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Supplementary methods 
The following describes the statistical analyses in greater detail. The numbered headings correspond 
to the headings in the methods section of the main manuscript. All analyses were conducted in R 
and all code for these analyses as well as all data (other than individual-level data from the SAIL and 
trial repositories) is available on the project GitHub repository 
(https://GitHub.com/dmcalli2/sae_ctg_multicond_public). 

Figure S1 gives an overview of the analysis. 

1. Comparison of SAEs in trials (aggregate data) and routine care 
a. Fitted models to routine care data to estimate SAEs 
The following models were fitted within the secure SAIL platform. The outcome was first 
hospitalisation or death. We fitted generalised linear regression models using a Poisson likelihood 
and log-link with log person-time used as an offset.  

The outcome was modelled separately for each index condition and sex. Prior to running the models, 
we aggregated the data by summing the total number of first events and the person time observed 
(until the first event) for each age (in one-year bands). For a Poisson model (assuming rates are 
constant conditional on the covariates in the model) no information is lost by this aggregation step, 
but it greatly increased the computational speed. 

To allow for non-linearity in age, fractional polynomial terms were included where these improved 
model fit. The best fitting fractional polynomials (up to two) were chosen using backward selection 
(this was implemented in the MFP package in R). The model description (separate models for each 
index condition/sex combination) is shown below:- 

log�𝑟𝑟𝑗𝑗� = 𝛽𝛽0 + 𝛽𝛽1𝑎𝑎𝑎𝑎𝑒𝑒𝑗𝑗𝑎𝑎 + 𝛽𝛽2𝑎𝑎𝑎𝑎𝑒𝑒𝑗𝑗𝑏𝑏 + log (𝑝𝑝𝑡𝑡𝑗𝑗) 

Β0 is the intercept, β1 and β2 are the transformed-age coefficients, pt is person-time and j refers to 
the row of aggregated data. The superscripts a and b refer to the chosen polynomial transformations 
for age. a and b were chosen from the set {−2, −1, −0.5, 0, 0.5, 1, 2, 3} with 0 indicating the natural 
log-transformation. As per Royston, when the same transformation is used for the second fractional 
polynomial, the covariate is first log-transformed. 

The coefficients (vector β) and variance-covariance matrix (V) for each of these models were then 
exported from the SAIL platform and are available on the project GitHub repository. 

b. Estimated age distribution of aggregate level trial data 
For each trial, the proportion of participants in each one-year age-band was assumed to follow a 
truncated normal distribution. This was chosen because trial eligibility criteria impose hard bounds 
on the possible values (eg age < 70). We had access to the expectation, variance and upper and 
lower bounds of age for each trial from clinicaltrials.gov. We are not aware of an analytical method 
for estimating μ (the central tendency) and σ (the dispersion parameter) of a truncated normal 
distribution from these values. As such these were estimated using the following approach. 

We first estimated the mean and variance based on the observed upper and lower bounds for a grid 
of values of μ and σ. For both μ and σ we used 0.5 year increments. For μ, the values ranged from 
the lower bound to the upper bound. For σ the values ranged from 1 to the range (upper bound – 
lower bound). So for a trial with bounds of 18 and 64 years, for example, the expectation and 

https://github.com/dmcalli2/sae_ctg_multicond_public


3 
 

variance were estimated for 93 values of μ and 91 values of σ (a total of 8443 combinations of 
values). The expectation and variance for each value were calculated as follows:- 

Standardise upper and lower bounds 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝜇𝜇

𝜎𝜎
 

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =  
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 − 𝜇𝜇

𝜎𝜎
 

Calculate expectation 

𝐸𝐸(𝑥𝑥) = 𝜇𝜇 + 𝜎𝜎 ×
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢)
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢) − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)

 

Calculate variance 

𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥) = 𝜇𝜇2 × 

(1 +  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙×𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)−𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢×𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢)
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢)−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) − �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢)

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢)−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)
�
2

) 

 

Lower and upper refer to the upper and lower bounds, μ and σ refer to the central tendency and 
dispersion parameter of the truncated normal distribution. dnorm and pnorm are the density and 
cumulative distribution functions respectively of the normal distribution. We performed these 
calculations in R code using published on the Quantitative Ecology blog (https://quantitative-
ecology.blogspot.com/2009/09/truncated-normal-distribution.html). 

We then selected the combined values of μ and σ with the lowest difference between the calculated 
expectation and standard deviation and the reported expectation and standard deviation.  

Next, having selected values for μ and σ we used the cumulative distribution function of the 
truncated normal distribution to calculate the proportion of participants in each one-year age band 
(this was a vector of proportions, p, with a length equal to the range of ages. The length would be 46 
for a trial with ages ranging from 18 to 64 years). 

Prior to using this approach, we performed a simulation to both check the accuracy our 
programming code and to assess the ability of our approach to recover the true central tendency 
and dispersion from a truncated normal distribution under a range of possible values (for the mean, 
variance, upper and lower bounds). This simulation showed that this approach accurately recovers 
the true central tendency and dispersion of the truncated normal distribution. Furthermore, we 
examined the age distribution of the IPD trials within their respective repositories and found that 
they consistently followed a truncated normal distribution.  

The results of this simulation are shown below: 

https://quantitative-ecology.blogspot.com/2009/09/truncated-normal-distribution.html
https://quantitative-ecology.blogspot.com/2009/09/truncated-normal-distribution.html
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c. Estimated expected SAEs 
We used Monte Carlo methods (sampling from probability distributions) to propagate uncertainty in 
the expected SAE counts (derived from the routine care models (1a) and trial age-sex distributions 
(1b)) and observed SAE counts (observed in the trials) through to the observed/expected SAE ratios 
as follows. 

For each trial and sex we conducted the following analyses to estimate the expected SAEs:- 

i. From the relevant model (index condition and sex-specific), we obtained 10,000 samples 
from a multivariate normal distribution MVN(β, V). This resulted in a 10,000 by 3 matrix – B 
– where the columns (j) were the sampled coefficients for β0, β1 and β2 respectively and each 
row (i) was a set of sampled coefficients. 
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ii. We applied the relevant fractional polynomial transformations (a-b) to each age band (1b) to 
obtain an n x 3 matrix  - X – where n was the number of age-sex bands, the first column was 
a vector of 1s and the second and third columns were vectors of transformed ages. 

iii. We obtained a matrix of 10,000 x n log-rates as follows:- 

𝑌𝑌 =  𝐵𝐵𝑋𝑋𝑇𝑇  

iv. We exponentiated each element of the matrix Y to obtain a matrix of rates – L 
v. For each element of the matrix L, we estimated the risk as follows:- 

𝑅𝑅𝑖𝑖,𝑗𝑗 =  1 − 𝑒𝑒−𝐿𝐿𝑖𝑖,𝑗𝑗×𝑡𝑡 
where t was the trial-specific follow up time. 

vi. We multiplied R by the vector indicating the proportion of participants in each age- band (p 
from 1b) to obtain a vector indicating the overall risk of an SAE (of length 10,000) for all 
participants in the trial of a given sex:-  

𝒓𝒓 =  𝑅𝑅𝒑𝒑𝑇𝑇 
vii. We multiplied r by the number of participants of that sex to obtain a vector (of length 

10,000) indicating the number of individuals expected to have an SAE, e. 

For each trial, we summed each element of the vector of expected SAEs for each sex (e) to obtain a 
vector (10,000 length) of expected SAEs for the trial. 

d. Estimate observed/expected SAE ratio for each trial 
To propagate uncertainty in the observed SAE count we did the following. For each trial, we 
obtained 10,000 samples from a beta distribution where the shape parameters were:- 

Shape 1  = number of individuals who experienced an SAE +1  

Shape 2 = Total number of participants – number of individuals who experienced an SAE + 1 

This resulted in a vector of observed counts, o. 

We then divided each element of o by the expected count from 1c to obtain 10,000 samples of the 
observed/expected SAE ratio. We summarised this by the 2.5th and 97.5th centiles to obtain an 
uncertainty range and by the mean to obtain a point estimate. 

e. Estimate observed/expected SAE ratio for each index condition 
For simplicity, for the index condition level analysis we treated the expected SAE rates as fixed 
(which were generally estimated with a very high precision due to the large sample size) and fitted 
the following model to estimate the index condition level observed/expected SAE ratio:- 

𝑂𝑂𝑧𝑧~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆𝑧𝑧) 

log(𝜆𝜆𝑧𝑧) = 𝛼𝛼𝑧𝑧 + 𝑙𝑙og (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑧𝑧) 

𝛼𝛼𝑧𝑧~𝑁𝑁(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝜎𝜎) 

O is the observed count for each trial, expected the expected count for each trial, λ is the rate 
parameter for the Poisson distribution, condition_mean is the index condition level estimate for the 
observed/expected ratio. The models were fit using the rstanarm package (stan_glmer function) 
using the default weakly informative priors for condition_mean and σ (http://mc-
stan.org/rstanarm/articles/priors.html). 
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2. Associations between multimorbidity count and SAEs in trials 
(IPD) and routine care 

a. Fit models for multimorbidity and SAE rates in routine care data 
We replicated the modelling described in 1a, except that we additionally included the morbidity 
count in the aggregation and model fitting steps. The model is described below. To distinguish the 
model from the one fitted in 1a, we have used a different symbol for the coefficients:- 

log�𝑟𝑟𝑗𝑗� = 𝛾𝛾0 + 𝛾𝛾1𝑎𝑎𝑎𝑎𝑒𝑒𝑗𝑗𝑎𝑎 + 𝛾𝛾2𝑎𝑎𝑎𝑎𝑒𝑒𝑗𝑗𝑏𝑏  + 𝛾𝛾3𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗𝑐𝑐 + 𝛾𝛾4𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗𝑑𝑑 + log (𝑝𝑝𝑡𝑡𝑗𝑗) 

γ with subscripts 0, 1, 2, 3 and 4 refer to the coefficients for the intercept, age (1st transformation), 
age (2nd transformation), morbidity count (1st transformation) and morbidity count (2nd 
transformation), and the superscripts c and d are the 1st and 2nd fractional polynomial 
transformations of morbidity count with the other terms being the same as those in 1a. 

The resulting coefficients (γ) and variance-covariance matrix (Z) were exported from SAIL for 
subsequent analyses and are available in the project GitHub repository. 

b. Calculate log rate ratio for multimorbidity counts in routine care 
We used the approach described in Royston et al (Royston P, Ambler G, Sauerbrei W. The use of 
fractional polynomials to model continuous risk variables in epidemiology. Int J Epidemiol. 1999 
Oct;28(5):964–74.) to calculate the log-rate ratios and standard error for models with second-degree 
fractional polynomials (γ3 and γ4). We estimated the rate ratios and standard errors across a range of 
multimorbidity counts, from 0 to 5 in 0.1-unit increments) and plotted these (Figure 3). 

c. Fit models for multimorbidity and SAE rates in trial IPD 
Within the trial repository we estimated the association between SAEs and morbidity count as 
follows. This analysis was limited to trials with IPD and where the total number of SAEs per sex was 
≥20 (n=60 trials for 11 index conditions). Given the smaller number of events within each trial, we 
only modelled the morbidity count as a linear term. 

log�𝑟𝑟𝑗𝑗� = 𝛾𝛾0 + 𝛾𝛾1𝑎𝑎𝑎𝑎𝑒𝑒𝑗𝑗𝑎𝑎 + 𝛾𝛾2𝑎𝑎𝑎𝑎𝑒𝑒𝑗𝑗𝑏𝑏  + 𝛾𝛾3𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 + log (𝑝𝑝𝑡𝑡𝑗𝑗) 

We exported the coefficient and standard error for γ3 from the trial repositories.  

d. Meta-analyse morbidity models 
For each index condition, within each sex, we meta-analysed the effect measure estimates for the 
morbidity SAE association (γ3). We fitted a random effects meta-analysis via restricted maximum-
likelihood estimation within the metafor package in R. This assumes that the log rate ratio is 
normally distributed. We subsequently plotted the overall estimate and 95% confidence interval for 
each sex/index condition across the range of comorbidity counts observed for trials with that index 
condition (Figure 3).  

3. Comparison of observed and expected trial SAEs before and 
after accounting for multimorbidity 
The following analysis was very similar to that conducted in 1, but there were differences due to the 
addition of morbidity count data, access to trial IPD and the fact that the trial IPD was held in a 
secure safe haven from which individual-level data could not be exported.  
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a. Fitted models to routine care data to estimate SAEs 
Model fitting is described in 2a. 

b. Age-sex-morbidity count distribution of aggregate level trial data 
Unlike 1b we had IPD for these trials. Therefore, for each trial we used individual-level data with 
which we observed the age, sex and morbidity count for each individual.  

c. Estimated rate of SAEs for each trial participant according to age, sex, and 
morbidity count 
We then applied the coefficients and variance covariance matrix (3a) to the individual-level data (3b) 
to estimate the expected counts. We sampled from a multivariate normal distribution to allow us to 
propagate uncertainty from the routine care models through to the final estimates of expected 
counts as follows:- 

For each relevant selected index condition and sex we conducted the following analyses to estimate 
the expected SAEs:- 

i. From the relevant model, we obtained 10,000 samples from a multivariate normal 
distribution MVN(γ , Z). This resulted in a 10,000 by 5 matrix – B – where the columns (j) 
were the sampled coefficients for γ 0, γ1, γ2 , γ3 and γ4 respectively and each row (i) was a set 
of sampled coefficients. 

ii. We applied the relevant fractional polynomial transformations (a-d) to each individual age 
and morbidity count (1b) to obtain an n x 5 matrix  - X – where n was the number of 
participants, the first column was a vector of 1s, the second and third columns were vectors 
of transformed ages and the fourth and fifth columns were vectors of transformed morbidity 
counts. 

iii. We obtained a matrix of 10,000 x n log-rates as follows:- 

𝑌𝑌 =  𝐵𝐵𝑋𝑋𝑇𝑇  

iv. We exponentiated each element of the matrix Y to obtain a matrix of rates – L 
v. For each element of the matrix L, we estimated the risk as follows:- 

𝑅𝑅𝑖𝑖,𝑗𝑗 =  1 − 𝑒𝑒−𝐿𝐿𝑖𝑖,𝑗𝑗×𝑡𝑡 
where t was the trial-specific follow up time. 

vi. We subset R into columns where participants were male and female.  
vii. We summed the each of the rows in the subset matrices to obtain vectors of the expected 

counts in men and women. 
viii. We plotted these counts using Q-Q plots and histograms, identifying that the trial-sex-level 

expected counts were approximately normally distributed then exported the mean and 
standard deviation of these counts from the trial repositories. 

ix. Outside the trial repository we obtained 10,000 samples from these trial-sex specific normal 
distributions (viii) and summed each element of these to obtain a vector of expected counts 
for each trial. 

x. We summed the observed SAEs for each sex within each trial and exported these counts 
from the trial repositories. 

d. Estimate observed/expected ratio 
For each trial and sex, we obtained 10,000 samples from a beta distribution where the shape 
parameters were:- 
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Shape 1  = number of individuals who experienced an SAE (3c+1   

shape 2 = Total number of participants – number of individuals who experienced an SAE + 1 

Within each trial, we summed each element of the vector for each sex in order to obtain a vector of 
observed counts, o. 

We then divided each element of o by the expected count from 3c.ix to obtain 10,000 samples of the 
observed/expected SAE ratio. We summarised this by the 2.5th and 97.5th centiles to obtain an 
uncertainty range and by the mean to obtain a point estimate 

We repeated the above analyses after dropping morbidity count (model described in 1a). 

Figure S1 Overview of analysis 

 

Note that for the usual situation – the evaluation of aggregate-level published trial SAE data – there 
is no need to access trial IPD. 
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