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Figure S1 Images depicting the diverse compartment niches and the staygreen syndrome symptoms of soybean. (a) A comparison of normal 

pods and seeds of healthy soybean to the typical flat pods and aborted seeds associated with soybean staygreen syndrome. (b) Schematic the 

surveyed plant microbiota members colonizing diverse compartment niches. The surveyed aboveground compartments including the leaf, 

seed, pod and stem endophytic communities. The surveyed belowground samples are microbial communities associated with bulk soil, 

rhizosphere soil and root endophytic compartment.

(a) (b)



Seed Pod Stem Leaf Root Rhizo. Soil
0

25

50

75

100

Ba
ct

er
ia

l 1
6S

 R
el

at
iv

e 
Ab

un
da

nc
e 

(%
)

Families
Pseudomonadaceae
Oxalobacteraceae
Rhizobiaceae
Aurantimonadaceae
Enterobacteriaceae
Nocardioidaceae
Sphingomonadaceae
Microbacteriaceae
Comamonadaceae
Methylobacteriaceae
Gaiellaceae

Xanthomonadaceae
Kineosporiaceae
Micrococcaceae
Bacillaceae
Streptomycetaceae
Hyphomicrobiaceae
Weeksellaceae
Bradyrhizobiaceae
Micromonosporaceae
Others

Figure S2 The distribution of top 20 bacterial families associated with diverse soybean compartment niches using 16S rRNA gene. Average 

relative abundance of three biological replicates are displayed in separate stacked bars. Major contributing families are displayed in different 

colours and minor contributing families are grouped and displayed in grey. 
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Figure S3 Fungal composition and biomarkers associated with diverse soybean compartment niches using ITS rRNA. Class (a) and family () level distribution of the 

fungal microbiota associated with the seven compartment niches (seeds, pods, stems, leaves, roots, rhizosphere soils and bulk soils) across four soybean cultivars 

(ZD23, ZD25, ZD34 and ZD42). Average relative abundance of three biological replicates are displayed in separate stacked bars. Major contributing taxa are displayed 

in different colours and minor contributing taxa are grouped and displayed in grey. (c) LDA effect size taxonomic cladogram comparing all samples categorized by the 

seven compartment niches. Significantly discriminant fungal taxon nodes are colored and branch areas are shaded according to the highest-ranked variety for that 

taxon. If the taxon is not significantly differentially represented between sample groups, the corresponding node is colored yellow. Significantly discriminant taxon from 

fungal phylum to order levels are labeled in the cladogram, and that in the family level are labeled in the right.

(a)

(c)

Seed Pod Stem Leaf Root Rhizo. Soil
0

25

50

75

100

IT
S 

R
el

at
iv

e 
Ab

un
da

nc
e 

(%
) Families

Nectriaceae 
Plectosphaerellaceae 
Mycosphaerellaceae 
Chaetomiaceae 
Pleosporaceae 
Botryosphaeriaceae 
Bulleribasidiaceae 
Myxotrichaceae 
Stachybotryaceae 
Ustilaginaceae 
Diaporthaceae

Phaeosphaeriaceae 
Mortierellaceae 
Morosphaeriaceae 
Didymellaceae 
Lasiosphaeriaceae 
Bionectriaceae 
Pyronemataceae 
Pseudeurotiaceae 
Saccharomycetaceae 
Others

(b)



The trainning datset
(ZD23,ZD25,ZD34)

Se
ed Po

d
St

em Le
af

R
oo

t
R

hi
zo

sp
he

re
So

il

The validation datset
(ZD42)

Pleosporaceae
Ustilaginaceae
Glomerellaceae
Mycosphaerellaceae
Bulleribasidiaceae
Plectosphaerellaceae
Sordariomycetes_fam
Stachybotryaceae
Microdochiaceae
Piskurozymaceae
Pseudeurotiaceae
Chaetomiaceae
Pyronemataceae
Sympoventuriaceae
Pleosporales_fam
Morosphaeriaceae

Se
ed Po

d
St

em Le
af

R
oo

t
R

hi
zo

sp
he

re
So

il

Trainning datset
(ZD23,ZD25,ZD34)

Se
ed Po

d
St

em Le
af

R
oo

t
R

hi
zo

sp
he

re
So

il

Validation datset
(ZD42)

Oxalobacteraceae
Burkholderiaceae
Methylobacteriaceae
Kineosporiaceae
Aurantimonadaceae
Rhizobiaceae
Rhodospirillaceae
Piscirickettsiaceae
Solirubrobacteraceae
.Entotheonellaceae.
Gaiellaceae
Iamiaceae
Intrasporangiaceae
Micrococcaceae
Nocardioidaceae

Se
ed Po

d
St

em Le
af

R
oo

t
R

hi
zo

sp
he

re
So

il

Rhodospirillaceae
Micrococcaceae

Solirubrobacteraceae
Iamiaceae

Nocardioidaceae
Rhizobiaceae

.Entotheonellaceae.
Piscirickettsiaceae
Kineosporiaceae

Oxalobacteraceae
Gaiellaceae

Intrasporangiaceae
Methylobacteriaceae

Burkholderiaceae
Aurantimonadaceae

0.00 0.01 0.02 0.03

Mean of decreased accuracy

Phylum
Alphaproteobacteria 
Betaproteobacteria 
Gammaproteobacteria 
Deltaproteobacteria
Actinobacteria

Relative abundance

-2
-1
0
1
2

(a) (c)

Stachybotryaceae
Sympoventuriaceae
Pseudeurotiaceae
Pleosporales_fam
Microdochiaceae
Pyronemataceae
Ustilaginaceae
Glomerellaceae

Sordariomycetes_fam
Pleosporaceae

Morosphaeriaceae
Bulleribasidiaceae
Chaetomiaceae

Plectosphaerellaceae
Piskurozymaceae

Mycosphaerellaceae

0.00 0.01 0.02 0.03 0.04 0.05

Mean of decreased accuracy

Class
Sordariomycetes 
Dothideomycetes
Leotiomycetes
Pezizomycetes 
Tremellomycetes 
Ustilaginomycetes

Relative abundance

-2
-1
0
1
2

(b) (d)

Figure S4 Random-forest model detects bacterial and fungal taxa that accurately predict soybean compartment niches. (a) and (b). The top 15 most relevant 

bacterial families (a) and the top 16 most relevant fungal families () can accurately predicted soybean compartment niches were identified by applying random-forest 

classification of the relative abundance of the microbiota in soybean cultivars ZD23, ZD25 and ZD34. Biomarker taxa are ranked in descending order of importance to 

the accuracy of the model. The inset represents 10-fold cross-validation error as a function of the number of input families used to predicted microbiota 

associated with each soybean compartment niches in order of variable importance. (c) and (d). Heatmap showing the relative abundances of the bacterial (c) and 

fungal (d) biomarker families across diverse soybean compartment niches in the Random-forest trainning datset (soybean cultivars ZD23,ZD25,ZD34), and their 

relative abundances in the Random-forest validation datset (soybean cultivar ZD42).
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Figure S5 Bubble plot of significantly different functional profiles inferred by PICRUSt2 in seven soybean compartment niches. Each point 

represents a significantly enriched MetaCyc pathway prediction in a certain compartment relative to all the other compartments identified based 

on LEfSe analysis. The size of bubble points showing pathway abundances, the color of bubble points showing enrichment significance.
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Figure S6. Diversity and dynamics of fungal microbiota across diverse soybean compartment niches. (a) Estimated abundance of fungal ITS 

rRNA per gam of sample in diverse soybean compartment niches using ITS synthetic spikes. The microbial load was calculated as follows: fungal 

ITS abundance = number of  fungal-origin reads × (ITS synthetic spike copies added/number of spikes-origin reads). (b) Comparison of fungal 

alpha-diversity between soybean compartment niches based on the Shannon’s diversity index H. (c) Principal coordinate analysis (PCoA) of 

pairwise Bray-Curtis distances between samples. For (a) to (c), the color and shape of each point represent the compartment and cultivar, 

respectively. For (a) and (b), post hoc test is indicated by letters at the top, sample groups with the same letter are indistinguishable at 95% 

confidence. n = 12 biological replicates. (d) Dynamics of the fungal communities along the soybean compartment niches as revealed by 

SourceTracker analysis. Mean proportion of SourceTracker estimates from 12 biological replicates were used for each soybean compartment 

niches.
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Figure S7 Phylogenetic diversity of bacterial and fungal microbiota across diverse soybean compartment niches. (a) and (b) Comparison of 

bacterial (a) and fungal (b) alpha-diversity between soybean compartment niches based on the Faith’s phylogenetic diversity, respectively. (c) 

and (d) Principal coordinate analysis (PCoA) of bacterial (c) and fungal (d) pairwise Weighted Unifrac distances between samples, 

respectively. The color and shape of each point represent the compartment and cultivar, respectively. For (a) and (b), post hoc test is 

indicated by letters at the top, sample groups with the same letter are indistinguishable at 95% confidence. n = 12 biological replicates. 
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Figure S8 Transcriptome profiles of SGS affected genes and pathways across diverse soybean compartment niches. (a) Venn diagrams of 

differentially expressed genes (DEGs) between healthy and SGS diseased samples across diverse soybean compartment niches. (b) KEGG 

pathway enrichment analysis of SGS deduced DEGs across diverse soybean compartment niches. The enriched ratio and FDR-adjusted 

enrichment P-value of the pathway were indicated using the size and color of the bubble points, respectively. 
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Figure S9 The diversity and composition of fungal communities in response to soybean SGS. (a) and (b) Comparison of the fungal loads (a) and 

Shannon’s diversity index (b) between healthy and SGS diseased samples in diverse soybean compartment niches, respectively. Post hoc test is 

indicated by letters at the top, sample groups with the same letter are indistinguishable at 95% confidence. n = 12 biological replicates. (c) 

Comparison of the class-level distribution of the fungal microbiota between healthy and SGS diseased samples in diverse soybean compartment 

niches. Average relative abundance of 12 biological replicates are displayed in separate stacked bars. (d) LDA effect size taxonomic 

cladogram comparing fungal microbiota between healthy and SGS diseased seeds of Zhoudou cultivars (ZD23, ZD25, ZD34 and ZD42). Significantly 

discriminant fungal taxon nodes are colored and branch areas are shaded according to the highest-ranked variety for that taxon. If the taxon is not 

significantly differentially represented between sample groups, the corresponding node is colored yellow.
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Figure S10 BugBase analysis compare the proportion of each microbiome with a given phenotype between healthy and SGS diseased samples in 

diverse soybean compartment niches. The compared phenotypes from top to bottom of the panel plot are Aerobic, Facultatively Anaerobic, 

Aerobic, Gram Positive, Gram Negative, Mobile Element Containing, Biofilm Forming, Oxidative Stress Tolerant and Pathogenic Potential, 

respectively. Post hoc test is indicated by letters at the top, sample groups with the same letter are indistinguishable at 95%confidence. n = 12 

biological replicates.
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Figure S11 Bubble plot of significantly enriched functional profiles inferred by PICRUSt2 between healthy and SGS diseased samples in diverse 

soybean compartment niches. Each point represents a significantly enriched MetaCyc pathway prediction in SGS diseased seeds relative to healthy 

seeds identified based on DESeq2 analysis. The size of bubble points showing pathway abundances, the color of bubble points showing enrichment 

significance.
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superpathw ay of menaquinol-8 biosynthesis II

2-amino-3-carboxymuconate semialdehyde degradation to 2-oxopentenoate
mycolyl-arabinogalactan-peptidoglycan complex biosynthesis

lactose and galactose degradation I
ectoine biosynthesis

reductive TCA cycle I
glycolysis III (from glucose)

adenosylcobalamin biosynthesis II (late cobalt incorporation)
teichoic acid (poly-glycerol) biosynthesis

superpathw ay of methylglyoxal degradation
glucose and glucose-1-phosphate degradation

L-glutamate degradation V (via hydroxyglutarate)
sucrose degradation IV (sucrose phosphorylase)

Figure 12 Bubble plot of significantly depleted functional profiles inferred by PICRUSt2 between healthy and SGS diseased samples in diverse 

soybean compartment niches. Each point represents a significantly depleted MetaCyc pathway prediction in SGS diseased seeds relative to healthy 

seeds identified based on DESeq2 analysis. The size of bubble points showing pathway abundances, the color of bubble points showing enrichment 

significance.

Root Rhizo. Soil

10203040 10203040 10203040 10203040 10203040 10203040 10203040 
-Log2(p-adjust)



(a) (b)

YD22_Seed Wheat_Stem Wheat_Leaf1 Wheat_Leaf2

1e+07

1e+09

1e+11

Ba
ct

er
ia

l 1
6S

 A
bu

nd
an

ce
 (g

-1
)

Figure S13 Comparison of the microbial loads (a) and Shannon’s diversity index (b) of the bacterial microbiota between healthy and diseased 

samples associated with diverse plant diseases. YD22_Seed: In seeds of soybean cultivar YD22 associated with SGS (n = 5 biological replicates); 

Wheat_Stem: in stems of wheat associated with wheat stem rot (SR) complex (n=6); Wheat_Leaf1: in leaves of wheat associated with wheat 

sharp eyespot (WSE) (n=7); Wheat_Leaf2: in leaves of wheat associated with wheat stripe rust (WSR) (n=10). Post hoc test is indicated by letters at 

the top, sample groups with the same letter are indistinguishable at 95% confidence.
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Figure S14 Microbiomes dysbiosis survey of plant samples associated with wheat diseases. (a-c). LDA effect size taxonomic cladogram comparing bacterial 

microbiota between healthy and SGS diseased samples associated with wheat stem rot (SR) complex (a), wheat sharp eyespot (WSE) (b) and wheat stripe rust 

(WSR) (c). Significantly discriminant bacterial taxon nodes are colored and branch areas are shaded according to the highest-ranked variety for that taxon. If the 

taxon is not significantly differentially represented between sample groups, the corresponding node is colored yellow. 
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(WSE) (b) and wheat stripe rust (WSR) (c).



FK949_gp070.mRNA.0 | hypothetical protein | Paramecium bursaria Chlorella virus NYs1
pmac_cds_791.mRNA.0 | hypothetical protein | Pandoravirus macleodensis
pneo_cds_129.mRNA.0 | hypothetical protein | Pandoravirus neocaledonia
AG2_133.mRNA.0 | hypothetical protein | Listeria phage vB_LmoM_AG20
pmac_cds_579.mRNA.0 | hypothetical protein | Pandoravirus macleodensis
pmac_cds_64.mRNA.0 | hypothetical protein | Pandoravirus macleodensis
F8205_gp098.mRNA.0 | hypothetical protein | Paramecium bursaria Chlorella virus CVA-1
EXJ59_gp106.mRNA.0 | hypothetical protein | Malacosoma neustria nucleopolyhedrovirus isolate ManeNPV-T2
EXJ79_gp7.mRNA.0 | EO2-4 | Rhynchobatus djiddensis adomavirus 1 isolate UGA1
HOR66_gp321.mRNA.0 | hypothetical protein | Erwinia phage vB_EamM_Yoloswag
HYP96_gp01.mRNA.0 | hypothetical protein | Escherichia phage vB_EcoM_4HA13
HOT46_gp28.mRNA.0 | hypothetical protein | Microbacterium phage Zeta1847
pdul_cds_249.mRNA.0 | hypothetical protein | Pandoravirus dulcis
AVU40_gp164.mRNA.0 | hypothetical protein | Staphylococcus phage phiIPLA-C1C
pmac_cds_841.mRNA.0 | hypothetical protein | Pandoravirus macleodensis
pqer_cds_332.mRNA.0 | hypothetical protein | Pandoravirus quercus
MegaChil_gp0494.mRNA.0 | NA | Megavirus chiliensis
HOR61_gp69.mRNA.0 | hypothetical protein | Escherichia phage vB_EcoS-IME253
pdul_cds_241.mRNA.0 | hypothetical protein | Pandoravirus dulcis
pdul_cds_462.mRNA.0 | hypothetical protein | Pandoravirus dulcis
pmac_cds_82.mRNA.0 | hypothetical protein | Pandoravirus macleodensis
EXI89_gp08.mRNA.0 | hypothetical protein | Esparto virus isolate SRR3939042_Esparto_2012
FK951_p1022.mRNA.0 | FirrV-1-B22 | Feldmannia irregularis virus a strain FirrV-1 contig B
BH753_gp007.mRNA.0 | hypothetical protein | Bacillus phage Shbh1
HYP10_gp083.mRNA.0 | hypothetical protein | Tenacibaculum phage pT24 DNA
pdul_cds_782.mRNA.0 | hypothetical protein | Pandoravirus dulcis
pdul_cds_376.mRNA.0 | hypothetical protein | Pandoravirus dulcis
pdul_cds_456.mRNA.0 | hypothetical protein | Pandoravirus dulcis
EXK53_gp086.mRNA.0 | GrBNV_gp06-like protein | Drosophila innubila nudivirus isolate DiNV_CH01M
FK873_gp164.mRNA.0 | hypothetical protein | Micromonas pusilla virus SP1
TSARBOMBA_17.mRNA.0 | hypothetical protein | Bacillus phage TsarBomba
TSARBOMBA_267.mRNA.0 | hypothetical protein | Bacillus phage TsarBomba
pneo_cds_244.mRNA.0 | hypothetical protein | Pandoravirus neocaledonia
HOT49_gp333.mRNA.0 | hypothetical protein | Erwinia phage vB_EamM_Alexandra
AVV61_gp50.mRNA.0 | hypothetical protein | Mannheimia phage vB_MhM_3927AP2
FLA46_sAgp6.mRNA.0 | AC1 | Bhendi yellow vein Haryana virus [2003:Karnal] isolate OY76 segment DNA-A
D1Q73_gp5.mRNA.0 | AC1 | Ludwigia yellow vein Vietnam virus segment DNA-A
FK988_gp5.mRNA.0 | AC1 | Eupatorium yellow vein virus-[MNS2] complete genome
D1Q73_gp6.mRNA.0 | AC4 | Ludwigia yellow vein Vietnam virus segment DNA-A
FK867_gp6.mRNA.0 | AC4 | Eupatorium yellow vein virus-[Japan: Kagawa: Tomato: 1997] DNA
pdul_cds_645.mRNA.0 | hypothetical protein | Pandoravirus dulcis
pdul_cds_771.mRNA.0 | hypothetical protein | Pandoravirus dulcis
pdul_cds_289.mRNA.0 | hypothetical protein | Pandoravirus dulcis
HYP58_gp98.mRNA.0 | coil containing protein | Vibrio phage 1.097.O._10N.286.49.B3
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Figure S16 Hierarchical clustered heatmap of differentially expressed viral genes between healthy and SGS diseased samples using RNA sequencing 

data. Differentially expressed viral genes with |log2FC| > 2 (FC, fold change) and adjusted P-value < 0.01 were displayed in the heatmap. Red and 

blue labels represent diseased and healthy samples, respectively.
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Figure S17 Viral contigs identified by VirusDetect using sRNA sequencing data. (a) Hierarchical clustered heatmap of differentially expressed viral 

contigs between healthy and SGS diseased samples across diverse soybean compartment niches. Differentially expressed viral contigs with |log2FC| > 

2 (FC, fold change) and adjusted P-value < 0.01 were displayed in the heatmap. The name of each contig was labeled using the virus most 

resemblance to it identified by BLASTN. Red and blue labels represent diseased and healthy samples, respectively. The stem, pod, and seed samples 

of ZD23 was subjected to sRNA sequencing for virus identification. Originally, three repeats of sRNA for each sample group were prepared, but only 

one stem sRNA sample of healthy ZD23 (R23_V2_S2) was sucessfully extracted. As a complement, the stem, pod, and seed samples of ZD25, ZD34 

and ZD42 were also subjected to sRNA sequencing (one repeat for each sample group). (b) Alignments of identified virus contigs to the reference virus 

genomes, using Tomato leaf curl Hainan virus isolate FQ12 (KF150142) as a example. The top arrows shows the position of the linearized genome 

organization (the open reading frames (ORFs) organization) in the alignment. Blue tracks represent reference virus genomes, and red tracks represent 

assembled virus contigs.
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JX025995|cucumovirus|Cucumber mosaic virus|94.08%
AY729512|quinvirinae|Banana mild mosaic virus|88.46%
JQ034525|tospovirus|Tomato chlorotic spot virus|87.27%
AY367350|pospiviroid|Columnea latent viroid|88.14%
AY729598|quinvirinae|Banana mild mosaic virus|92.5%
AB050597|begomovirus|Tomato leaf curl Philippines virus|89.7%
AJ542539|begomovirus|Hollyhock leaf crumple virus|86.4%
FN552606|cucumovirus|Cucumber mosaic virus|95.45%
GQ865681|cucumovirus|Cucumber mosaic virus|93.18%
AF413929|trichovirus|Apple chlorotic leaf spot virus|90.7%
EU581708|hantavirus|Tula virus|87.76%
FJ513076|begomovirus|Sida golden mosaic virus|91.13%
AM156861|begomovirus|Foetid cassia leaf curl virus|92.24%
AM701761|begomovirus|Tomato leaf curl Namakely virus|89.6%
HG969260|begomovirus|Tomato yellow leaf curl Al-Batinah virus|90.77%
KT390312|begomovirus|Okra enation leaf curl virus|89.54%
KT390455|begomovirus|Cotton leaf curl Multan virus|91.79%
JX416184|begomovirus|Tomato leaf curl Laos virus|93.79%
KC577539|begomovirus|Ageratum yellow vein China virus|92.82%
EU585781|begomovirus|Pepper leaf curl Yunnan virus|91.17%
AF014881|begomovirus|Hollyhock leaf crumple virus|89.33%
KF150142|begomovirus|Tomato leaf curl Hainan virus|87.42%
AJ512761|begomovirus|Tobacco leaf curl Yunnan virus|92.61%
EU847739|begomovirus|Tomato leaf curl Kumasi virus|93.23%
HE659517|begomovirus|Tomato leaf curl Togo virus|91.22%
HE616777|begomovirus|African cassava mosaic Burkina Faso virus|91%
KF429251|begomovirus|Hedyotis uncinella yellow mosaic virus|91.91%
KC857508|begomovirus|Pouzolzia golden mosaic virus|90.27%
AJ564742|begomovirus|Stachytarpheta leaf curl virus|88.45%
AF511529|begomovirus|Tomato yellow leaf curl Kanchanaburi virus|91.2%
AF327436|begomovirus|Tomato leaf curl Malaysia virus|92.97%
AB267834|begomovirus|Pepper yellow leaf curl Indonesia virus|88.52%
DQ641701|begomovirus|Lindernia anagallis yellow vein virus|91.92%
AM236784|begomovirus|Tomato leaf curl Guangxi virus|89.95%
DQ641702|begomovirus|Tomato yellow leaf curl Kanchanaburi virus|92.93%
AJ865340|begomovirus|Tomato leaf curl Mayotte virus|92.45%
JQ804985|begomovirus|Ageratum yellow vein China virus|92.14%
AB236325|begomovirus|Honeysuckle yellow vein virus|90.02%
FJ685621|begomovirus|Tomato leaf curl Nigeria virus|90.23%
KT390319|begomovirus|Okra enation leaf curl virus|89.72%
AM948961|begomovirus|Tomato leaf curl Pakistan virus|90.69%
KJ016236|begomovirus|Malvastrum leaf curl Guangdong virus|89.1%
JN809816|begomovirus|Ageratum yellow vein virus|91.9%
AB162141|begomovirus|Tomato leaf curl Java virus|89.61%
KC686705|begomovirus|Tomato yellow leaf curl Yunnan virus|89.98%
JN591385|begomovirus|Tomato leaf curl Sudan virus|89.54%
AM701757|begomovirus|Bean leaf curl Madagascar virus|90.16%
JN809813|begomovirus|Ageratum yellow vein virus|89.42%
HG003652|begomovirus|Ageratum yellow vein China virus|92.63%
EU487045|begomovirus|Ageratum yellow vein China virus|91.6%
EU862323|begomovirus|Tomato leaf curl Patna virus|91.1%
KF446660|begomovirus|Papaya leaf curl Guandong virus|89.43%
KC161184|begomovirus|Papaya leaf curl virus|91.36%
AF136222|begomovirus|Tomato leaf curl Philippines virus|91.45%
AM701763|begomovirus|Tomato leaf curl Moheli virus|86.08%
EU350585|begomovirus|Tomato leaf curl virus|91.08%
AB100305|begomovirus|Ageratum yellow vein virus|94.26%
FN401520|begomovirus|Crassocephalum yellow vein virus|92.38%
DQ866128|begomovirus|Tomato leaf curl Taiwan virus|90.53%
KT099151|begomovirus|VEM begomovirus|91.61%
LK028571|begomovirus|Hollyhock yellow vein mosaic Islamabad virus|89.36%
FJ515747|begomovirus|Bhendi yellow vein Delhi virus|88.93%
FN806779|begomovirus|Malvastrum yellow vein Baoshan virus|92.09%
KF990601|begomovirus|Sida yellow vein Vietnam virus|92.51%
DQ641697|begomovirus|Tomato yellow leaf curl Vietnam virus|91.42%
JF919733|begomovirus|Tomato leaf curl Sudan virus|88.12%
KT033715|begomovirus|Tomato yellow leaf curl virus|89.54%
JQ411026|begomovirus|Radish leaf curl virus|91.12%
KF551585|begomovirus|Tomato leaf curl Karnataka virus|88.1%
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