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SECTION S1: MAP EQUATION WITH METADATA-DEPENDENT ENCODING IN SYNTHETIC
GRAPHS

Supplementary Note 1

In the current implementation of Infomap the parameter --flow-model rawdir skips the flow modeling

step.

Section S1: Map equation with metadata-dependent encoding

in synthetic graphs

In the main text we only show the partitions obtained for the Map Equation with metadata-dependent

encoding in two cases. We provide in Fig. S1 further partitions in the intermediate regime in a network

with p1 = 0.6 and p2 = 0.06 for p = 0.5. More concretely we show (a) c=1, (b) c=7, (c) c=8, (d) c=10

and (e) c=100. For completeness panel f has the corresponding alluvial plot.

For visualization purposes Fig. 4 of the main text only focuses on the p = 0.5 case, yet we provide

in Figure S2 the results for a wider range of p and c. Given the higher complexity of our framework,

we focus in only two cases per network: one with a low (a,b) and another with high (c,d) reshuffling.

The first notable difference with Fig. 4 of the main manuscript, is that in all cases our framework can

recover rm = 1 with a smart choice of parameters. However, more interesting than the mere recovery on

the extreme scenario, we can attain a far wider variety of partitions in-between. Our framework is also

sensible to the network structure and the heterogeneity in the presence of metadata. Mixing together

nodes with equal metadata in different communities is far easier (low values of c) when p2 = 0.2 than

when p2 = 0.06. Similarly, we also capture the stronger separation between categories produced by more

reshufflings.

Figure S1: Communities obtained with the map equation with metadata-dependent encoding

in synthetic graphs. a-e Partitions according to the map equation with metadata-dependent encoding

for a network of 240 nodes with probabilities p1 = 0.6 and p2 = 0.06. In all cases p = 0.5 an a c = 1,

b c = 7, c c = 8, d c = 10, and e c = 100. The color of the nodes correspond to their community

assignment and the shape to their metadata category.

The reshuffling of metadata occurs hitherto between nodes in neighboring communities (dc = 1),

yet we could extend it to include larges distances and assess if our framework can detect non-local

correlations in the presence of metadata. In Fig. S3, we display the values of rm as function of p and

c in four networks with an equivalent amount of randomizations (nr = 112) but where the distance dc
is set to either 1, 2 3 or 4. As it can be seen, different distances yield different patterns of values in

the (p,c) space. When dc, it becomes more difficult to merge nodes of different categories into the same

communities, or in other words, depending on the values raised by the combination of probabilities we

can assess how are the metadata categories distributed.

Mapping non-local relations between metadata and network structure with metadata-dependent
encoding of random walks



SECTION S1: MAP EQUATION WITH METADATA-DEPENDENT ENCODING IN SYNTHETIC
GRAPHS

1.0 1.2
5

1.3
33

1.5
1

2 3 5 10 20 50 10
0

20
0

50
0

10
00

c

0.05
0.1
0.2
0.3
0.4
0.5
0.6
0.7
1.0

p rm

p1 = 0.6 p2 = 0.2 Low reshufflinga

1.0 1.2
5

1.3
33

1.5
1

2 3 5 10 20 50 10
0

20
0

50
0

10
00

c

0.05
0.1
0.2
0.3
0.4
0.5
0.6
0.7
1.0

p rm

p1 = 0.6 p2 = 0.06 Low reshufflingb

1.0 1.2
5

1.3
33

1.5
1

2 3 5 10 20 50 10
0

20
0

50
0

10
00

c

0.05
0.1
0.2
0.3
0.4
0.5
0.6
0.7
1.0

p rm

p1 = 0.6 p2 = 0.2 High reshufflingc

1.0 1.2
5

1.3
33

1.5
1

2 3 5 10 20 50 10
0

20
0

50
0

10
00

c

0.05
0.1
0.2
0.3
0.4
0.5
0.6
0.7
1.0

p rm

p1 = 0.6 p2 = 0.06 High reshufflingd 0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure S2: Evolution of rm in the map equation with metadata-dependent encoding depend-

ing on the network structure and the correlation with metadata. a,c Mixing ratio rm as a

function of p and c for (a) a low and (c) high metadata reshuffling in a network generated with p1 = 0.6

and p2 = 0.2. b,d Mixing ratio rm as a function of p and c for (b) a low and (d) high metadata reshuffling

in a network generated with p1 = 0.6 and p2 = 0.06.

Mapping non-local relations between metadata and network structure with metadata-dependent
encoding of random walks



SECTION S1: MAP EQUATION WITH METADATA-DEPENDENT ENCODING IN SYNTHETIC
GRAPHS
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Figure S3: Evolution of rm in the map equation with metadata-dependent encoding depend-

ing on the correlation between structure and metadata. a-d Mixing ratio rm as a function of p

and c for in a network generated with p1 = 0.6 and p2 = 0.2 when the metadata reshuffling occurs across

communities separated by (a) dc = 1, (b) dc = 2, (c) dc = 3 and (d) dc = 4 in a ring-like topology.

Mapping non-local relations between metadata and network structure with metadata-dependent
encoding of random walks



SECTION S3: ADDITIONAL RESULTS FOR CONTACT NETWORKS

Section S2: Map equation with class dependent teleportation

We investigate here if similar results can be recovered using more straightforward approach in which

walkers move either through the real network or get teleported to another node with a class dependent

probability. In detail, walkers have a probability pn of moving through the network and a probability

1 − pn of being teleported, if it is the latter case, the walker have a probability pc of moving to a node

of the same category and 1 − pc of moving towards one of different category. In Fig. S4 we display

the partitions obtained with four combinations of the probabilities pn and pc. When pn is high (a),

we retrieve the topological communities while as pn decreases and pc is high, the nodes with the same

metadata information are assigned to the same community (c). Finally, in the extreme case in which pn
and pc are low, all the nodes are assigned to the same community (d).

8 communities
pn=0.9
pc=0.5

a

8 communities
pn=0.8
pc=0.8

Map equation with category-dependent teleportation
b

8 communities
pn=0.3
pc=0.8

c

1 community
pn=0.1
pc=0.1

d

Figure S4: Metadata informed graph communities obtained with the map equation with

category dependent teleportation. a-d Graph partition for a network with (p1 = 0.6,p2 = 0.06)

according to the map equation with category teleportation with probabilities (a) (pn = 0.9,pc = 0.5),

(b) (pn = 0.8,pc = 0.8), (c) (pn = 0.3,pc = 0.8) and (d) (pn = 0.1,pc = 0.1). All of them are calculated

after nr = 112 category randomizations

We further analyze in Fig. S5 how the mixing rm changes as a function of the probabilities pn and pc
for high and low reshufflings in a similar fashion to Figs. S2 and S3. Instead of the gradual classification

we obtain with the map equation with metadata-dependent encoding, there is a dichotomous-like behavior

that goes from either a split of nodes according to the structural communities or to their metadata

information. When pc is small we also observe that all the nodes fall within the same community. This

behavior is likely caused by the fact that the teleporting only takes into account the metadata information

regardless of the topological distance between nodes, with the exception of the first neighbors.

Section S3: Additional results for contact networks

We provide in Figs. S6 and S7 additional results of the communities detected for a workplace (InVS13)

and a Hospital (LH10).

Mapping non-local relations between metadata and network structure with metadata-dependent
encoding of random walks



SECTION S3: ADDITIONAL RESULTS FOR CONTACT NETWORKS
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Figure S5: Evolution of rm in the map equation with category dependent teleportation. a,c

Mixing ratio rm as a function of pn and pc for (a) a low and (c) high metadata reshuffling in a network

generated with p1 = 0.6 and p2 = 0.2. b,d Mixing ratio rm as a function of p and c for (b) a low and

(d) high metadata reshuffling in a network generated with p1 = 0.6 and p2 = 0.06.

Mapping non-local relations between metadata and network structure with metadata-dependent
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SECTION S3: ADDITIONAL RESULTS FOR CONTACT NETWORKS
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Figure S6: Partitions obtained for the Workplace(InVS13) contact network. Community detec-

tion analysis in the Lyon School contact graph where nodes correspond to individuals with a meta-data

information. The probability to encode a transition is p for nodes within the same class and c otherwise.

For a probability p = 1, partitions when c = 1 (a), c = 2 (b) and c = 1000 (c). d-f Class overlapping

assignment m̃ij when c = 1 (d), c = 2 (e) and c = 1000 (f). Nodes are colored according to their

community assignment while markers indicate their meta-data information.
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Figure S7: Partitions obtained for the Hospital (LH10) contact network. Community detection

analysis in the Hospital (LH10) contact graph where nodes correspond to individuals with a meta-data

information. The probability to encode a transition is p for nodes within the same class and c otherwise.

For a probability p = 1, partitions when c = 1 (a), c = 2 (b) and c = 1000 (c). d-f Class overlapping

assignment m̃ij when c = 1 (d), c = 2 (e) and c = 1000 (f). Nodes are colored according to their

community assignment while markers indicate their meta-data information.

Mapping non-local relations between metadata and network structure with metadata-dependent
encoding of random walks



SECTION S4: ADDITIONAL RESULTS FOR THE COMMUTING NETWORK OF LONDON

Section S4: Additional results for the commuting network of

London

We provide in Supplementary Figs. S8, S9, S11, S12 and S10 additional results for the London commuting

graph when classes are assigned according to unemployment, life expectancy, deprivation, fraction of

white individuals and obesity respectively.

Figure S8: Partitions obtained for the unemployment categories in the commuting network

of London. Community detection analysis on the commuting network of London when the metadata is

set according to the unemployment category. With regions in class 1 and 4 corresponding to the last and

most wealthy, respectively. For a probability p = 1, partitions when c = 1 (a), c = 2 (b) and c = 1000

(c), with regions colored according to their community assignment. (d) Class assignment for each of the

regions studied. e-g Class overlapping m̃ij when c = 1 (e), c = 1.5 (f) and c = 1000 (g).

Figure S9: Partitions obtained for the life expectancy categories in the commuting network

of London. Community detection analysis on the commuting network of London when the metadata

is set according to the life expectancy category. With regions in class 1 and 4 corresponding to the last

and most wealthy, respectively. For a probability p = 1, partitions when c = 1.25 (a), c = 1.66 (b) and

c = 4 (c), with regions colored according to their community assignment. (d) Class assignment for each

of the regions studied. e-g Class overlapping m̃ij when c = 1.25 (e), c = 1.66 (f) and c = 4 (g).

Mapping non-local relations between metadata and network structure with metadata-dependent
encoding of random walks



SECTION S4: ADDITIONAL RESULTS FOR THE COMMUTING NETWORK OF LONDON

Figure S10: Partitions obtained for the income categories in the commuting network of

London. Community detection analysis on the commuting network of London when the metadata is

set according to the income category. With regions in class 1 and 4 corresponding to the last and most

wealthy, respectively. For a probability p = 1, partitions when c = 1.25 (a), c = 1.66 (b) and c = 4

(c), with regions colored according to their community assignment. (d) Class assignment for each of the

regions studied. e-g Class overlapping m̃ij when c = 1.25 (e), c = 1.66 (f) and c = 4 (g).

Figure S11: Partitions obtained for the deprivation categories in the commuting network of

London. Community detection analysis on the commuting network of London when the metadata is

set according to the deprivation category. With regions in class 1 and 4 corresponding to the last and

most wealthy, respectively. For a probability p = 1, partitions when c = 1.25 (a), c = 1.66 (b) and c = 4

(c), with regions colored according to their community assignment. (d) Class assignment for each of the

regions studied. e-g Class overlapping m̃ij when c = 1.25 (e), c = 1.66 (f) and c = 4 (g).

Mapping non-local relations between metadata and network structure with metadata-dependent
encoding of random walks



SECTION S5: ETHNIC SEGREGATION IN DETROIT

Figure S12: Partitions obtained for the fraction of white individuals in the commuting net-

work of London. Community detection analysis on the commuting network of London when the

metadata is set according to the fraction of white individuals category. With regions in class 1 and

4 corresponding to the last and most wealthy, respectively. For a probability p = 1, partitions when

c = 1.25 (a), c = 1.66 (b) and c = 4 (c), with regions colored according to their community assignment.

(d) Class assignment for each of the regions studied. e-g Class overlapping m̃ij when c = 1.25 (e),

c = 1.66 (f) and c = 4 (g).

Section S5: Ethnic segregation in Detroit

In this section we investigate the emergence of different neighborhoods in Detroit according to our

metadata-dependent encoding scheme in the adjacency graph of spatial cells where categories obey to

ethnicities. The network employed connects two cells, in this census tract units, when they are adjacent.

The ethnicity with a higher relative abundance, calculated as the ratio between the number of residents

of an ethnicity α divided by the city average, is assigned to each cell. The results for p = 0.01 and

different values of c

Mapping non-local relations between metadata and network structure with metadata-dependent
encoding of random walks



SECTION S5: ETHNIC SEGREGATION IN DETROIT

Figure S13: Partitions obtained for the ethnicity categories in the spatial adjacency network

of Detroit. Community detection analysis on the spatial adjacency network of Detroit when the meta-

data is set according to the most overrepresented ethnicity. For a probability p = 0.01, partitions when

c = 1 (a), c = 2 (b), c = 4 (c), c = 10 (d), c = 100 (e), together with the corresponding value of rm.

Panel f displays the category of each region.

Mapping non-local relations between metadata and network structure with metadata-dependent
encoding of random walks



SECTION S6: ORGANIZATION OF ACTIVITIES IN URBAN AREAS

Section S6: Organization of activities in urban areas

The proposed methodology can help identify functional modules in spatial systems. Standard community

detection algorithms often do not provide the desired results on spatially-embedded networks. The

spatial constraints are too strong to allow communities whose nodes are too far apart from each other.

However, metadata is often available in spatial networks, and taking this information into account when

detecting modules is desirable in many concrete applications. Typical examples include analyzing spatial

correlation in the distribution of certain commercial activities or identifying spatial segregation according

to a specific socio-economic indicator.

We consider a spatial data set constructed from the location-based social network Gowalla [33,34],

which includes the location and type of millions of venues across the world. Whereas each venue has

multiple classes organized hierarchically in this data set, we have only analyzed the main six categories:

food, nightlife, outdoors, community, entertainment, and travel. The graph connecting the venues is

spatial, there is a link between any pair of venues if the distance dij separating them is lower than 2 km,

and the weight of each link is given by log(1/dij) [32]. Figure S14 shows the partitions obtained on the

network of commercial activities in Barcelona for p = 0.5 and c = 1 (a), c = 2 (b) and c = 1000 (c).

For c = 1, the venues organize in spatial communities, determined solely by the relative distance among

nodes. Some communities split already for c = 2, leading to a grouping of venues of the same type.

Still, the more isolated spatial communities do not split until c = 1000, where most venues of the same

category are clustered together. Whereas the results in Fig. S14 correspond to p = 0.5, by changing p we

can also tune the typical size of the spatial communities, with higher values leading to smaller groups.

For additional results using three other cities, see Figs. S7 and S8. We provide similar results on the

spatial clusterisation for urban activities in Berlin (Fig. S15) and Prague (Fig. S16).
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Figure S14: Partitions obtained for the Gowalla venues in Barcelona. The venues in Barcelona

tracked by Gowalla user activity form a spatial graph where any pair of venues is connected by a link if

they are less than 2 km apart. Nodes are divided into six classes, according to the type of venue. The

partitions obtained for p = 0.5 and c = 1 (a), c = 10 (b) and c = 1000 (c) are reported. d-f Class

overlapping m̃ij when c = 1 (d), c = 10 (e) and c = 1000 (f). Venues are colored according to their

community assignment and the marker indicates the type of venue.
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SECTION S6: ORGANIZATION OF ACTIVITIES IN URBAN AREAS
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Figure S15: Partitions obtained for the Gowalla venues in Berlin. Community detection analysis

in the city of Berlin on the spatial graph connecting any pair of venues if their are closer than 2 km. For

a probability p = 0.5, partitions when c = 1 (a), c = 10 (b) and c = 1000 (c). d-f Class overlapping

m̃ij when c = 1 (d), c = 10 (e) and c = 1000 (f). Venues are colored according to their community

assignment and the marker indicated the type of venue.
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Figure S16: Partitions obtained for the Gowalla venues in Prague. Community detection analysis

in the city of Prague on the spatial graph connecting any pair of venues if their are closer than 2 km.

For a probability p = 0.5, partitions when c = 1 (a), c = 10 (b) and c = 1000 (c). d-f Class overlapping

m̃ij when c = 1 (d), c = 10 (e) and c = 1000 (f). Venues are colored according to their community

assignment and the marker indicated the type of venue.

Mapping non-local relations between metadata and network structure with metadata-dependent
encoding of random walks
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