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Beyond Massive Univariate Tests: Covariance Regression Reveals
Complex Patterns of Functional Connectivity Related to Attention-
Deficit/Hyperactivity Disorder, Age, Sex, and Response Control

Supplementary Information

Diagnostic procedures. Intellectual ability was assessed using the Wechsler
Intelligence Scale for Children, Fourth Edition (WISC-IV)' or Fifth Edition (WISC-V).?
Participants with general ability index (GAl) scores, a measure of intellectual reasoning ability
that does not factor in working memory and processing speed scores, below 80 were excluded.
To screen for reading disorders, children were administered the Word Reading subtest from the
Wechsler Individual Achievement Test, Second Edition (WIAT-II)3 or Third Edition (WIAT-III)*
and were excluded for standard scores below 85. Diagnostic status was established through
administration of either the Diagnostic Interview for Children and Adolescents, Fourth Edition
(DICA-IV)? or the Kiddie Schedule for Affective Disorders and Schizophrenia for School Aged
Children Present Lifetime version (KSADS-PL).® Children meeting criteria for diagnosis of
conduct, mood, generalized anxiety, separation anxiety or obsessive—compulsive disorders on
either interview were excluded whereas a comorbid diagnosis of oppositional defiant disorder
(ODD) was permitted. Parents and teachers (when available) also completed the Conners
Parent and Teacher Rating Scales-Revised Long Version or the Conners-3 (CPRS and
CTRS)”# and the ADHD Rating Scale-IV (ADHD-RS), home and school versions.® A diagnosis
of ADHD was confirmed by a child neurologist or psychologist based on the diagnostic
interview, which considered information provided by the parent about functioning at school, in
addition to onset, course, duration, and frequency of symptoms, and parent/teacher rating

scales (i.e., T-scores = 65 or =2 6 symptoms endorsed on at least one rating scale). Inclusion in



Zhao et al. Supplement

the TD group required scores below clinical cutoffs (i.e., T-scores < 60 and < 4 symptoms
endorsed on all parent/teacher rating scales.

Resting-state fMRI data acquisition. Resting state fMRI (rs-fMRI) was acquired on a
3.0 T Philips scanner using a single-shot, partially parallel, gradient-recalled echo planar
sequence with sensitivity encoding and an ascending slice order (repetition time [TR]/echo time
[TE] = 2500/30ms, flip angle = 75°, sensitivity encoding acceleration factor of 2, 47 3-mm axial
slices with no slice gap, in-plane resolution of 3.05x3.15 mm [84x81 voxels], duration = 5 min
20 sec — 6 min 30 s). Participants were instructed to relax, fixate on a cross-hair, and remain as
still as possible.

Preprocessing of fMRI data. Functional data were preprocessed using SPM12
(Wellcome Trust Centre for Neuroimaging, London, United Kingdom) and custom MATLAB (The
Mathworks, Inc., Natick, Massachusetts) code. rs-fMRI scans were slice-time adjusted using the
slice acquired in the middle of the TR as a reference, and rigid body realignment parameters
were estimated to adjust for motion. The volume collected in the middle of the scan was
spatially normalized using the Montreal Neurological Institute (MNI) EPI template.'? The
estimated rigid body and nonlinear spatial transformations were applied to the functional data
together, producing 2-mm isotropic voxels in MNI space. Linear trends were removed, and the
data were spatially smoothed using a Gaussian filter (6-mm full width at half maximum kernel).

Mean framewise displacement (FD) was calculated using the realignment estimates.™
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Supplementary Figure S1. Spatial maps of the 27 components classified as noise. Z
coordinate in MNI space of each axial slice is indicated. Although most voxels contributing to
component Y appear to be within grey matter, it was labeled as a noise component because it
was not reliably identified across the 100 iterations of group ICA that we ran.

Secondary analyses on motion-matched subgroups. We applied the CAP regression
on FD matched samples (TD n=29 girls, 66 boy; ADHD n=25 girls, 79 boys), where the
matching was conducted for each diagnosis*sex group, and compared the results with the
unmatched FD sample. Supplementary Figure S2 presents the similarity between the
components identified among the FD-matched subgroups and the identified components using
all participants. As shown in the figures, the components are almost identical and the effects are
also consistent, suggesting that the pattern of findings holds when diagnostic groups do not

differ in motion during the scan.
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Supplementary Figure S2. Similarity between the components identified using all samples and
the components identified using FD matched samples.

(a) DxSex (b) Tau (c) ComRate

ICA with Backward Reconstruction. We used an information theoretic approach to
dimension estimation,'" estimating the optimal number of components to represent each
participant’'s data separately. We then chose the number of independent components (ICs) for
the group to be the maximum dimension estimate across participants (65) to ensure that the
group decomposition would represent all networks present in the full dataset. Prior to ICA, each
participant’s preprocessed data were variance normalized on a voxelwise basis and reduced to
100 principle components (PCs) using principal component analysis (PCA). Participant-specific
PCs were temporally concatenated and a second PCA was used to reduce the aggregate data
set to the maximum dimension estimated, 65 (defined above) using multi-power iteration.'? ICA
was repeated on the group-level PCs 100 times using the Infomax algorithm'3 and the ICASSO
toolbox' with randomized initial conditions in GIFT to ensure stable ICs. Participant-specific
spatial maps (SMs) and timecourses (TCs) were generated from the aggregate IC
decomposition using a method based on PCA compression and projection.’® The SMs
represent the spatial topography of each component within the brain while the TCs represent
the intrinsic level of engagement of each component over time.

Previous research has established that participant specific spatial maps that are back-

reconstructed from the group components are consistent with components derived from single-
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subject ICA.™® It is still possible that subtle variations in the voxels that contribute to each IC
exist between groups, so we tested the possibility that network topography differed across
groups. First, we converted the participant-specific spatial maps of the 38 components we
classified as representing resting state networks (signal components) to z values so that image
intensities reflected the degree to which the component was present in each participant’s data.
These participant-specific signal spatial maps were combined in a second-level random effects
analysis using a two-sample t test in SPM12. Voxels that contributed unequally to the
components across groups were identified using a liberal voxelwise p value of .01 and a cluster-
level p value of .05 corrected for multiple comparisons.'® We found no significant group
differences in network topography for any of the 38 signal components using this approach.

Covariate Assisted Principal Regression on RSN Components. We implemented
covariate assisted principal (CAP) regression on the signal components identified by group ICA
described above.'” For subject 4 let Ai¢ denote the K IC time courses at time ¢t for t = 1,...,T;,
The CAP approach assumes that there exist orthogonal linear projections Vrfor 7 =1,..., R(
R < K), such that in the projection space, the data variation satisfies the following log-linear

model:

log {Var(’YrTAit)} = log {Var(Zs)} = Bor + X;I—IBI'I‘,
where Zitr = ’Y:Ait; Xi is the vector of covariates of interest; Sor and B1, are model

coefficients; ¥r¥s = Lif r = s and 0 otherwise. The projections and model coefficients can be
estimated by maximizing the likelihood function assuming Ai:is normally distributed with mean
zero and covariance matrix 2; (for t = 1,..., Ty and ¢ = 1,...,n). The number of projections, R,
is determined based on the level of deviation from diagonality.’® To draw inference about the
model coefficients, 95% confidence intervals were acquired from 500 bootstrap samples fixing
the estimated linear projection. The method was implemented using the R package cap

available on CRAN.
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CAP components were reconstructed in voxel space to form brain maps representing
orthogonal groups of signal ICs associated with the variables of interest. Let L= 7r)
denote the orthonormal projection matrix estimated by CAP regression. Each row of {2 = r's
then represents the newly constructed CAP brain map, where Sis the spatial maps obtained
from the group ICA.

The CAP method identifies a linear projection of the covariance matrices such that
between-subject variability in FC is most strongly associated with the covariates of interest. Let
Y = (15,7 k) " and Zi = (@ijk)jkfor i = 1,...,n, then

K
Var(y, Air) =7, Ty, = Z%%jgijj + Z’Yrﬂrwijk = €xp {Bor + XZT,BM}
j=1 i#k .

Assuming the IC time courses are standardized to have identical variance (for example,
oijj = lfor any iand J), the CAP regression models the association between FC and the
covariates. This association depends on both the sign of the 5 coefficient and the sign of the
loading products. For a positive 3 estimate, FC between two ICs with the same loading sign
(then the product is positive) is positively associated with the corresponding covariate; while FC
for two ICs with the opposite signs (then the product is negative) is negatively associated with

the covariate.
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Supplementary Figure S3. River plot of IC loadings of the components identified by the CAP
method for the (a) DxSex (b) Tau and (c) ComRate models. The IC indexes are color coded by
the functional module.
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Supplementary Figure S4. Percentage of variation explained by the identified
components for each subject. From the figure, component C4 of the DxSex model,
component C3 of the Tau model, and component C4 in the ComRate model explains the largest
percentage of data variation.
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Supplementary Table S1. Coefficients and 95% confidence intervals obtained from 500
bootstrap samples in the three models.

(@) The Dx-Sex model

Effect

DxSex
C1 C2 C3 ca C5

GAI -0.003 (-0.010, 0.004) -0.001 (-0.004, 0.002) -0.000 (-0.003,0.003) -0.001 (-0.004, 0.002)
Age -0.022 (-0.062, 0.018)

Dx*Sex 0.201(-0.123,0.541) -0.035 (-0.245, 0.160) -0.177 (-0.371,0.034) -0.012 (-0.183,0.149)
ADHD-TD (Boy) 0.118 (-0.066,0.302) 0.118(-0.034, 0.270) 0.071(-0.026, 0.168)
ADHD-TD (Girl) -0.083 (-0.350, 0.183) 0.002(-0.118,0.122) 0.040(-0.133,0.213) 0.083 (-0.054, 0.219)
Boy-Girl (ADHD) 0.151 (-0.058, 0.360) -0.021(-0.130, 0.088)

Boy-Girl (TD) -0.050 (-0.301, 0.201)

Behavior (ADHD Boy)
Behavior (TD Boy)
Behavior (ADHD Girl)
Behavior (TD Girl)

(b) The GNG Tau model

Effect Tau
Cl Cc2 C3 Cc4 C5 C6

GAl -0.004 (-0.010, 0.003) 0.000 (-0.002,0.003) -0.000 (-0.004,0.003) -0.003(-0.007,0.000) 0.000 (-0.005, 0.006)
Age 0.023(-0.015,0.061) 0.015 (-0.021,0.052) -0.039 (-0.081,0.003) 0.035 (-0.020, 0.090)
Dx*Sex -0.047(-2.279,2.210) -0.039(-1.534,1.906) 1.143(-0.290,3.093) 0.328(-0.914,1.410) -1.223(-2.791,0.047) 0.827(-0.937,3.609)
Dx*Beh -0.062 (-0.506,0.300) 0.106(-0.142,0.426) 0.075 (-0.201,0.450) -0.053 (-0.278,0.147) -0.110 (-0.405, 0.349)
Sex*Beh 0.307(-0.118,0.755) -0.029 (-0.458,0.590) -0.131(-0.407,0.167) 0.177(-0.033,0.403)

Dx*Sex*Beh 0.035(-0.459,0.502) -0.029 (-0.458,0.308) -0.253(-0.664,0.059) -0.105 (-0.355, 0.169) -0.205(-0.792,0.179)
ADHD-TD (Boy) 0.177(-1.469,1.824) -0.314(-1.599,0.971) 0.751(-0.072,1.575) 0.590(-0.444,1.624) 1.518(-0.326, 3.362)
ADHD-TD (Girl) 0.225(-1.661,2.110) -0.275(-1.627,1.077) -0.391(-1.960,1.178) 0.262(-0.690, 1.213) 0.690 (-1.136,2.517)
Boy-Girl (ADHD) -1.437(-3.888,1.013) -0.739(-2.266,0.788) -0.355(-1.476,0.765) -0.052(-1.457,1.353) -1.140(-3.138, 0.858)
Boy-Girl (TD) -1.390(-3.348,0.568) -0.700(-2.118,0.718) 0.273(-0.960,1.505) -0.683 (-1.663,0.297)

Behavior (ADHD Boy) = 0.187 (-0.070, 0.443) -0.060 (-0.195, 0.075) 0.007 (-0.260, 0.274)
Behavior (TD Boy) 0.213(-0.082,0.509) 0.189(-0.057,0.436) -0.027 (-0.193,0.138) 0.098 (-0.107,0.302) 0.322(-0.012,0.657)
Behavior (ADHD Girl) ~ -0.156 (-0.626,0.315) 0.053(-0.223,0.329) 0.179 (-0.105,0.462) -0.132(-0.350,0.087) 0.238(-0.074,0.549) -0.283 (-0.646,0.080)
Behavior (TD Girl) -0.094 (-0.082,0.509) -0.053(-0.300,0.194) 0.103(-0.141,0.348) -0.079(-0.241,0.083) -0.065(-0.274,0.143) -0.173(-0.421,0.075)

(c) The GNG Commission Error Rate (CR) model

Effect Com Rate

C1l C2 C3 c4 C5 C6 C7
GAI -0.003 (-0.010, 0.003) -0.000 (-0.003,0.003) -0.001(-0.004,0.002) -0.001(-0.004,0.003)
Age -0.010 (-0.055, 0.035) 0.031(-0.002,0.065) -0.026(-0.059,0.008) 0.013(-0.020,0.045)
Dx*Sex -0.066 (-0.795, 0.703) -0.087(-0.439,0.279) -0.208 (-0.623,0.219) -0.110(-0.625,0.351) 0.007 (-0.408,0.496) 0.670 (-0.077,1.573)
Dx*Beh -0.229(-1.489,1.124) -0.538(-1.274,0.210) -0.136(-0.791,0.557) 0.099 (-0.678,0.971) -0.037(-1.028,0.785) -0.293 (-1.174,0.539) 1.031(-0.285,2.662)
Sex*Beh 0.097 (-1.146,1.413) 0.618(-0.081,1.309) -0.465(-1.175,0.353)
Dx*Sex*Beh 0.643(-0.917, 2.262) -0.029(-0.977,0.898) 0.166 (-0.707,1.022) 0.089 (-0.930,1.220) 0.076 (-1.002,1.098) -1.278 (-2.972,0.167)
ADHD-TD (Boy) -0.083(-0.535,0.369) -0.164(-0.514,0.185) -0.052(-0.290,0.186) -0.204(-0.436,0.028) 0.161(-0.081,0.404) -0.098(-0.367,0.171) 0.090 (-0.144,0.325)
ADHD-TD (Girl) -0.017(-0.638,0.603) 0.338(-0.010,0.686) 0.035(-0.228,0.298) 0.004 (-0.383,0.391) 0.272(-0.119,0.663) -0.106(-0.459,0.248) -0.580(-1.474,0.314)
Boy-Girl (ADHD) -0.140 (-0.640,0.360) 0.206 (-0.165,0.578) -0.234 (-0.477,0.010) 0.330(-0.071,0.731) -0.070 (-0.303, 0.162)
Boy-Girl (TD) -0.074 (-0.663, 0.515) -0.147(-0.414,0.120) -0.068 (-0.426, 0.290) -0.740 (-1.604, 0.123)
Behavior (ADHD Boy) ~ 0.392 (-0.363,1.147) 0.271(-0.217,0.760) 0.238 (-0.093, 0.570) 0.294(-0.100,0.689) 0.080(-0.231,0.392) 0.099 (-0.219,0.417)
Behavior (TD Boy) -0.022(-0.701,0.658) -0.310(-0.838,0.218) 0.403(-0.103,0.910) 0.243(-0.118,0.604) 0.298 (-0.186,0.783) 0.346 (-0.004, 0.696)
Behavior (ADHD Girl) = -0.348 (-1.074,0.377) -0.015 (-0.561,0.530) -0.351(-0.851,0.150) -0.014 (-0.530,0.501)
Behavior (TD Girl) -0.119 (-1.286,1.048) 0.522 (-0.005,1.049) -0.214 (-0.729,0.300) -0.113 (-0.756,0.529) -0.520 (-1.044,0.003) -1.515 (-3.133,0.103)
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