Structural Brain Volumes of Individuals at Clinical High Risk for Psychosis: A Meta-analysis

Supplementary Information

Table S1 - Characteristics in individual study samples

Figure S2 - Forest plot of effect sizes of studies reporting on amygdala in CHR and HC subjects

Figure S3 - Forest plot of effect sizes of studies reporting on cerebrospinal fluid volume in CHR and HC subjects

Figure S4 - Forest plot of effect sizes of studies reporting on gray matter volume in CHR and HC subjects

Figure S5 - Forest plot of effect sizes of studies reporting on hippocampus volume in CHR and HC subjects

Figure S6 - Forest plot of effect sizes of studies reporting on left hippocampus volume in CHR and HC subjects

Figure S7 - Forest plot of effect sizes of studies reporting on right hippocampus volume in CHR and HC subjects

Figure S8 - Forest plot of effect sizes of studies reporting on superior temporal gyrus volume in CHR and HC subjects

Figure S9 - Forest plot of effect sizes of studies reporting on left superior temporal gyrus volume in CHR and HC subjects

Figure S10 - Forest plot of effect sizes of studies reporting on right superior temporal gyrus volume in CHR and HC subjects

Figure S11 - Forest plot of effect sizes of studies reporting on total intracranial volume in CHR and HC subjects

Figure S12 - Forest plot of effect sizes of studies reporting on lateral ventricles volume in CHR and HC subjects

Figure S13 - Forest plot of effect sizes of studies reporting on whole brain volume in CHR and HC subjects

Figure S14 - Forest plot of effect sizes of studies reporting on white brain volume in CHR and HC subjects

Figure S15 - Forest plot of effect sizes of studies reporting on cerebrospinal fluid volume in CHR-NT and CHR-T subjects

Figure S16 - Forest plot of effect sizes of studies reporting on gray matter volume in CHR-NT and CHR-T subjects

Figure S17 - Forest plot of effect sizes of studies reporting on hippocampus volume in CHR-NT and CHR-T subjects

Figure S18 - Forest plot of effect sizes of studies reporting on left hippocampus volume in CHR-NT and CHR-T subjects

Figure S19 - Forest plot of effect sizes of studies reporting on right hippocampus volume in CHR-NT and CHR-T subjects

Figure S20 - Forest plot of effect sizes of studies reporting on total intracranial volume in CHR-NT and CHR-T subjects

Figure S21 - Forest plot of effect sizes of studies reporting on lateral ventricles volume in CHR-NT and CHR-T subjects

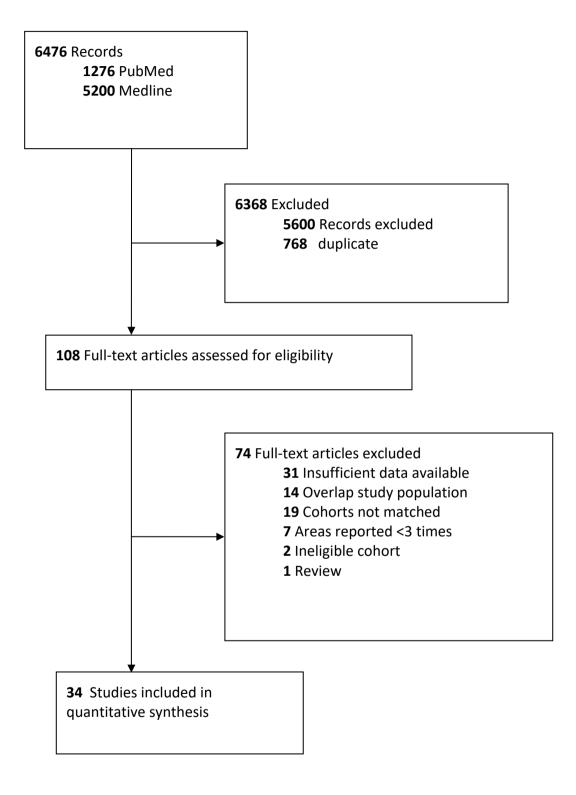
Figure S22 - Forest plot of effect sizes of studies reporting on whole brain volume in CHR-NT and CHR-T subjects

Figure S23 - Forest plot of effect sizes of studies reporting on white matter volume in CHR-NT and CHR-T subjects

Supplemental References

Table S1. Studies included in the meta-analyses

Study	[Study	N	Sov (0/	A go (yeens 1	Included brain masian-	Quality asses
Study		Study reference	$N_{\mbox{ and diagnosis}}$	Sex (% males)	Age (years ± SD)	Included brain regions	Quality score STROBE checklist
Amygdala subnucleus volumes in psychosis high- risk state and first episode psychosis	Armio et al, 2020	[1]	45 CHR 76 HC	56 % 43 %	$25.8 \pm 6.1 \\ 27.1 \pm 4.9$	CHR versus HC: amygdala, total intracranial volume	26
Regional Gray Matter Volume Abnormalities in the At Risk Mental State	Borgwardt et al, 2007	[2]	35 CHR 22 HC 12 CHR-T 23 CHR-NT	63 % 59 % 75 % 57 %	$23.7 \pm 5.6 23 \pm 4.3 24.6 \pm 5.3 23.3 \pm 5.8$	CHR versus HC: total intracranial volume CHR-T versus CHR- NT: total intracranial volume	23
Hippocampus abnormalities in at risk mental states for psychosis? A cross-sectional high resolution region of interest magnetic resonance imaging study	Buehlmann et al, 2010	[3]	37 CHR 22 HC 16 CHR-T 21 CHR-NT	59 % 59 % 69 % 52 %	$24.7 \pm 5.6 \\ 23 \pm 4.3 \\ 26.4 \pm 6.5 \\ 23.4 \pm 6$	CHR versus HC: left hippocampus, right hippocampus, total hippocampus, whole brain CHR-T versus CHR- NT: left hippocampus, right hippocampus, total hippocampus, whole brain	24
Cortical abnormalities in youth at clinical high-risk for psychosis: Findings from the NAPLS2 cohort	Chung et al, 2019	[4]	274 CHR 134 HC 35 CHR-T 239 CHR-NT	62 % 54 % 71 % 61 %	$ \begin{array}{c} 19.6 \pm 4.2 \\ 20.5 \pm 4.6 \\ 18.8 \pm 3.8 \\ 19.7 \pm 4.2 \end{array} $	CHR versus HC: cerebrospinal fluid, gray matter, lateral ventricles, left hippocampus, right hippocampus, total hippocampus, left superior temporal gyrus, right superior temporal gyrus, total superior temporal gyrus, whole brain, total intracranial volume, white matter, amygdala CHR-T versus CHR- NT: cerebrospinal fluid, gray matter, lateral ventricles, left hippocampus, total hippocampus, total intracranial volume, whole brain, white matter	27
Disorganized Gyrification Network Properties During the Transition to Psychosis	Das et al, 2018	[5]	79 CHR 44 HC	72 % 39 %	24.3 ± 5.1 23 ± 4.3	CHR versus HC: total intracranial volume	22
Hippocampal Shape Abnormalities Predict Symptom Progression in Neuroleptic-Free Youth at Ultrahigh Risk for Psychosis	Dean et al, 2016	[6]	38 CHR 42 HC	50 % 58 %	$ 18.9 \pm 1.4 \\ 18.7 \pm 1.9 $	CHR versus HC: left hippocampus, right hippocampus, total hippocampus,	27
Structural and functional alterations in the brain during working memory in medication-naive patients at clinical high-risk for psychosis	Gisselgard et al, 2018	[7]	41 CHR 37 HC	49 % 39 %	16.7 ± 2.4 16.9 ± 3	CHR versus HC: left hippocampus, right hippocampus, total hippocampus, total intracranial volume	24
Reduced volume in the anterior internal capsule but its maintained correlation with the frontal gray matter in subjects at ultra-high risk for psychosis	Han et al, 2012	[8]	43 CHR 42 HC	58% 62%	22.4 ± 4 22.8 ± 3.6	CHR versus HC: total intracranial volume	22


Caudate nucleus volume in individuals at ultra-high risk of psychosis: a cross- sectional magnetic resonance imaging study	Hannan et al, 2010	[9]	78 CHR 39 HC 39 CHR-T 19 CHR-NT	62% 62% 62% 65%	$ \begin{array}{r} 19.2 \pm 3.3 \\ 20 \pm 3.2 \\ 19.4 \pm 3.3 \\ 19 \pm 3.3 \end{array} $	CHR versus HC: lateral ventricles, whole brain CHR-T versus CHR- NT: lateral ventricles, whole brain, total intracranial volume	24
Interrelated neuropsychological and anatomical evidence of hippocampal pathology in the at-risk mental state	Hurlemann et al, 2008	[10]	36 CHR 30 HC	56 % 77 %	27.1 ± 5.6 28.2 ± 6.4	CHR versus HC: left hippocampus, right hippocampus, total hippocampus, whole brain	22
Localized gray matter volume reductions in the pars triangularis of the inferior frontal gyrus in individuals at clinical high- risk for psychosis and first episode for schizophrenia	Iwashiro et al, 2012	[11]	20 CHR 20 HC	50 % 50 %	21.4.x ± 3.6 22.6 ± 3.8	CHR versus HC: total intracranial volume	22
Cortical thickness reduction in individuals at ultra-high- risk for psychosis	Jung et al, 2011	[12]	29 CHR 29 HC	52 % 52 %	$\begin{array}{c} 22.2 \pm 4.3 \\ 23.2 \pm 2.7 \end{array}$	CHR versus HC: total intracranial volume	23
Symptom recovery and relationship to structure corpus callosum in individuals with an at risk mental state	Katagiri et al, 2018	[13]	37 CHR 16 HC	30 % 50 %	24.1 ± 7 23.2 ± 2.9	CHR versus HC: total intracranial volume	22
Lack of Evidence for Regional Brain Volume or Cortical Thickness Abnormalities in Youths at Clinical High Risk for Psychosis: Findings From the Longitudinal Youth at Risk Study	Klauser et al, 2015	[14]	69 CHR 32 HC	68 % 53 %	21.5 ± 3.5 23 ± 3.9	CHR versus HC: gray matter, bilateral hippocampus, total intracranial volume, white matter	24
Abnormal relationships between local and global brain measures in subjects at clinical high risk for psychosis: a pilot study	Konishi et al, 2018	[15]	19 CHR 20 HC	68% 60 %	20.9 ± 4.3 21.4 ± 3.7	CHR versus HC: amygdala	26
Neuroanatomical correlates of executive dysfunction in the at-risk mental state for psychosis	Koutselouris et al, 2010	[16]	40 CHR 30 HC 11 CHR-T 16 CHR-NT	68 % 60 % 82 % 67 %	$\begin{array}{c} 24.5 \pm 5.9 \\ 26.0 \pm 2.7 \\ 21.6 \pm 3.3 \\ 26.0 \pm 6.8 \end{array}$	CHR-T versus CHR- NT: total intracranial volume, white matter	26
Disease prediction in the at- risk mental state for psychosis using neuroanatomical biomarkers: results from the FePsy study	Koutselouris et al, 2012a	[17]	37 CHR 22 HC 16 CHR-T 21 CHR-NT	59% 59% 69% 52%	$24.7 \pm 6.2 23 \pm 4.3 26.4 \pm 6.5 23.4 \pm 6$	CHR versus HC: Cerebrospinal fluid, total intracranial volume CHR-T versus CHR- NT: cerebrospinal fluid, white matter, total intracranial volume	23
Multivariate patterns of brain-cognition associations relating to vulnerability and clinical outcome in the at- risk mental states for psychosis	Koutselouris et al, 2012b	[18]	40 CHR 30 HC 11 CHR-T 16 CHR-NT	68 % 60 % 82 % 69 %	$24.5 \pm 5.8 \\ 26 \pm 2.7 \\ 21.6 \pm 3.3 \\ 26 \pm 6.8$	CHR-T versus CHR- NT: grey matter	23
Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition	Koutsouleris et al, 2009	[19]	45 CHR 25 HC 15 CHR-T 18 CHR-NT	62 % 44 % 73 % 61 %	$25.2 \pm 5.9 25 \pm 5.5 25.9 \pm 6.7 22.4 \pm 2.8$	CHR versus HC: cerebrospinal fluid, gray matter, total intracranial volume, white matter CHR-T versus CHR- NT: cerebrospinal fluid, gray matter, total intracranial volume, white matter	23

Neuroanatomical abnormalities that predate the onset of psychosis: a	Mechelli et al, 2011	[20]	48 CHR-T 134 CHR-NT	31 % 38 %	22.7 ± 4.5 23.3 ± 5.3	CHR-T versus CHR- NT: gray matter	27
multicenter study Structural brain alterations in subjects at high-risk of psychosis: a voxel-based morphometric study	Meisenzahl et al, 2008	[21]	40 CHR 75 HC	63 % 61 %	25 ± 5.6 25.1 ± 3.8	CHR versus HC: cerebrospinal fluid, total intracranial volume, white matter	22
Association of Adverse Outcomes With Emotion Processing and Its Neural Substrate in Individuals at Clinical High Risk for Psychosis	Modinos et al, 2020	[22]	213 CHR 52 HC 44 CHR-T 169 CHR-NT	51 % 52 % 57 % 49 %	$22.9 \pm 4.7 23.3 \pm 4.0 22.6 \pm 4.7 23.0 \pm 4.7$	CHR versus HC: total intracranial volume CHR-T versus CHR- NT: total intracranial volume	25
Non-reduction in hippocampal volume is associated with higher risk of psychosis	Phillips et al, 2002	[23]	60 CHR 139 HC 20 CHR-T 40 CHR-NT	58 % 59 % 60 % 58 %	$\begin{array}{c} 20.0 \pm 3.3 \\ 30.1 \pm 12.5 \\ 19.6 \pm 3.7 \\ 20.2 \pm 3.1 \end{array}$	CHR-T versus CHR- NT: left hippocampus, right hippocampus, total hippocampus, whole brain	27
Subcortical Brain Volume Abnormalities in Individuals With an At-risk Mental State	Sabayashi et al, 2020	[24]	107 CHR 104 HC 21 CHR-T 72 CHR-NT	46 % 50 % 36 % 50 %	$21.3 \pm 5.4 22.6 \pm 4.0 20.4 \pm 4.4 21.7 \pm 5.8$	CHR-T versus CHR- NT: total intracranial volume, lateral ventricles, left hippocampus, right hippocampus, total hippocampus	24
Brain TSPO imaging and gray matter volume in schizophrenia patients and in people at ultra high risk of psychosis: An [11C]PBR28 study.	Selvaraj et al, 2018	[25]	14 CHR 14 HC	50 % 71 %	24.3 ± 5.4 28.1 ± 8	CHR versus HC: gray matter	26
Altered depth of the olfactory sulcus in ultra high-risk individuals and patients with psychotic disorders	Takahashi et al, 2014	[26]	135 CHR 87 HC 52 CHR-T 83 CHR-NT	58 % 63 % 58 % 58 %	$\begin{array}{c} 20.1 \pm 3.6 \\ 26.9 \pm 10.1 \\ 19.6 \pm 3.5 \\ 20.4 \pm 3.6 \end{array}$	CHR versus HC: whole brain CHR-T versus CHR- NT: total intracranial volume, whole brain	24
Increased pituitary volume in subjects at risk for psychosis and patients with first- episode schizophrenia	Takahashi et al, 2013	[27]	22 CHR 22 HC	50 % 50 %	$\begin{array}{c} 19.1 \pm 4.1 \\ 19.4 \pm 4.2 \end{array}$	CHR versus HC:: total intracranial volume	24
Insular cortex gray matter changes in individuals at ultra-high-risk of developing psychosis	Takahashi et al, 2009a	[28]	97 CHR 55 HC 31 CHR-T 66 CHR-NT	61 % 65 % 65 % 59 %	$19.8 \pm 3.4 20.8 \pm 3.6 19.1 \pm 3.6 20.2 \pm 3.3$	CHR versus HC:: total intracranial volume CHR-T versus CHR- NT: total intracranial volume	25
Progressive gray matter reduction of the superior temporal gyrus during transition to psychosis	Takahashi et al, 2009b	[29]	35 CHR 22 HC 12 CHR-T 23 CHR-NT	54 % 55 % 58 % 52 %	$20 \pm 4.4 22 \pm 4.7 19.5 \pm 5.1 20.2 \pm 4$	CHR versus HC: gray matter, left superior temporal gyrus, right superior temporal gyrus, total superior temporal gyrus, total intracranial volume CHR-T versus CHR- NT: gray matter, total	25
Superior temporal gyrus volume in antipsychotic- naive people at risk of psychosis	Takahashi et al, 2010	[30]	97 CHR 42 HC	61 % 67 %	$ 19.8 \pm 3.4 \\ 20 \pm 2.8 $	CHR versus HC:: left superior temporal gyrus, right superior temporal gyrus, total superior temporal gyrus	22
Hippocampal Subregions Across the Psychosis Spectrum	Vargas et al, 2018	[31]	61 CHR 70 HC	61 % 44 %	$ 18.7 \pm 1.8 \\ 18.3 \pm 2.7 $	CHR versus HC:: left hippocampus, right hippocampus, total hippocampus, total intracranial volume	
Hippocampal subdivision and amygdalar volumes in	Witthaus et al, 2010	[32]	29 CHR 29 HC	66 % 59 %	$\begin{array}{c} 25.3 \pm 4.3 \\ 25.7 \pm 5.2 \end{array}$	CHR versus HC: amygdala, left	22
	•	•			•		

patients in an at-risk mental state for schizophrenia						hippocampus, right hippocampus, total hippocampus, whole brain	
No evidence for structural brain changes in young adolescents at ultra high risk for psychosis	Ziermans et al, 2009	[33]	54 CHR 54 HC	61 % 50 %	15.8 ± 2.1 15.8 ± 1.5	CHR versus HC: total intracranial volume, white matter, whole brain	26
Progressive structural brain changes during development of psychosis	Ziermans et al, 2012	[34]	43 CHR 30 HC 8 CHR-T 35 CHR-NT	67 % 50 % 88 % 63 %	$\begin{array}{c} 15.6 \pm 2.2 \\ 15.9 \pm 1.4 \\ 16.8 \pm 2.2 \\ 15.3 \pm 2.1 \end{array}$	CHR versus HC: gray matter, lateral ventricles CHR-T versus CHR- NT: gray matter, lateral ventricles, total intracranial volume, whole brain, white matter	25

Let the second s

Figure S1. PRISMA flow chart of manuscript selection



Figure S2 - Forest plot of effect sizes of studies reporting on amygdala in CHR and HC subjects

Figure S3 - Forest plot of effect sizes of studies reporting on cerebrospinal fluid volume in CHR and HC subjects

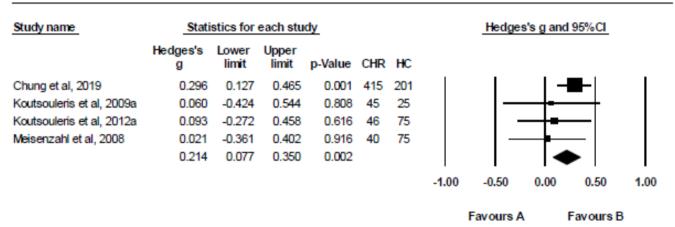
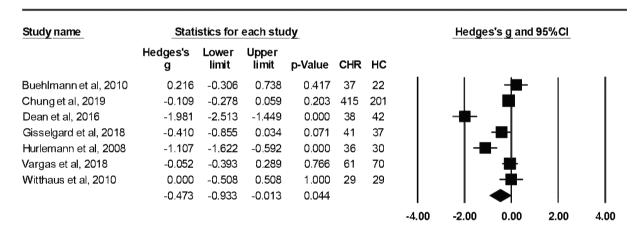
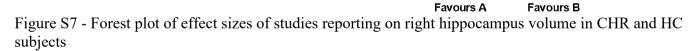


Figure S4 - Forest plot of effect sizes of studies reporting on gray matter volume in CHR and HC subjects


Study name	Stati	stics for	each stu	dy				Hedge	s's <u>g</u> and	95%CI	
	Hedges's g	Lower limit	Upper limit	p-Value	CHR	НС					
Chung et al, 2019	-0.009	-0.177	0.159	0.918	415	201		1			1
Klauser et al, 2015	0.415	-0.005	0.835	0.053	69	32					-
Koutsouleris et al, 2009	0.259	-0.227	0.744	0.296	45	25					.
Koutsouleris et al, 2012b	0.453	-0.021	0.928	0.061	40	30					
Selvaraj et al, 2018	-0.400	-1.126	0.327	0.281	14	14	K			-	
Takahashi et al, 2009b	0.034	-0.492	0.560	0.898	35	22					
Ziermans et al, 2012	-0.097	-0.558	0.365	0.682	43	30				-	
	0.106	-0.080	0.292	0.264						•	
							-1.00	-0.50	0.00	0.50	1.00


Favours A Favours B

Study name Statistics for each study Hedges's g and 95%Cl Hedges's Lower Upper p-Value CHR HC limit limit g -0.368 0.565 37 22 Buehlmann et al. 2010 0.153 0.675 201 Chung et al, 2019 -0.117 -0.286 0.051 0.172 415 Dean et al. 2016 -0.495 -0.936 -0.054 0.028 38 42 Gisselgard et al, 2018 -0.467 -0.913 -0.021 0.040 41 37 Hurlemann et al, 2008 0.000 30 -1.142 -1.659 -0.625 36 Klauser et al, 2015 0.014 -0.402 0.948 69 32 0.430 70 Vargas et al, 2018 -0.068 -0.409 0.273 0.696 61 Witthaus et al, 2010 -0.095 -0.603 0.413 0.715 29 29 -0.255 -0.488 -0.022 0.032 -2.00 -1.00 0.00 1.00 2.00 Favours A Favours B

Figure S5 - Forest plot of effect sizes of studies reporting on hippocampus volume in CHR and HC subjects

Figure S6 - Forest plot of effect sizes of studies reporting on left hippocampus volume in CHR and HC subjects

Studyname	Juli	5005101	each stu	uy		
	Hedges's g	Lower limit	Upper limit	p-Value	CHR	нс
Buehlmann et al, 2010	0.093	-0.428	0.614	0.726	37	22
Chung et al, 2019	-0.129	-0.298	0.039	0.132	415	201
Dean et al, 2016	-0.495	-0.936	-0.054	0.028	38	42
Gisselgard et al, 2018	-0.543	-0.991	-0.094	0.018	41	37
Hurlemann et al, 2008	-1.178	-1.698	-0.659	0.000	36	30
Vargas et al, 2018	-0.085	-0.427	0.256	0.624	61	70
Witthaus et al, 2010	-0.184	-0.693	0.325	0.479	29	29
	-0.334	-0.598	-0.070	0.013		

Hedges's g and 95% Cl

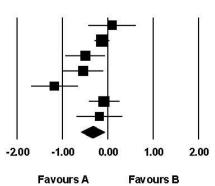


Figure S8 - Forest plot of effect sizes of studies reporting on superior temporal gyrus volume in CHR and HC subjects

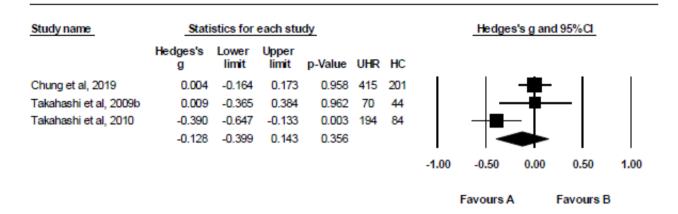


Figure S9 - Forest plot of effect sizes of studies reporting on left superior temporal gyrus volume in CHR and HC subjects

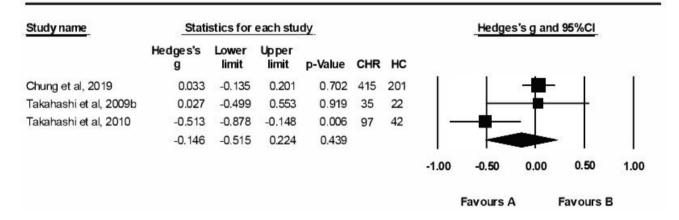


Figure S10 - Forest plot of effect sizes of studies reporting on right superior temporal gyrus volume in CHR and HC subjects

Study name	Stati	stics for	each stu	dy				Hedge	s's g and	95%Cl	
	Hedges's g	Lower limit	Upper limit	p-Value	UHR	нс					
Chung et al, 2019	-0.026	-0.195	0.142	0.758	415	201					
Takahashi et al, 2009b	-0.013	-0.539	0.513	0.961	35	22					
Takahashi et al, 2010	-0.240	-0.601	0.121	0.193	97	42		- - -	╸┼╴		
	-0.060	-0.207	0.086	0.418					◆		
							-1.00	-0.50	0.00	0.50	1.00

Favours A

Favours B

Figure S11 - Forest plot of effect sizes of studies reporting on total intracranial volume in CHR and HC subjects

Study name	Stati	stics for	each st	udy				Hedge	s's g and	95%CI	
	Hedges's g	Lower limit	Upper limit	p-Value	СНЕ	к нс					
Armio et al, 2020	0.012	-0.322	0.346	0.946	56	87	1	1	-	1	1
Borgwardt et al, 2007	-0.045	-0.571	0.481	0.868	35	22					
Chung et al, 2019	0.071	-0.097	0.240	0.406	415	201					
Das et al, 2018	0.348	-0.021	0.717	0.065	79	44			-	-	
Gisselgard et al, 2018	-0.464	-0.910	-0.018	0.041	41	37		-	-		
Han et al, 2012	0.130	-0.292	0.552	0.546	43	42					
washiro et al, 2012	0.228	-0.382	0.837	0.464	20	20			_+∎_	-	
Jung et al, 2011	0.341	-0.171	0.852	0.192	29	29			_+∎-	-	
Katagiri et al, 2017	-0.053	-0.622	0.515	0.854	42	16					
Klauser et al, 2015	0.374	-0.045	0.793	0.080	69	32			⊢∎	-	
Koutsouleris et al, 2009a	0.169	-0.315	0.653	0.494	45	25				·	
Koutsouleris et al, 2012a	-0.131	-0.653	0.390	0.622	37	22					
Meisenzahl et al, 2008	0.158	-0.224	0.540	0.417	40	75			-		
Modinos et al, 2020	0.001	-0.301	0.304	0.994	213	52					
Takahashi et al, 2009a	-0.143	-0.472	0.187	0.396	97	55			-		
Takahashi et al, 2009b	2.636	1.921	3.351	0.000	35	22				-	
Takahashi et al, 2013	-0.282	-0.866	0.301	0.343	22	22		-	╼┼╴		
Vargas et al, 2018	0.451	0.106	0.797	0.010	61	70				-	
Ziermans et al, 2009	-0.133	-0.508	0.242	0.486	54	54					
	0.152	-0.029	0.333	0.100					٠		
							-3.00	-1.50	0.00	1.50	3.00
								Favours A	λ.	Favours E	3

Figure S12 - Forest plot of effect sizes of studies reporting on lateral ventricles volume in CHR and HC subjects

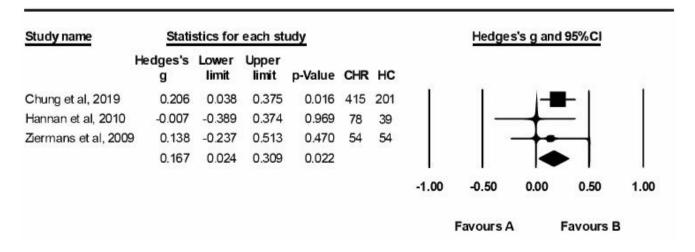


Figure S13 - Forest plot of effect sizes of studies reporting on whole brain volume in CHR and HC subjects

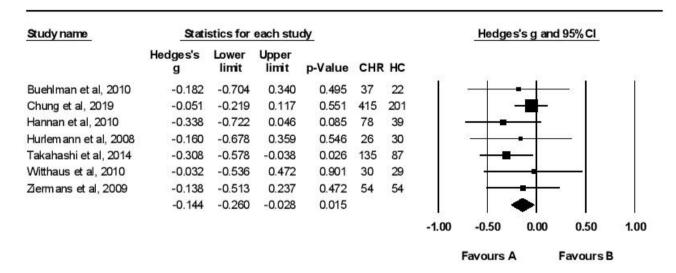


Figure S14 - Forest plot of effect sizes of studies reporting on white brain volume in CHR and HC subjects

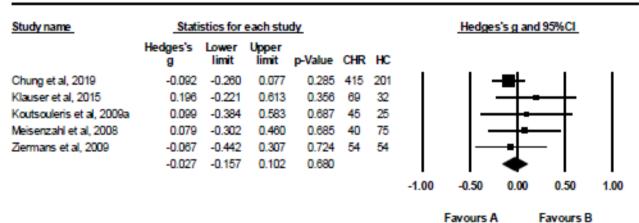


Figure S15 - Forest plot of effect sizes of studies reporting on cerebrospinal fluid volume in CHR-NT and CHR-T subjects

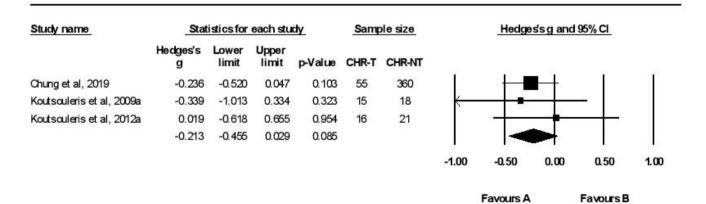


Figure S16 - Forest plot of effect sizes of studies reporting on gray matter volume in CHR-NT and CHR-T subjects

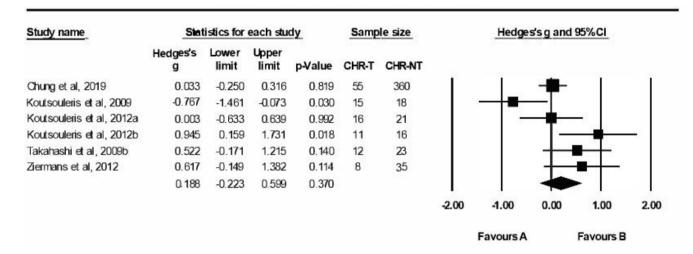


Figure S17 - Forest plot of effect sizes of studies reporting on hippocampus volume in CHR-NT and CHR-T subjects

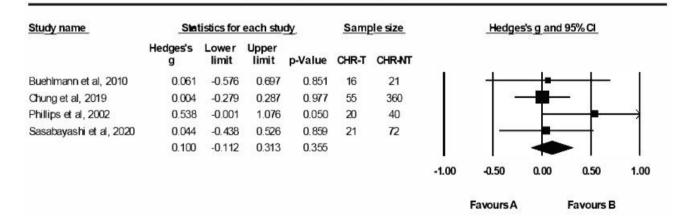


Figure S18 - Forest plot of effect sizes of studies reporting on left hippocampus volume in CHR-NT and CHR-T subjects

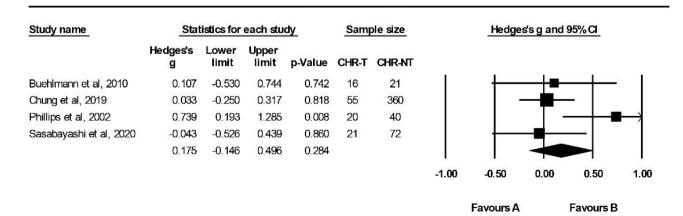


Figure S19 - Forest plot of effect sizes of studies reporting on right hippocampus volume in CHR-NT and CHR-T subjects

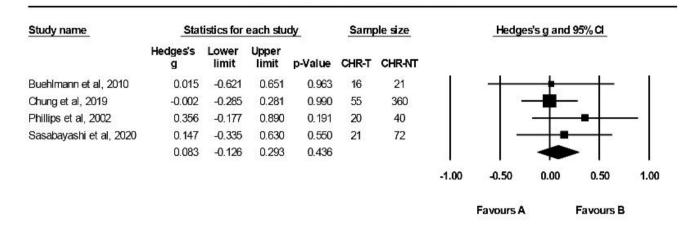


Figure S20 - Forest plot of effect sizes of studies reporting on total intracranial volume in CHR-NT and CHR-T subjects

Study name	Stat	istics for	each stu	dy	Samp	le size		Hedge	s's g and	95%CI	
	Hedges's g	Lower limit	Upper limit	p-Value	CHR-T	CHR-NT					
Borgwardt et al, 2007	0.028	-0.654	0.710	0.936	12	23	- E	1 -	+	- 1	1
Chung et al, 2019	0.064	-0.219	0.347	0.659	55	360					
Hannan et al, 2010	0.269	-0.172	0.711	0.232	39	39				_	
Koutsouleris et al, 2009	-0.510	-1.190	0.169	0.141	15	18					
Koutsouleris et al, 2010	0.474	-0.282	1.229	0.219	11	16			-		
Koutsouleris et al, 2012a	0.118	-0.519	0.755	0.716	16	21		-	-		
Modinos et al, 2020	-0.137	-0.468	0.194	0.418	44	169			-		
Sabayashi et al, 2020	-0.061	-0.543	0.421	0.805	21	72		-	-		
Takahashi et al, 2009a	0.379	-0.047	0.806	0.081	31	66			-		
Takahashi et al, 2009b	0.463	-0.228	1.153	0.189	12	23			-		
Takahashi et al, 2014	0.074	-0.271	0.419	0.673	52	83					
Ziermans et al, 2012	0.807	0.034	1.580	0.041	8	35			_		-
	0.110	-0.039	0.259	0.148							
							-2.00	-1.00	0.00	1.00	2.00
								Favours A		Favours B	

Figure S21 - Forest plot of effect sizes of studies reporting on lateral ventricles volume in CHR-NT and CHR-T subjects

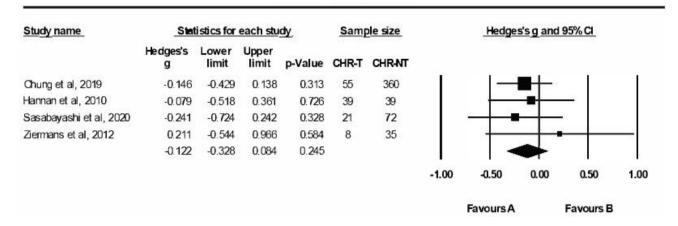


Figure S22 - Forest plot of effect sizes of studies reporting on whole brain volume in CHR-NT and CHR-T subjects

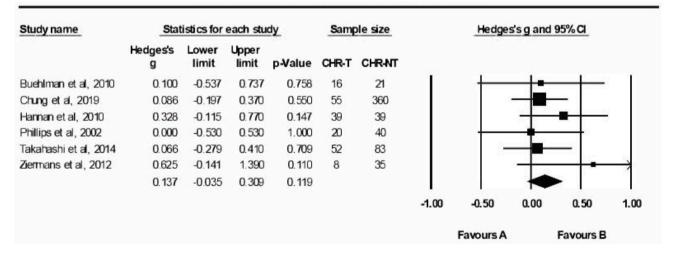


Figure S23 - Forest plot of effect sizes of studies reporting on white matter volume in CHR-NT and CHR-T subjects

Study name	Statistics for each study				Sample size			Hedges's g and 95%Cl				
	Hedges's g	Lower limit	Upper limit	p-Value	CHR-T	CHR-NT						
Chung et al, 2019	0.045	-0.238	0.329	0.753	55	360				-	- T	
Koutsouleris et al, 2009	-0.060	-0.729	0.609	0.860	15	18			-			
Koutsouleris et al, 2010	0.061	-0.684	0.806	0.872	11	16		-			-	
Koutsouleris et al, 2012a	0.151	-0.486	0.789	0.642	16	21					8	
Ziermans et al, 2012	0.459	-0.301	1.219	0.237	8	35		8 	-	-	->	
	0.083	-0.137	0.302	0.462					-			
							-1.00	-0.50	0.00	0.50	1.00	
								Favours A		Favours B		

Supplemental References

- 1. Armio, R.-L., et al., *Amygdala subnucleus volumes in psychosis high-risk state and first-episode psychosis*. Schizophrenia Research, 2020. 215: p. 284-292.
- 2. Borgwardt, S.J., et al., *Regional gray matter volume abnormalities in the at risk mental state.* Biological psychiatry, 2007. 61(10): p. 1148-1156.
- 3. Buehlmann, E., et al., *Hippocampus abnormalities in at risk mental states for psychosis? A crosssectional high resolution region of interest magnetic resonance imaging study.* Journal of psychiatric research, 2010. 44(7): p. 447-453.
- 4. Chung, Y., et al., *Cortical abnormalities in youth at clinical high-risk for psychosis: Findings from the NAPLS2 cohort.* NeuroImage: Clinical, 2019. 23: p. 101862.
- 5. Das, T., et al., *Disorganized gyrification network properties during the transition to psychosis.* Jama Psychiatry, 2018. 75(6): p. 613-622.
- 6. Dean, D.J., et al., *Hippocampal shape abnormalities predict symptom progression in neurolepticfree youth at ultrahigh risk for psychosis.* Schizophrenia bulletin, 2016. 42(1): p. 161-169.
- 7. Gisselgard, J., et al., *Structural and functional alterations in the brain during working memory in medication-naive patients at clinical high-risk for psychosis.* PLoS One, 2018. 13(5): p. e0196289.
- 8. Han, H.J., et al., *Reduced volume in the anterior internal capsule but its maintained correlation with the frontal gray matter in subjects at ultra-high risk for psychosis.* Psychiatry Research: Neuroimaging, 2012. 204(2-3): p. 82-90.
- 9. Hannan, K.L., et al., *Caudate nucleus volume in individuals at ultra-high risk of psychosis: a cross-sectional magnetic resonance imaging study.* Psychiatry Research: Neuroimaging, 2010. 182(3): p. 223-230.
- 10. Hurlemann, R., et al., *Interrelated neuropsychological and anatomical evidence of hippocampal pathology in the at-risk mental state*. Psychological medicine, 2008. 38(6): p. 843-851.
- 11. Iwashiro, N., et al., Localized gray matter volume reductions in the pars triangularis of the inferior frontal gyrus in individuals at clinical high-risk for psychosis and first episode for schizophrenia. Schizophrenia research, 2012. 137(1-3): p. 124-131.
- 12. Jung, W.H., et al., *Cortical thickness reduction in individuals at ultra-high-risk for psychosis*. Schizophrenia bulletin, 2011. 37(4): p. 839-849.
- 13. Katagiri, N., et al., *Symptom recovery and relationship to structure of corpus callosum in individuals with an 'at risk mental state'*. Psychiatry Research: Neuroimaging, 2018. 272: p. 1-6.
- 14. Klauser, P., et al., *Lack of evidence for regional brain volume or cortical thickness abnormalities in youths at clinical high risk for psychosis: findings from the longitudinal youth at risk study.* Schizophrenia bulletin, 2015. 41(6): p. 1285-1293.
- 15. Konishi, J., et al., *Abnormal relationships between local and global brain measures in subjects at clinical high risk for psychosis: a pilot study.* Brain imaging and behavior, 2018. 12(4): p. 974-988.
- 16. Koutsouleris, N., et al., *Neuroanatomical correlates of executive dysfunction in the at-risk mental state for psychosis.* Schizophrenia research, 2010. 123(2-3): p. 160-174.
- Koutsouleris, N., et al., *Disease prediction in the at-risk mental state for psychosis using neuroanatomical biomarkers: results from the FePsy study.* Schizophrenia bulletin, 2012. 38(6): p. 1234-1246.
- 18. Koutsouleris, N., et al., *Multivariate patterns of brain–cognition associations relating to vulnerability and clinical outcome in the at-risk mental states for psychosis.* Human brain mapping, 2012. 33(9): p. 2104-2124.
- 19. Koutsouleris, N., et al., *Use of neuroanatomical pattern classification to identify subjects in atrisk mental states of psychosis and predict disease transition.* Archives of general psychiatry, 2009. 66(7): p. 700-712.

- 20. Mechelli, A., et al., *Neuroanatomical abnormalities that predate the onset of psychosis: a multicenter study.* Archives of general psychiatry, 2011. 68(5): p. 489-495.
- 21. Meisenzahl, E., et al., *Structural brain alterations in subjects at high-risk of psychosis: a voxelbased morphometric study.* Schizophrenia research, 2008. 102(1-3): p. 150-162.
- 22. Modinos, G., et al., Association of Adverse Outcomes With Emotion Processing and Its Neural Substrate in Individuals at Clinical High Risk for Psychosis. JAMA psychiatry, 2020. 77(2): p. 190-200.
- 23. Phillips, L.J., et al., *Non-reduction in hippocampal volume is associated with higher risk of psychosis.* Schizophrenia research, 2002. 58(2-3): p. 145-158.
- 24. Sasabayashi, D., et al., *Subcortical brain volume abnormalities in individuals with an at-risk mental state.* Schizophrenia Bulletin, 2020.
- 25. Selvaraj, S., et al., *Brain TSPO imaging and gray matter volume in schizophrenia patients and in people at ultra high risk of psychosis: An [11C] PBR28 study.* Schizophrenia research, 2018. 195: p. 206-214.
- 26. Takahashi, T., et al., *Altered depth of the olfactory sulcus in ultra high-risk individuals and patients with psychotic disorders*. Schizophrenia research, 2014. 153(1-3): p. 18-24.
- 27. Takahashi, T., et al., *Increased pituitary volume in subjects at risk for psychosis and patients with first-episode schizophrenia*. Psychiatry and clinical neurosciences, 2013. 67(7): p. 540-548.
- 28. Takahashi, T., et al., *Insular cortex gray matter changes in individuals at ultra-high-risk of developing psychosis.* Schizophrenia research, 2009. 111(1-3): p. 94-102.
- 29. Takahashi, T., et al., *Progressive gray matter reduction of the superior temporal gyrus during transition to psychosis*. Archives of general psychiatry, 2009. 66(4): p. 366-376.
- 30. Takahashi, T., et al., *Superior temporal gyrus volume in antipsychotic-naive people at risk of psychosis*. The British Journal of Psychiatry, 2010. 196(3): p. 206-211.
- 31. Vargas, T., et al., *Hippocampal subregions across the psychosis spectrum*. Schizophrenia bulletin, 2018. 44(5): p. 1091-1099.
- 32. Witthaus, H., et al., *Hippocampal subdivision and amygdalar volumes in patients in an at-risk mental state for schizophrenia.* Journal of psychiatry & neuroscience: JPN, 2010. 35(1): p. 33.
- 33. Ziermans, T.B., et al., *No evidence for structural brain changes in young adolescents at ultra high risk for psychosis.* Schizophrenia research, 2009. 112(1-3): p. 1-6.
- 34. Ziermans, T.B., et al., *Progressive structural brain changes during development of psychosis*. Schizophr Bull, 2012. 38(3): p. 519-30.