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Beyond Massive Univariate Tests: Covariance Regression Reveals 
Complex Patterns of Functional Connectivity Related to Attention-

Deficit/Hyperactivity Disorder, Age, Sex, and Response Control 
 

Supplementary Information 
 
 

Diagnostic procedures. Intellectual ability was assessed using the Wechsler 

Intelligence Scale for Children, Fourth Edition (WISC-IV)1 or Fifth Edition (WISC-V).2 

Participants with general ability index (GAI) scores, a measure of intellectual reasoning ability 

that does not factor in working memory and processing speed scores, below 80 were excluded. 

To screen for reading disorders, children were administered the Word Reading subtest from the 

Wechsler Individual Achievement Test, Second Edition (WIAT-II)3 or Third Edition (WIAT-III)4 

and were excluded for standard scores below 85. Diagnostic status was established through 

administration of either the Diagnostic Interview for Children and Adolescents, Fourth Edition 

(DICA-IV)5 or the Kiddie Schedule for Affective Disorders and Schizophrenia for School Aged 

Children Present Lifetime version (KSADS-PL).6 Children meeting criteria for diagnosis of 

conduct, mood, generalized anxiety, separation anxiety or obsessive–compulsive disorders on 

either interview were excluded whereas a comorbid diagnosis of oppositional defiant disorder 

(ODD) was permitted. Parents and teachers (when available) also completed the Conners 

Parent and Teacher Rating Scales-Revised Long Version or the Conners-3 (CPRS and 

CTRS)7,8 and the ADHD Rating Scale-IV (ADHD-RS), home and school versions.9 A diagnosis 

of ADHD was confirmed by a child neurologist or psychologist based on the diagnostic 

interview, which considered information provided by the parent about functioning at school, in 

addition to onset, course, duration, and frequency of symptoms, and parent/teacher rating 

scales (i.e., T-scores ≥ 65 or ≥ 6 symptoms endorsed on at least one rating scale). Inclusion in 



Zhao et al.  Supplement 

2 

the TD group required scores below clinical cutoffs (i.e., T-scores ≤ 60 and ≤ 4 symptoms 

endorsed on all parent/teacher rating scales. 

Resting-state fMRI data acquisition. Resting state fMRI (rs-fMRI) was acquired on a 

3.0 T Philips scanner using a single-shot, partially parallel, gradient-recalled echo planar 

sequence with sensitivity encoding and an ascending slice order (repetition time [TR]/echo time 

[TE] = 2500/30ms, flip angle = 75o, sensitivity encoding acceleration factor of 2, 47 3-mm axial 

slices with no slice gap, in-plane resolution of 3.05×3.15 mm [84×81 voxels], duration = 5 min 

20 sec – 6 min 30 s). Participants were instructed to relax, fixate on a cross-hair, and remain as 

still as possible.  

Preprocessing of fMRI data. Functional data were preprocessed using SPM12 

(Wellcome Trust Centre for Neuroimaging, London, United Kingdom) and custom MATLAB (The 

Mathworks, Inc., Natick, Massachusetts) code. rs-fMRI scans were slice-time adjusted using the 

slice acquired in the middle of the TR as a reference, and rigid body realignment parameters 

were estimated to adjust for motion. The volume collected in the middle of the scan was 

spatially normalized using the Montreal Neurological Institute (MNI) EPI template.12 The 

estimated rigid body and nonlinear spatial transformations were applied to the functional data 

together, producing 2-mm isotropic voxels in MNI space. Linear trends were removed, and the 

data were spatially smoothed using a Gaussian filter (6-mm full width at half maximum kernel). 

Mean framewise displacement (FD) was calculated using the realignment estimates.10  
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Supplementary Figure S1. Spatial maps of the 27 components classified as noise. Z 
coordinate in MNI space of each axial slice is indicated. Although most voxels contributing to 
component Y appear to be within grey matter, it was labeled as a noise component because it 
was not reliably identified across the 100 iterations of group ICA that we ran. 

 

Secondary analyses on motion-matched subgroups. We applied the CAP regression 

on FD matched samples (TD n=29 girls, 66 boy; ADHD n=25 girls, 79 boys), where the 

matching was conducted for each diagnosis*sex group, and compared the results with the 

unmatched FD sample. Supplementary Figure S2 presents the similarity between the 

components identified among the FD-matched subgroups and the identified components using 

all participants. As shown in the figures, the components are almost identical and the effects are 

also consistent, suggesting that the pattern of findings holds when diagnostic groups do not 

differ in motion during the scan.   
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Supplementary Figure S2. Similarity between the components identified using all samples and 
the components identified using FD matched samples. 

 

ICA with Backward Reconstruction. We used an information theoretic approach to 

dimension estimation,11 estimating the optimal number of components to represent each 

participant’s data separately. We then chose the number of independent components (ICs) for 

the group to be the maximum dimension estimate across participants (65) to ensure that the 

group decomposition would represent all networks present in the full dataset. Prior to ICA, each 

participant’s preprocessed data were variance normalized on a voxelwise basis and reduced to 

100 principle components (PCs) using principal component analysis (PCA). Participant-specific 

PCs were temporally concatenated and a second PCA was used to reduce the aggregate data 

set to the maximum dimension estimated, 65 (defined above) using multi-power iteration.12 ICA 

was repeated on the group-level PCs 100 times using the Infomax algorithm13 and the ICASSO 

toolbox14 with randomized initial conditions in GIFT to ensure stable ICs. Participant-specific 

spatial maps (SMs) and timecourses (TCs) were generated from the aggregate IC 

decomposition using a method based on PCA compression and projection.15 The SMs 

represent the spatial topography of each component within the brain while the TCs represent 

the intrinsic level of engagement of each component over time. 

Previous research has established that participant specific spatial maps that are back-

reconstructed from the group components are consistent with components derived from single-

 
(a) DxSex 

 
(b) Tau 

 
(c) ComRate 
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subject ICA.15 It is still possible that subtle variations in the voxels that contribute to each IC 

exist between groups, so we tested the possibility that network topography differed across 

groups. First, we converted the participant-specific spatial maps of the 38 components we 

classified as representing resting state networks (signal components) to z values so that image 

intensities reflected the degree to which the component was present in each participant’s data. 

These participant-specific signal spatial maps were combined in a second-level random effects 

analysis using a two-sample t test in SPM12. Voxels that contributed unequally to the 

components across groups were identified using a liberal voxelwise p value of .01 and a cluster-

level p value of .05 corrected for multiple comparisons.16 We found no significant group 

differences in network topography for any of the 38 signal components using this approach. 

Covariate Assisted Principal Regression on RSN Components. We implemented 

covariate assisted principal (CAP) regression on the signal components identified by group ICA 

described above.17 For subject , let  denote the  IC time courses at time  for . 

The CAP approach assumes that there exist orthogonal linear projections  for  (

), such that in the projection space, the data variation satisfies the following log-linear 

model: 

, 

where ;  is the vector of covariates of interest;  and  are model 

coefficients;  if  and 0 otherwise. The projections and model coefficients can be 

estimated by maximizing the likelihood function assuming  is normally distributed with mean 

zero and covariance matrix  (for  and ). The number of projections, , 

is determined based on the level of deviation from diagonality.18 To draw inference about the 

model coefficients, 95% confidence intervals were acquired from 500 bootstrap samples fixing 

the estimated linear projection. The method was implemented using the R package cap 

available on CRAN. 



Zhao et al.  Supplement 

6 

CAP components were reconstructed in voxel space to form brain maps representing 

orthogonal groups of signal ICs associated with the variables of interest. Let  

denote the orthonormal projection matrix estimated by CAP regression. Each row of  

then represents the newly constructed CAP brain map, where  is the spatial maps obtained 

from the group ICA. 

The CAP method identifies a linear projection of the covariance matrices such that 

between-subject variability in FC is most strongly associated with the covariates of interest. Let 

 and  for , then 

. 

Assuming the IC time courses are standardized to have identical variance (for example, 

 for any  and ), the CAP regression models the association between FC and the 

covariates. This association depends on both the sign of the  coefficient and the sign of the 

loading products. For a positive  estimate, FC between two ICs with the same loading sign 

(then the product is positive) is positively associated with the corresponding covariate; while FC 

for two ICs with the opposite signs (then the product is negative) is negatively associated with 

the covariate. 

  



Zhao et al.  Supplement 

7 

Supplementary Figure S3. River plot of IC loadings of the components identified by the CAP 
method for the (a) DxSex (b) Tau and (c) ComRate models. The IC indexes are color coded by 
the functional module. 
 

 

 

(a) 

(b) 

(c) 
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Supplementary Figure S4. Percentage of variation explained by the identified 
components for each subject. From the figure, component C4 of the DxSex model, 
component C3 of the Tau model, and component C4 in the ComRate model explains the largest 
percentage of data variation.  

 

 
(a) DxSex 

 
(b)Tau 

 
(c) ComRate 
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Supplementary Table S1. Coefficients and 95% confidence intervals obtained from 500 
bootstrap samples in the three models. 

 
(a) The Dx-Sex model 

 
 

 
(b) The GNG Tau model 

 
 

 
(c) The GNG Commission Error Rate (CR) model 

 

C1 C2 C3 C4 C5

GAI ‐0.003 (‐0.010, 0.004) ‐0.005 (‐0.009, ‐0.001) ‐0.001 (‐0.004, 0.002) ‐0.000 (‐0.003, 0.003) ‐0.001 (‐0.004, 0.002)

Age 0.145 (0.085, 0.205) ‐0.022 (‐0.062, 0.018) 0.122 (0.091, 0.153) 0.037 (0.006, 0.068) ‐0.092 (‐0.118, ‐0.065)

Dx*Sex 0.201 (‐0.123, 0.541) ‐0.035 (‐0.245, 0.160) ‐0.157 (‐0.318, ‐0.002) ‐0.177 (‐0.371, 0.034) ‐0.012 (‐0.183, 0.149)

ADHD‐TD (Boy) 0.118 (‐0.066, 0.302) 0.118 (‐0.034, 0.270) ‐0.155 (‐0.271, ‐0.039) ‐0.137 (‐0.236, ‐0.038) 0.071 (‐0.026, 0.168)

ADHD‐TD (Girl) ‐0.083 (‐0.350, 0.183) 0.153 (0.022, 0.285) 0.002 (‐0.118, 0.122) 0.040 (‐0.133, 0.213) 0.083 (‐0.054, 0.219)

Boy‐Girl (ADHD) 0.151 (‐0.058, 0.360) 0.346 (0.216, 0.475) ‐0.021 (‐0.130, 0.088) ‐0.434 (‐0.562, ‐0.306) 0.224 (0.110, 0.338)

Boy‐Girl (TD) ‐0.050 (‐0.301, 0.201) 0.381 (0.232, 0.530) 0.136 (0.016, 0.255) ‐0.257 (‐0.415, ‐0.099) 0.236 (0.112, 0.360)

Behavior (ADHD Boy)

Behavior (TD Boy)

Behavior (ADHD Girl)

Behavior (TD Girl)

Effect
DxSex

C1 C2 C3 C4 C5 C6

GAI ‐0.004 (‐0.010, 0.003) ‐0.004 (‐0.008, ‐0.000) 0.000 (‐0.002, 0.003) ‐0.000 (‐0.004, 0.003) ‐0.003 (‐0.007, 0.000) 0.000 (‐0.005, 0.006)

Age 0.161 (0.100, 0.222) 0.023 (‐0.015, 0.061) 0.015 (‐0.021, 0.052) 0.126 (0.095, 0.157) ‐0.039 (‐0.081, 0.003) 0.035 (‐0.020, 0.090)

Dx*Sex ‐0.047 (‐2.279, 2.210) ‐0.039 (‐1.534, 1.906) 1.143 (‐0.290, 3.093) 0.328 (‐0.914, 1.410) ‐1.223 (‐2.791, 0.047) 0.827 (‐0.937, 3.609)

Dx*Beh ‐0.062 (‐0.506, 0.300) 0.106 (‐0.142, 0.426) 0.075 (‐0.201, 0.450) ‐0.053 (‐0.278, 0.147) 0.303 (0.002, 0.545) ‐0.110 (‐0.405, 0.349)

Sex*Beh 0.307 (‐0.118, 0.755) ‐0.029 (‐0.458, 0.590) ‐0.131 (‐0.407, 0.167) 0.177 (‐0.033, 0.403) ‐0.284 (‐0.505, ‐0.044) 0.495 (0.162, 0.872)

Dx*Sex*Beh 0.035 (‐0.459, 0.502) ‐0.029 (‐0.458, 0.308) ‐0.253 (‐0.664, 0.059) ‐0.105 (‐0.355, 0.169) 0.314 (0.025, 0.660) ‐0.205 (‐0.792, 0.179)

ADHD‐TD (Boy) 0.177 (‐1.469, 1.824) ‐0.314 (‐1.599, 0.971) 0.751 (‐0.072, 1.575) 0.590 (‐0.444, 1.624) ‐2.599 (‐3.543, ‐1.654) 1.518 (‐0.326, 3.362)

ADHD‐TD (Girl) 0.225 (‐1.661, 2.110) ‐0.275 (‐1.627, 1.077) ‐0.391 (‐1.960, 1.178) 0.262 (‐0.690, 1.213) ‐1.375 (‐2.563, ‐0.187) 0.690 (‐1.136, 2.517)

Boy‐Girl (ADHD) ‐1.437 (‐3.888, 1.013) ‐0.739 (‐2.266, 0.788) 1.415 (0.026, 2.805) ‐0.355 (‐1.476, 0.765) ‐0.052 (‐1.457, 1.353) ‐1.140 (‐3.138, 0.858)

Boy‐Girl (TD) ‐1.390 (‐3.348, 0.568) ‐0.700 (‐2.118, 0.718) 0.273 (‐0.960, 1.505) ‐0.683 (‐1.663, 0.297) 1.171 (0.108, 2.234) ‐1.967 (‐3.636, ‐0.298)

Behavior (ADHD Boy) 0.187 (‐0.070, 0.443) 0.267 (0.110, 0.423) ‐0.206 (‐0.317, ‐0.095) ‐0.060 (‐0.195, 0.075) 0.268 (0.100, 0.436) 0.007 (‐0.260, 0.274)

Behavior (TD Boy) 0.213 (‐0.082, 0.509) 0.189 (‐0.057, 0.436) ‐0.027 (‐0.193, 0.138) 0.098 (‐0.107, 0.302) ‐0.350 (‐0.482, ‐0.217) 0.322 (‐0.012, 0.657)

Behavior (ADHD Girl) ‐0.156 (‐0.626, 0.315) 0.053 (‐0.223, 0.329) 0.179 (‐0.105, 0.462) ‐0.132 (‐0.350, 0.087) 0.238 (‐0.074, 0.549) ‐0.283 (‐0.646, 0.080)

Behavior (TD Girl) ‐0.094 (‐0.082, 0.509) ‐0.053 (‐0.300, 0.194) 0.103 (‐0.141, 0.348) ‐0.079 (‐0.241, 0.083) ‐0.065 (‐0.274, 0.143) ‐0.173 (‐0.421, 0.075)

Effect
Tau

C1 C2 C3 C4 C5 C6 C7

GAI ‐0.003 (‐0.010, 0.003) ‐0.004 (‐0.008, ‐0.000) ‐0.000 (‐0.003, 0.003) ‐0.001 (‐0.004, 0.002) ‐0.001 (‐0.004, 0.003) 0.007 (0.004, 0.010) ‐0.005 (‐0.008, ‐0.002)

Age 0.151 (0.094, 0.209) ‐0.010 (‐0.055, 0.035) 0.136 (0.104, 0.168) 0.031 (‐0.002, 0.065) ‐0.026 (‐0.059, 0.008) 0.013 (‐0.020, 0.045) ‐0.048 (‐0.086, ‐0.009)

Dx*Sex ‐0.066 (‐0.795, 0.703) ‐0.502 (‐1.007, ‐0.042) ‐0.087 (‐0.439, 0.279) ‐0.208 (‐0.623, 0.219) ‐0.110 (‐0.625, 0.351) 0.007 (‐0.408, 0.496) 0.670 (‐0.077, 1.573)

Dx*Beh ‐0.229 (‐1.489, 1.124) ‐0.538 (‐1.274, 0.210) ‐0.136 (‐0.791, 0.557) 0.099 (‐0.678, 0.971) ‐0.037 (‐1.028, 0.785) ‐0.293 (‐1.174, 0.539) 1.031 (‐0.285, 2.662)

Sex*Beh 0.097 (‐1.146, 1.413) ‐0.832 (‐1.620, ‐0.110) 0.618 (‐0.081, 1.309) ‐0.465 (‐1.175, 0.353) ‐0.917 (‐1.507, ‐0.340) 0.819 (0.201, 1.505) 1.861 (0.587, 3.479)

Dx*Sex*Beh 0.643 (‐0.917, 2.262) 1.119 (0.078, 2.207) ‐0.029 (‐0.977, 0.898) 0.166 (‐0.707, 1.022) 0.089 (‐0.930, 1.220) 0.076 (‐1.002, 1.098) ‐1.278 (‐2.972, 0.167)

ADHD‐TD (Boy) ‐0.083 (‐0.535, 0.369) ‐0.164 (‐0.514, 0.185) ‐0.052 (‐0.290, 0.186) ‐0.204 (‐0.436, 0.028) 0.161 (‐0.081, 0.404) ‐0.098 (‐0.367, 0.171) 0.090 (‐0.144, 0.325)

ADHD‐TD (Girl) ‐0.017 (‐0.638, 0.603) 0.338 (‐0.010, 0.686) 0.035 (‐0.228, 0.298) 0.004 (‐0.383, 0.391) 0.272 (‐0.119, 0.663) ‐0.106 (‐0.459, 0.248) ‐0.580 (‐1.474, 0.314)

Boy‐Girl (ADHD) ‐0.140 (‐0.640, 0.360) 0.206 (‐0.165, 0.578) ‐0.234 (‐0.477, 0.010) ‐0.276 (‐0.546, ‐0.006) 0.330 (‐0.071, 0.731) ‐0.384 (‐0.730, ‐0.039) ‐0.070 (‐0.303, 0.162)

Boy‐Girl (TD) ‐0.074 (‐0.663, 0.515) 0.709 (0.368, 1.050) ‐0.147 (‐0.414, 0.120) ‐0.068 (‐0.426, 0.290) 0.440 (0.222, 0.659) ‐0.392 (‐0.654, ‐0.130) ‐0.740  (‐1.604, 0.123)

Behavior (ADHD Boy) 0.392 (‐0.363, 1.147) 0.271 (‐0.217, 0.760) 0.238 (‐0.093, 0.570) ‐0.314 (‐0.567, ‐0.060) 0.294 (‐0.100, 0.689) 0.080 (‐0.231, 0.392) 0.099 (‐0.219, 0.417)

Behavior (TD Boy) ‐0.022 (‐0.701, 0.658) ‐0.310 (‐0.838, 0.218) 0.403 (‐0.103, 0.910) ‐0.579 (‐1.014, ‐0.144) 0.243 (‐0.118, 0.604) 0.298 (‐0.186, 0.783) 0.346 (‐0.004, 0.696)

Behavior (ADHD Girl) ‐0.348 (‐1.074, 0.377) ‐0.015 (‐0.561, 0.530) ‐0.351 (‐0.851, 0.150) ‐0.014 (‐0.530, 0.501) 1.123 (0.350, 1.897) ‐0.814 (‐1.463, ‐0.165) ‐0.484 (‐0.855, ‐0.113)

Behavior (TD Girl) ‐0.119 (‐1.286, 1.048) 0.522 (‐0.005, 1.049) ‐0.214 (‐0.729, 0.300) ‐0.113 (‐0.756, 0.529) 1.160 (0.692, 1.629) ‐0.520 (‐1.044, 0.003) ‐1.515 (‐3.133, 0.103)

Effect
Com Rate
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