Ido1^{mKO}* mice were measured by H & E staining (**d**) and echocardiography (**e**, **f**) assay at P28. Bar= 1 mm in **d**. LVEF, Left ventricular ejection section. LVFS, Factional shortening. n=6/group in **b**; n=7/group in **c**, **e** and **f**. Data were expressed as mean ± SD. Statistical analysis: Student ttest assay (two-tailed) for **b**, **c**, **e** and **f**.

Supplementary Fig. 3. *Ido1* deletion does not induce cardiac hypertrophy and apoptosis in neonatal resected heart. *Ido1^{F/F}* and *Ido1^{mKO}* mouse neonates were subjected to apical resection (P1) for 21 days. **a**, Wheat germ agglutinin (WGA) staining and quantification of CM cross section area. **b**, Co-Immunostaining of Tunel and TNT, and the quantifications of Tunel-positive CMs in resected hearts. Data were presented as mean ± SD (n=6/group in **a** and **b**). Bar= 50µm. Statistical analysis: one-way ANOVA followed by Tukey's multiple comparisons.

Supplementary Fig. 4. Loss of IDO in vascular smooth muscle cells (VSMC) or endothelial cells (EC) is not involved in neonatal heart regeneration. a, The strategy for studying the role of *Ido1* in VSMC or EC on neonatal heart regeneration induced by apical resection (AR) surgery. **b-c**, *Ido1* mRNA expression in VSMC (b) or EC (c) was isolated from the 7-day's regenerating heart and quantified by q-RT-PCR assay (n=3/group). **d-e**, Representative photomicrographs (d) and quantification (e) of fibrosis formation in 21-day of regenerating heart with *Ido1* deletion in VSMC or EC. Bar= 500 µm. **f-g**, Quantitative evaluation of the left ventricular ejection fraction (LVEF, **f**) and fraction section (LVFS, **g**). N=6/group for **d-g**. Values are presented as means ± SD. ***p<0.001 vs. Sham *Ido1* ^{F/F} group by one-way ANOVA followed by Tukey's multiple comparisons test in **b** and **c**. ns, no significant by one-way ANOVA assay in **e-g**.

Supplementary Fig. 5. The procedure for studying the effect of Kyn on neonatal heart regeneration. a-b, WT mice were intraperitoneally (IP) injected with 100 mg/kg of 1MT (**a**) or Kyn (**b**) or PBS (Control, Ctrl) every other day from P1 up to P28 and subjected to apical resction (AR) and Sham surgery at P2 or P6, respectively. Cardiac fibrosis formation and function, and Kyn concentration were analyzed 28 days after the surgery (n= 6-8/group).

Supplementary Fig. 6. The expression of genes related to cell cycle and inflammatory pathway in neonatal heart regenerations. a-h, qRT-PCR analysis of mRNA expression at postnatal (P) 3 day after apical resection (AR) surgery at P1. n=3/group in **a-d**; n=4/group in **e-h**. Values are presented as means± SD. *p<0.05. Statistical analysis: one-way ANOVA followed by Tukey's multiple comparisons.

Supplementary Fig. 7. AHR binds to mouse and human Vegfa gene promoters. a-b, The AHR binding to the genomic VEGFA promoters in mouse liver (**a**) and human breast (**b**) cells was visualized by the UCSC Genome Browser.

Supplementary Fig. 8. Uncropped version of western blot for the Supplementary Fig. 2a.

Supplementary Table:

Supplementary Table 1. Complete list of primer sequences.

Gene	Primer sequence Forward (5'-3')	Primer sequence Reverse (5'–3')		
qRT-PCR	2			
Ace	ATGACAAGCGACTTCTCCCC	CCAAACCGAGGACCCCATAGA		
Angpt1	CACATAGGGTGCAGCAACCA	CGTCGTGTTCTGGAAGAATGA		
Arid2	GAAGGCGGTAAATGGGCTTCT	TCGTTGCTAGTAGAGGACACTT		
Ctnnb1	ATGGAGCCGGACAGAAAAGC	CTTGCCACTCAGGGAAGGA		
Epor	GCTGGCTTAGCCCTCTCAC	CTGTCCGCTCCTAGCATGT		
Fgf1	GGGCTCCGAAGAACTTCTGTG	ATGACTTTCGTGACTCACCCT		
Fgf2	CTCATCCGGCAAAAGAGACAA	TTGGAGCCAAAGAGTTTGACC		
Fgf9	CCAGGACAGTATAGTGGAGATCC	AGTAGACCCGCGACCCATAG		
Fgfr1	ATGGCTCCCTTAGGTGAAGTT	TCCGCCTGAGAATCCCCTTT		
Fgfr2	CATTGAAGCAGAAGGTACTGTGG	GGGTGGAGTTTGCACTTGATT		
Gata4	GCTATAAGGTACGAAACCAGCAC	GGTTGATGGACCCGTATTCATTC		
Hand2	CCCTACCCAGCCTACATGG	ACATATCGAGATTGGGGTGTCT		
Hey2	GAGAACCCCTACTTCCACGG	GACAGGGCCATACTGTAGTCG		
Hey2	AAGCGCCCTTGTGAGGAAAC	GGTAGTTGTCGGTGAATTGGAC		
Lrp2	GAAAGCTGGACAAGACTGAGTT	GGCAGTGGTCTGTGAGAATTT		
Notch1	CCCTTGCTCTGCCTAACGC	GGAGTCCTGGCATCGTTGG		
Nrp1	GACAAATGTGGCGGGGACCATA	TGGATTAGCCATTCACACTTCTC		
Pbrm1	CTGTAGATCCTATTGCTGTGTGC	GCTTTGGAGCCCTAATGAACA		
Pdgfrb	TTCCAGGAGTGATACCAGCTT	AGGGGGCGTGATGACTAGG		
Prok2	GCCCCGCTACTGCTACTTC	CCGCACTGAGAGTCCTTGTC		
Rxra	ATGGACACCAAACATTTCCTGC	CCAGTGGAGAGCCGATTCC		
Sec24b	GGTCCAGCACAGAGTCCAATG	GGAGTCCCCGAATTTTGTGTT		
Setd2	AGACTGCTGTTCCTCAGTTAAGT	CTGTATCCATTTCCGTGCTCG		
Sgcd	TCCCCAACCCGATCTCTAGTG	AGGTAGTTTGATTTTCGCAGCAT		
Shh	AAAGCTGACCCCTTTAGCCTA	TTCGGAGTTTCTTGTGATCTTCC		
Smad6	GCAACCCCTACCACTTCAGC	GTGGCTTGTACTGGTCAGGAG		
Spred1	GAGATGACTCAAGTGGTGGATG	TCTGAAAGGTAAGGCCAAACTTC		
Tbx1	GTACCTGGCTTGGCACGAC	GCATTGCTGGAAACATGCG		
Tgfbr1	TCTGCATTGCACTTATGCTGA	AAAGGGCGATCTAGTGATGGA		
Tgfbr3	GGTGTGAACTGTCACCGATCA	GTTTAGGATGTGAACCTCCCTTG		
Vegfa	GCACATAGAGAGAATGAGCTTCC	CTCCGCTCTGAACAAGGCT		
Zfpm2	ACCAGGAGAGCTAGAAGTGTTT	GGACCTGAGCCTTCGTCTT		
Ido1	GCTTTGCTCTACCACATCCAC	CAGGCGCTGTAACCTGTGT		
Elk1	TCCTGGACCTCACGGGATG	GGGTAGGACACAAACTTGTAGAC		
Myc	TTCTACGACTATGACTGCGGA	TGATGGAAGCATAATTCCTGCC		
Tead2	GAAGACGAGAACGCGAAAGC	GATGAGCTGTGCCGAAGACA		
Ccnb1	AAGGTGCCTGTGTGTGAACC	GTCAGCCCCATCATCTGCG		
Cyplal	GACCCTTACAAGTATTTGGTCGT	GGTATCCAGAGCCAGTAACCT		
Cyp1a2	AGTACATCTCCTTAGCCCCAG	GGTCCGGGTGGATTCTTCAG		
Tp53	GTGTGGTGCAGATCGCAGT	ATCATGCCTTCGGACTTGATG		
lrf1	ATGCCAATCACTCGAATGCG	TTGTATCGGCCTGTGTGAATG		
Stat1	TCACAGTGGTTCGAGCTTCAG	GCAAACGAGACATCATAGGCA		
Nfkb1	ATGGCAGACGATGATCCCTAC	TGTTGACAGTGGTATTTCTGGTG		
Gapdh	CGACTTCAACAGCAACTCCCACTCTTCC	TGGGTGGTCCAGGGTTTCTTACTCCTT		
ChIP-qPCR				
Ace	ACACCCTCTGGATTGTTCCAA	CCCTCAGCCTGAAGTTTGGT		

Arid2	ACCGAGCTGACAGAGGTTTG	GTGCTTGCCTGACATTCACC
Fgfr2	ACATTCTCTGTGGAGTGCGT	GACGGAGCCTGATGAAAGGG
Gata4	GCCAGACAGGGTGGTTAGTC	AGCTCGAAGACCAAGTGCAA
Lrp1	GAAGGCCACGAATGGTCACT	GTGGTTCGTCCCTTCGTCTC
Notch1	GATTGGTCCGAGGGCATCTC	AAGCACTGGAAAGGACTCCC
Nrp1	GGAGTTCCAAAGGGTCGGAG	GCGCTGAATTGAGGCTTGTC
Rxra	AGTGACGCCTCTTTATGGCG	TGATGTCACCAACTTGCCCC
Sec24b	CCTTGTCCAGTCCCATGCTT	GAACACCTGTAACTCGCCCA
Setd2	GAAAAGGAGGGGGCTGACAAGA	GTACCATTTGAGTGCAGTGCC
Spred1	ACTTGTTATGCTGCCCACGA	GTAGTCCCTCGCGACTTCTG
Smad6	AGATCAGCCGTAGACTGGGT	AAGAAGGATGGCTGCGAACA
Tgfbr3	GTGGACACTTTGCCCCTTCT	GGTGTCATCGTTTGGAGGCT
Vegfa	GCAGATCAGACAAGGGCTCA	AATGGCACGGGTCTTGGAAA