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Figure S1 Images depicting the diverse compartment niches and the staygreen syndrome symptoms of soybean. (a) A comparison of normal
pods and seeds of healthy soybean to the typical flat pods and aborted seeds associated with soybean staygreen syndrome. (b) Schematic the
surveyed plant microbiota members colonizing diverse compartment niches. The surveyed aboveground compartments including the leaf,
seed, pod and stem endophytic communities. The surveyed belowground samples are microbial communities associated with bulk soil,

rhizosphere soil and root endophytic compartment.
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Figure S2 The distribution of top 20 bacterial families associated with diverse soybean compartment niches using 16S rRNA gene. Average
relative abundance of three biological replicates are displayed in separate stacked bars. Major contributing families are displayed in different

colours and minor contributing families are grouped and displayed in grey.
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Figure S3 Fungal composition and biomarkers associated with diverse soybean compartment niches using ITS rRNA. Class (a) and family () level distribution of the
fungal microbiota associated with the seven compartment niches (seeds, pods, stems, leaves, roots, rhizosphere soils and bulk soils) across four soybean cultivars

(ZD23, ZD25, ZD34 and ZD42). Average relative abundance of three biological replicates are displayed in separate stacked bars. Major contributing taxa are displayed
in different colours and minor contributing taxa are grouped and displayed in grey. (c) LDA effect size taxonomic cladogram comparing all samples categorized by the
seven compartment niches. Significantly discriminant fungal taxon nodes are colored and branch areas are shaded according to the highest-ranked variety for that

taxon. If the taxon is not significantly differentially represented between sample groups, the corresponding node is colored yellow. Significantly discriminant taxon from

fungal phylum to order levels are labeled in the cladogram, and that in the family level are labeled in the right.
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Figure S4 Random-forest model detects bacterial and fungal taxa that accurately predict soybean compartment niches. (a) and (b). The top 15 most relevant

bacterial families (a) and the top 16 most relevant fungal families () can accurately predicted soybean compartment niches were identified by applying random-forest

classification of the relative abundance of the microbiota in soybean cultivars ZD23, ZD25 and ZD34. Biomarker taxa are ranked in descending order of importance to

the accuracy of the model. The inset represents 10-fold cross-validation error as a function of the number of input families used to predicted microbiota

associated with each soybean compartment niches in order of variable importance. (c) and (d). Heatmap showing the relative abundances of the bacterial (c) and

fungal (d) biomarker families across diverse soybean compartment niches in the Random-forest trainning datset (soybean cultivars ZD23,2D25,ZD34), and their

relative abundances in the Random-forest validation datset (soybean cultivar ZD42).
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Figure S5 Bubble plot of significantly different functional profiles inferred by PICRUSt2 in seven soybean compartment niches. Each point
represents a significantly enriched MetaCyc pathway prediction in a certain compartment relative to all the other compartments identified based

on LEfSe analysis. The size of bubble points showing pathway abundances, the color of bubble points showing enrichment significance.



—~
O
~

(@)

f d e c b a b b d bc c d b a
Niche
1e+10, v @ Seed
) @ pod

i o o @ Stem
° S 4 ® Leaf
:‘é < @ Root
2 1e+08- o § Rhizosphere
3 £ @ soil
< c
) 2
= ae S 2. Cultivar
—_ =
5 + & O zp23
5 [ 0 zb2s
Tz 1 o

1e+06 é ZD42

% Y zD34
0
> P & B e > O L B S Lo
o g S & F & T & &9
.49 a9
Q“d' qs*“’

(c) (d)

- vV
0.2 ‘ ).A.
< 3
a R
e M
T |e® vy
§-02~ A ¥
me ©
041 @
o oY

PCoA 1 (17.3%)

Figure S6. Diversity and dynamics of fungal microbiota across diverse soybean compartment niches. (a) Estimated abundance of fungal ITS
rRNA per gam of sample in diverse soybean compartment niches using ITS synthetic spikes. The microbial load was calculated as follows: fungal
ITS abundance = number of fungal-origin reads X (ITS synthetic spike copies added/number of spikes-origin reads). (b) Comparison of fungal
alpha-diversity between soybean compartment niches based on the Shannon’s diversity index H. (c) Principal coordinate analysis (PCoA) of
pairwise Bray-Curtis distances between samples. For (a) to (c), the color and shape of each point represent the compartment and cultivar,
respectively. For (a) and (b), post hoc test is indicated by letters at the top, sample groups with the same letter are indistinguishable at 95%
confidence. n = 12 biological replicates. (d) Dynamics of the fungal communities along the soybean compartment niches as revealed by
SourceTracker analysis. Mean proportion of SourceTracker estimates from 12 biological replicates were used for each soybean compartment

niches.
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Figure S7 Phylogenetic diversity of bacterial and fungal microbiota across diverse soybean compartment niches. (a) and (b) Comparison of
bacterial (a) and fungal (b) alpha-diversity between soybean compartment niches based on the Faith’s phylogenetic diversity, respectively. (c)
and (d) Principal coordinate analysis (PCoA) of bacterial (c) and fungal (d) pairwise Weighted Unifrac distances between samples,
respectively. The color and shape of each point represent the compartment and cultivar, respectively. For (a) and (b), post hoc test is

indicated by letters at the top, sample groups with the same letter are indistinguishable at 95% confidence. n = 12 biological replicates.
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Figure S8 Transcriptome profiles of SGS affected genes and pathways across diverse soybean compartment niches. (a) Venn diagrams of
differentially expressed genes (DEGs) between healthy and SGS diseased samples across diverse soybean compartment niches. (b) KEGG
pathway enrichment analysis of SGS deduced DEGs across diverse soybean compartment niches. The enriched ratio and FDR-adjusted

enrichment P-value of the pathway were indicated using the size and color of the bubble points, respectively.
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Figure S9 The diversity and composition of fungal communities in response to soybean SGS. (a) and (b) Comparison of the fungal loads (a) and
Shannon’s diversity index (b) between healthy and SGS diseased samples in diverse soybean compartment niches, respectively. Post hoc test is
indicated by letters at the top, sample groups with the same letter are indistinguishable at 95% confidence. n = 12 biological replicates. (c)
Comparison of the class-level distribution of the fungal microbiota between healthy and SGS diseased samples in diverse soybean compartment
niches. Average relative abundance of 12 biological replicates are displayed in separate stacked bars. (d) LDA effect size taxonomic
cladogram comparing fungal microbiota between healthy and SGS diseased seeds of Zhoudou cultivars (ZD23, ZD25, ZD34 and ZD42). Significantly
discriminant fungal taxon nodes are colored and branch areas are shaded according to the highest-ranked variety for that taxon. If the taxon is not

significantly differentially represented between sample groups, the corresponding node is colored yellow.
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Figure S10 BugBase analysis compare the proportion of each microbiome with a given phenotype between healthy and SGS diseased samples in
diverse soybean compartment niches. The compared phenotypes from top to bottom of the panel plot are Aerobic, Facultatively Anaerobic,
Aerobic, Gram Positive, Gram Negative, Mobile Element Containing, Biofilm Forming, Oxidative Stress Tolerant and Pathogenic Potential,
respectively. Post hoc test is indicated by letters at the top, sample groups with the same letter are indistinguishable at 95%confidence. n = 12

biological replicates.
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Figure S11 Bubble plot of significantly enriched functional profiles inferred by PICRUSt2 between healthy and SGS diseased samples in diverse
soybean compartment niches. Each point represents a significantly enriched MetaCyc pathway prediction in SGS diseased seeds relative to healthy
seeds identified based on DESeq?2 analysis. The size of bubble points showing pathway abundances, the color of bubble points showing enrichment

significance.
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Figure 12 Bubble plot of significantly depleted functional profiles inferred by PICRUSt2 between healthy and SGS diseased samples in diverse
soybean compartment niches. Each point represents a significantly depleted MetaCyc pathway prediction in SGS diseased seeds relative to healthy
seeds identified based on DESeq?2 analysis. The size of bubble points showing pathway abundances, the color of bubble points showing enrichment

significance.
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Figure S13 Comparison of the microbial loads (a) and Shannon’s diversity index (b) of the bacterial microbiota between healthy and diseased
samples associated with diverse plant diseases. YD22_Seed: In seeds of soybean cultivar YD22 associated with SGS (n = 5 biological replicates);
Wheat_Stem: in stems of wheat associated with wheat stem rot (SR) complex (n=6); Wheat_Leaf1: in leaves of wheat associated with wheat
sharp eyespot (WSE) (n=7); Wheat_Leaf2: in leaves of wheat associated with wheat stripe rust (WSR) (n=10). Post hoc test is indicated by letters at

the top, sample groups with the same letter are indistinguishable at 95% confidence.
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Figure S14 Microbiomes dysbiosis survey of plant samples associated with wheat diseases. (a-c). LDA effect size taxonomic cladogram comparing bacterial
microbiota between healthy and SGS diseased samples associated with wheat stem rot (SR) complex (a), wheat sharp eyespot (WSE) (b) and wheat stripe rust
(WSR) (c). Significantly discriminant bacterial taxon nodes are colored and branch areas are shaded according to the highest-ranked variety for that taxon. If the

taxon is not significantly differentially represented between sample groups, the corresponding node is colored yellow.
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Figure S15 Manhattan plots showing disease enriched and depleted ASVs in sampes associated with wheat stem rot (SR) complex (a), wheat sharp eyespot

(WSE) (b) and wheat stripe rust (WSR) (c).



Log,(TPM+1)

I FK949_gp070.mRNA.O | hypothetical protein | Paramecium bursaria Chlorella virus NYs1
pmac_cds_791.mRNA.O | hypothetical protein | Pandoravirus macleodensis
| | pneo_cds_129.mRNA.O | hypothetical protein | Pandoravirus neocaledonia
AG2_133.mRNA.O | hypothetical protein | Listeria phage vB_LmoM_AG20
| | pmac_cds_579.mRNA.O | hypothetical protein | Pandoravirus macleodensis
pmac_cds_64.mRNA.O | hypothetical protein | Pandoravirus macleodensis
F8205_gp098.mRNA.0 | hypothetical protein | Paramecium bursaria Chlorella virus CVA-1
EXJ59_gp106.mRNA.O | hypothetical protein | Malacosoma neustria nucleopolyhedrovirus isolate ManeNPV-T2
| EXJ79_gp7.mRNA.O | EO2-4 | Rhynchobatus djiddensis adomavirus 1 isolate UGA1
| | HOR66_gp321.mRNA.O | hypothetical protein | Erwinia phage vB_EamM_Yoloswag
H . || HYP96_gp01.mRNA.0 | hypothetical protein | Escherichia phage vB_EcoM_4HA13
|| 1 HOT46_gp28.mRNA.O | hypothetical protein | Microbacterium phage Zeta1847
|| | pdul_cds_249.mRNA.O | hypothetical protein | Pandoravirus dulcis

MegaChil_gp0494.mRNA.O | NA | Megavirus chiliensis
| | HORG61_gp69.mRNA.O | hypothetical protein | Escherichia phage vB_EcoS-IME253
pdul_cds_241.mRNA.O | hypothetical protein | Pandoravirus dulcis
pdul_cds_462.mRNA.O | hypothetical protein | Pandoravirus dulcis
| | pmac_cds_82.mRNA.O | hypothetical protein | Pandoravirus macleodensis
EXI89_gp08.mRNA.O | hypothetical protein | Esparto virus isolate SRR3939042_Esparto_2012
FK951_p1022.mRNA.O | FirrV-1-B22 | Feldmannia irregularis virus a strain FirrV-1 contig B
| BH753_gp007.mRNA.O | hypothetical protein | Bacillus phage Shbh1

pdul_cds_782.mRNA.O | hypothetical protein | Pandoravirus dulcis
pdul_cds_376.mRNA.O | hypothetical protein | Pandoravirus dulcis

I n | .pdulicdsi456.mRNA.0 | hypothetical protein | Pandoravirus dulcis

| | I | HYP10_gp083.mRNA.0 | hypothetical protein | Tenacibaculum phage pT24 DNA

EXK53_gp086.mRNA.O | GrBNV_gp06-like protein | Drosophila innubila nudivirus isolate DiINV_CHO01M

— | AVU40_gp164.mRNA.O | hypothetical protein | Staphylococcus phage philPLA-C1C
pmac_cds_841.mRNA.O | hypothetical protein | Pandoravirus macleodensis
I | pger_cds_332.mRNA.0O | hypothetical protein | Pandoravirus quercus

FK873_gp164.mRNA.O | hypothetical protein | Micromonas pusilla virus SP1
I TSARBOMBA_17.mRNA.O | hypothetical protein | Bacillus phage TsarBomba

I TSARBOMBA_267.mRNA.O | hypothetical protein | Bacillus phage TsarBomba
| pneo_cds_244.mRNA.O | hypothetical protein | Pandoravirus neocaledonia
HOT49_gp333.mRNA.O | hypothetical protein | Erwinia phage vB_EamM_Alexandra
H N [ W W Avve1 gp50.mRNA.O | hypothetical protein | Mannheimia phage vB_MhM_3927AP2

FK988_gp5.mRNA.0 | AC1 | Eupatorium yellow vein virus-[MNS2] complete genome
D1Q73_gp6.mRNA.0 | AC4 | Ludwigia yellow vein Vietnam virus segment DNA-A
| FK867_gp6.mRNA.O | AC4 | Eupatorium yellow vein virus-[Japan: Kagawa: Tomato: 1997] DNA
pdul_cds_645.mRNA.O | hypothetical protein | Pandoravirus dulcis
H T pdul_cds_771.mRNA.O | hypothetical protein | Pandoravirus dulcis
r_ Lpdul_cds_ZSQ.mRNA.O | hypothetical protein | Pandoravirus dulcis
| HYP58_gp98.mRNA.O | coil containing protein | Vibrio phage 1.097.0._10N.286.49.B3
\—N(’)‘*Nm‘*(\l(")\*N(")\—IN‘(’)‘\—‘NIMI\—‘NI(")I‘—‘Nlml
LLILL‘U_‘D_‘Q_‘Q_IJ‘J‘J‘U)IU)‘(/)‘LLLLLLD_D_D_—I_I_IK/JU)U)
RO ey T R R U U [N
QE8 o RRUTYTRRQ e RRIQIRR
mmmgggmmmmmmmmwg

FLA46_sAgp6.mRNA.0 | AC1 | Bhendi yellow vein Haryana virus [2003:Karnal] isolate OY76 segment DNA-A
I D1Q73_gp5.mRNA.0 | AC1 | Ludwigia yellow vein Vietnam virus segment DNA-A

T

OO NNANN NN
NNNDNDDNWYN
[217)

Seed Pod Leaf Stem Seed Pod Leaf Stem

Figure S$16 Hierarchical clustered heatmap of differentially expressed viral genes between healthy and SGS diseased samples using RNA sequencing

data. Differentially expressed viral genes with |log2FC| > 2 (FC, fold change) and adjusted P-value < 0.01 were displayed in the heatmap. Red and

blue labels represent diseased and healthy samples, respectively.
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Figure S17 Viral contigs identified by VirusDetect using SRNA sequencing data. (a) Hierarchical clustered heatmap of differentially expressed viral
contigs between healthy and SGS diseased samples across diverse soybean compartment niches. Differentially expressed viral contigs with |log2FC| >
2 (FC, fold change) and adjusted P-value < 0.01 were displayed in the heatmap. The name of each contig was labeled using the virus most
resemblance to it identified by BLASTN. Red and blue labels represent diseased and healthy samples, respectively. The stem, pod, and seed samples
of ZD23 was subjected to sSRNA sequencing for virus identification. Originally, three repeats of SRNA for each sample group were prepared, but only
one stem sRNA sample of healthy ZD23 (R23_V2_S2) was sucessfully extracted. As a complement, the stem, pod, and seed samples of ZD25, ZD34
and ZD42 were also subjected to sSRNA sequencing (one repeat for each sample group). (b) Alignments of identified virus contigs to the reference virus
genomes, using Tomato leaf curl Hainan virus isolate FQ12 (KF150142) as a example. The top arrows shows the position of the linearized genome
organization (the open reading frames (ORFs) organization) in the alignment. Blue tracks represent reference virus genomes, and red tracks represent

assembled virus contigs.
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