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1 Computing Unique and Doubly-Unique Substrings

1.1 Notation and definitions

Let s = s1$1 ◦· · ·◦sm$m denote the string obtained by concatenating the input reference genomes si ∈ S and
let M = |s| =

∑
i |si| denote its length. A substring of s is a string in the form s[l : r] = s[l]s[l + 1] · · · s[r].

With a slight abuse of notation we denote by si[l : r] not the actual substring of si including its lth to
rth symbols, but rather the substring of s including its lth to rth symbols, with the provision that all
these symbols are within the representation of si in s. We denote by an `-mer a string of length `. The
suffix of s that starts at position i is denoted suf[i] = s[i, · · · ,M ]. In what follows, we use the generalized
enhanced suffix array of s that is composed of three parts. (i) The suffix array SA of s, which is comprised
of the positions 1, 2, · · · ,M , sorted in increasing lexicographical order of the corresponding suffixes suf[i],
i = 1, 2, · · · ,M . That is, SA[i] = j indicates that suf[j] is the i-th smallest suffix in lexicographical order.
In addition, we denote SA−1[j] = i if SA[i] = j. (ii) The longest common prefix array, LCP, contains in its
i-th position the length of the longest common prefix of suf[SA[i]] and suf[SA[i − 1]], for 2 ≤ i ≤ M (and
LCP[1] = 0). (iii) Finally, the generalized suffix array GSA contains the genome ID of each suffix suf[SA[i]].
All of the above arrays can be constructed in linear time: the first data structure that can be constructed in
linear time, with the ability to determine whether a given substring is unique to a “document” (i.e. a genome
in our context) in a collection of documents, and compute the shortest unique substring of a document that
ends in a particular position, in time proportional to the substring length is the augmented suffix tree of
Matias et al. [1]. Once an augmented suffix tree is computed, it can be trivially reduced to the above
described enhanced suffix array in O(M) time. The enhanced suffix array can also be constructed without
the use of suffix trees to achieve a constant factor improvement in memory [2, 3].

Supplementary Figure 1: Unique substrings, doubly-unique substrings, and their relationship with
unique/doubly-unique L-mers.

We denote by ui(l, r) the substring si[l : r] that is unique to genome si; formally, this indicates that there
exists no substring uj(l

′, r′) on any genome sj 6= si such that ui(l, r) = uj(l
′, r′). We call ui(l, r) a shortest

unconstrained unique substring, if none of its substrings are unique. Similarly, we denote by di(l, r) the
substring si[l : r] that is doubly-unique to genome si and one other genome, say sj ; formally, this indicates
that there is exactly one genome sj containing the substring dj(l

′, r′), i.e., si[l : r] = sj [l
′ : r′] for some l′, r′.
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Clearly, any superstring of a unique substring is still unique and any superstring of a doubly-unique substring
is either unique or doubly-unique. We call di(l, r) a shortest unconstrained doubly-unique substring of si
and some other genome sj , if none of its substrings are doubly-unique.

For our purposes (see the discussion in Section CAMMiQ Index, main text), we need to constrain the
shortest unique and doubly-unique substrings with length upper bound Lmax and lower bound Lmin. Under
these constraints, we call any shortest unconstrained unique substring ui(l, r) a shortest unique substring if
Lmax ≥ r − l + 1 > Lmin. We also call a unique substring ui(l, r) a shortest unique substring if r − l + 1 =
Lmin. Similarly, we call any shortest unconstrained doubly-unique substring di(l, r) a shortest doubly-unique
substring if Lmax ≥ r−l+1 > Lmin. Again, we call a doubly-unique substring ui(l, r) a shortest doubly-unique
substring if r− l+1 = Lmin as well. We say an L-mer si[l : l+L−1] includes a unique substring si[l

′ : r′], or,
conversely, a unique substring si[l

′ : r′] covers an L-mer si[l : l+L−1] if l′ ≥ l and r′ ≤ l+L−1. As such, we
call an L-mer unique if it includes a unique substring. We can generalize these definitions to the notion of an
L-mer including a doubly-unique substring, or conversely, a doubly-unique substring covering an L-mer, and
thus making the L-mer itself doubly-unique - provided that it is not unique. See Supplementary Figure
1 for a graphical illustration of the length bound on the shortest unique and doubly-unique substrings and
their relationship to unique and doubly-unique L-mers.

1.2 Algorithmic framework to compute shortest unique substrings

It is quite simple to compute the shortest unique and doubly-unique substrings in S in O(M) time by using
the augmented suffix tree described in [1]. A similar running time can also be achieved through the use of
a suffix array, as discussed by [4] for a single document (i.e. genome). We slightly generalize this to handle
multiple genomes as follows. The key observation we use is that given a position l, the shortest unique or
doubly-unique substring of si that starts at l (i.e. ui(l, r) or di(l, r)) is the shortest unique, or respectively
doubly-unique prefix of suf[l]. In this way the problem can be reduced to searching for the longest common
prefix of suf[l] with any other suffix from another genome (i.e., any genome with ID 6= GSA[SA−1[l]]) for each
1 ≤ l ≤M . Let lcp(x, y) denote the longest common prefix of two suffices x and y; then we define:

LCPu[i] = max
1≤j≤M ;GSA[j]6=GSA[i]

lcp(suf[SA[i]], suf[SA[j]]) (1)

and
LCPd[i] = max

1≤j≤M ;GSA[j] 6=GSA[i],GSA[j′]
lcp(suf[SA[i]], suf[SA[j]]) (2)

where j′ indicates a suffix suf[j′] with GSA[j′] 6= GSA[i], which maximizes lcp(suf[SA[i]], suf[SA[j′]]); note
that any value of j′ that maximizes lcp(suf[SA[i]], suf[SA[j′]]) will imply the same value for LCPd[i]. CAMMiQ
maintains an array SU (of length M) such that SU[r] = l if ui(l, r) is a shortest unique substring. To compute
SU, each of its entries is initially set to 0 and for each i = 1, . . .M , one entry of SU is updated as

SU[SA[i] + LCPu[i]]← max{SU[SA[i] + LCPu[i]], SA[i]} (3)

Similarly, CAMMiQ maintains an array SD (again of length M) such that SD[r] = l if di(l, r) is a shortest
doubly-unique substring. Again each entry of SD is initially set to 0 and then for each i = 1, . . .M , one entry
of SD is updated as

SD[SA[i] + LCPd[i]]← max{SD[SA[i] + LCPd[i]], SA[i]}. (4)

The pseudocode to compute arrays SU and SD according to equations (3) and (4) respectively, given SA,
LCPu and LCPd is given in Algorithm 1 below. As can be seen, the algorithm runs in O(M) time.

Computing LCPu and LCPd. Given GSA[i1, · · · , i2], a subarray of GSA, let dGSA(i1, i2) be the number of
distinct genomes the entries in this subarray belong to, i.e. dGSA(i1, i2) = |{GSA[i1], · · · , GSA[i2]}|. We can
now compute LCPu and LCPd in linear time as follows.

LCPu[i] = max


min

i−<x≤i
LCP[x], where i− = max{1 ≤ i′ < i}, s.t. dGSA(i

′, i) ≥ 2

min
i<x≤i+

LCP[x], where i+ = min{i < i′ ≤M}, s.t. dGSA(i, i
′) ≥ 2

(5)
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Algorithm 1 ShortestUniqueFromLCP(SA, LCPu, LCPd, Lmax)

1: for i from 1 to M do //Initialize SU

2: SU[i]← 0
3: SD[i]← 0
4: end for
5: for i from 1 to M do //Update SU according to (3) and SD according to (4)
6: if LCPu[i] < Lmax then
7: SU[SA[i] + LCPu[i]]← max{SU[SA[i] + LCPu[i]], SA[i]}
8: end if
9: if LCPd[i] < Lmax then

10: SD[SA[i] + LCPd[i]]← max{SD[SA[i] + LCPd[i]], SA[i]}
11: end if
12: end for
13: return SU, SD

LCPd[i] = min



max


min

i−<x≤i
LCP[x], where i− = max{1 ≤ i′ < i}, s.t. dGSA(i

′, i) ≥ 2

min
i<x≤i2+

LCP[x], where i2+ = min{i < i′ ≤M}, s.t. dGSA(i, i
′) ≥ 3

max


min

i2−<x≤i
LCP[x], where i2− = max{1 ≤ i′ < i}, s.t. dGSA(i

′, i) ≥ 3

min
i<x≤i+

LCP[x], where i+ = min{i < i′ ≤M}, s.t. dGSA(i, i
′) ≥ 2

(6)

Note that to introduce a minimum length constraint Lmin on unique and doubly-unique substrings, each
LCPu[i] is (re)set to max{Lmin−1, LCPu[i]} and respectively each LCPd[i] is (re)set to max{Lmin−1, LCPd[i]}.
Then, to ensure that each shortest doubly-unique substring occurs in exactly two genomes (and not one),
we set LCPd[i] = ∞ in case the above procedure ends up with LCPd[i] = LCPu[i]. See below for the proof of
correctness and a running time analysis for the computation of LCPu and LCPd.

1.3 Computing LCPu and LCPd

In this section we show that SU and SD can be correctly constructed in O(M) time. We start by showing
that the definition of LCPu and LCPd in Equation (1) and Equation (2) can respectively lead to the shortest
substrings occurring in at most one genome or two genomes. Then we give CAMMiQ’s detailed implementation
of Equation (5) and Equation (6) to compute the LCPu and LCPd arrays. Finally we give a running time
analysis of this implementation.

First consider the content of SU at the end of procedure ShortestUniqueFromLCP. To see the substring
s[l : r] corresponds to the r-th entry SU[r] = l (where l 6= 0) in SU is unique, meaning it only occurs in genome
with ID GSA[SA−1[l]], assume that there is another genome si′ having the same substring s[l′, r′] = s[l : r] -
this leads to a contradiction, since it implies that lcp(suf[l], suf[l′]) ≥ r− l+ 1. However, due to the update
rule of SU and the definition of LCPu, lcp(suf[l], suf[l′]) ≤ r − l for any 1 ≤ l′ ≤ M satisfying suf[l] and
suf[l′] start on different genomes, namely GSA[SA−1[l]] 6= GSA[SA−1[l′]], which is a contradiction. Now, to see
s[l : r] is a shortest unique substring, i.e. no substring of s[l : r] is unique to genome GSA[SA−1[l]], we show
that any s[l : r′ < r] and s[l′ > l, r] occurs in one other genome si′ . The former case is due to the definition
of LCPu - there exists suf[l′] on genome i′ 6= GSA[SA−1[l]] such that lcp(suf[l], suf[l′]) ≥ r − l, implying a
substring s[l′ : l′ + (r − l) − 1] identical to s[l, r − 1]; the later case is due to the update rule of SU - if
s[l′ > l, r] is also unique to genome GSA[SA−1[l]], then SU[r] must be set to l′ instead of l. Therefore, s[l : r]
is a shortest unique substring (to genome with ID GSA[SA−1[l]]); on the other hand, if s[l : r] is a shortest
unique substring, then SU[r] will maintain l after SU is completely updated.

Now consider the content of SD at the end of procedure ShortestUniqueFromLCP. We follow the above
proof to show s[l : r] is a shortest doubly-unique substring (to genome ID GSA[SA−1[l]] and possibly another
genome i′). To see the substring s[l : r] corresponds to the r-th entry SD[r] = l (where l 6= 0) in SD occurs
in at most two genomes, with ID GSA[SA−1[l]] (and possibly i′, any genome that suf[l′] belongs to, giving
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the largest lcp(suf[l], suf[l′])), we can assume there exists a thrid genome si′′ having the same substring
s[l′′, r′′] = s[l, r] = s[l′, r′] and similarly obtain a contradiction. Note that according to (2), it is possible
to have LCPd[SA

−1[l]] ≥ LCPu[SA−1[l]] and in this case s[l : r] is a unique substring that occurs only in
genome GSA[SA−1[l]]. If LCPd[SA

−1[l]] < LCPu[SA−1[l]] on the other hand, then s[l : r] must occur in exactly
two genomes, since SD is updated according to LCPd and we can find another suffix of s whose length-
(r − l + 1) (r − l + 1 ≤ LCPd[SA

−1[l]]) prefix is identical to s[l : r]. In addition, to see s[l : r] is a shortest
doubly-unique substring, meaning no substring of s[l : r] occurs only in genome GSA[SA−1[l]] and i′, we can
similarly show that any s[l : r′ < r] and s[l′ > l, r] can be found in a third genome si′′ , regardless whether
LCPd[SA

−1[l]] = LCPu[SA−1[l]] or LCPd[SA
−1[l]] < LCPu[SA−1[l]].

As a result of the above observations we can now formally state the following lemma.

Lemma 1. (i)After updating SU according to (3), SU[r] = l 6= 0 implies that s[l : r] is a shortest unique
substring to genome GSA[SA−1[l]];
(ii)After updating SD according to (4) SD[r] = l 6= 0 implies that s[l : r] is a shortest doubly-unique substring
to genome GSA[SA−1[l]] and i′ = GSA[SA−1[l′]] where suf[l′] gives the largest lcp(suf[l], suf[l′])).

Furthermore, it’s also clear that all unique substrings s[l : r] are stored in SU and all doubly-unique
substrings s[l : r] are stored in SD, as we have considered the suffix of s starting with every possible l.

Both LCPu and LCPd can be modified to incorporate the minimum length constraint Lmin on unique/doubly-
unique substrings. By setting LCPu[i] to max{Lmin − 1, LCPu[i]} for each entry 1 ≤ i ≤ M , the corre-
sponding substrings maintained in SU should also be unique, and with minimum length Lmin. One should
be careful however when dealing with LCPd: if LCPu[i] ≤ Lmin − 1, then the corresponding substring
s[SA[i], SA[i] + LCPu[i]] occurs in only one genome. Therefore we set LCPd[i] to ∞ (meaning it’s not con-
sidered) if LCPu[i] ≤ Lmin − 1 or LCPd[i] ≥ LCPu[i]; and to max{Lmin − 1, LCPd[i]} otherwise (this can be
done by first set each LCPu[i] to max{Lmin − 1, LCPu[i]} and LCPd[i] to max{Lmin − 1, LCPd[i]}, and then set
each LCPd[i] to ∞ if LCPd[i] ≥ LCPu[i]), which ensures the corresponding substrings maintained in SD are
doubly-unique, and with minimum length Lmin.

With the correctness of (3) and (4) in mind, our next concern is how to actually compute LCPu and
LCPd based on their definitions. In the following we show that (5) and (6) correctly implement (1) and
(2), without considering the borderline cases (i.e., for i = 1 or i = M ; to handle these cases we can set
GSA[0] = GSA[M + 1] = 0 and ignore i2− when i = 1 and i2+ when i = M).

Lemma 2. For any 1 ≤ i ≤M ,

(i)LCPu[i] = max


min

i−<x≤i
LCP[x], where i− = max{1 ≤ i′ < i}, s.t. dGSA(i

′, i) ≥ 2

min
i<x≤i+

LCP[x], where i+ = min{i < i′ ≤M}, s.t. dGSA(i, i
′) ≥ 2

(ii)LCPd[i] = min



max


min

i−<x≤i
LCP[x], where i− = max{1 ≤ i′ < i}, s.t. dGSA(i

′, i) ≥ 2

min
i<x≤i2+

LCP[x], where i2+ = min{i < i′ ≤M}, s.t. dGSA(i, i
′) ≥ 3

max


min

i2−<x≤i
LCP[x], where i2− = max{1 ≤ i′ < i}, s.t. dGSA(i

′, i) ≥ 3

min
i<x≤i+

LCP[x], where i+ = min{i < i′ ≤M}, s.t. dGSA(i, i
′) ≥ 2

where dGSA(i1, i2) = |{GSA[i1], · · · , GSA[i2]}|.

Proof. Let lcp(i, j) denote lcp(suf[i], suf[j]) for short. We utilize the properties of SA and LCP array: (a)
the longest common prefix of two suffices suf[i] and suf[j] (assume suf[i] is lexicographically smaller than
suf[j]) is lcp(i, j) = min{LCP[x] | x ∈ [SA−1[i]+1, SA−1[j]]}; also we have (b) lcp(i, j) ≥ lcp(SA[SA−1[i]−1], j)
and lcp(i, j) ≥ lcp(i, SA[SA−1[j] + 1]). (i) follows immediately from these properties:

LCPu[i] = max{lcp(SA[i], SA[i+]), lcp(SA[i−], SA[i])}.

To see (ii), we consider three cases:
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• If lcp(SA[i], SA[i+]) = lcp(SA[i−], SA[i]), then LCPd[i] = lcp(SA[i], SA[i+]) = lcp(SA[i−], SA[i]), due to (b).
(ii) holds in this case by applying (a).

• If lcp(SA[i], SA[i+]) < lcp(SA[i−], SA[i]), then LCPd[i] = max{lcp(SA[i], SA[i+]), lcp(SA[i2−], SA[i])} due to
(b). Also LCPd[i] ≤ lcp(SA[i−], SA[i]) = max{lcp(SA[i], SA[i2+]), lcp(SA[i−], SA[i])} since lcp(SA[i], SA[i2+])
≤ lcp(SA[i], SA[i+]) < lcp(SA[i−], SA[i]). (ii) therefore holds by applying (a).

• If lcp(SA[i], SA[i+]) > lcp(SA[i−], SA[i]), then we have similarly LCPd[i] = max{lcp(SA[i], SA[i2+]), lcp(SA[i−],
SA[i])} due to (b) and LCPd[i] ≤ lcp(SA[i], SA[i+]) = max{lcp(SA[i], SA[i+]), lcp(SA[i2−], SA[i])} since
lcp(SA[i2−], SA[i]) ≤ lcp(SA[i−], SA[i]) < lcp(SA[i], SA[i+]). Again we can see (ii) by applying (a), which
completes the proof.

Next we give the pseudocode to update LCPu and LCPd based on (5) and (6) respectively in Algorithm 2
and 3, and show that they actually run in linear time.

Algorithm 2 LCPuFromLCP(GSA, LCP, Lmin)

1: LCPu ← array of length M
2: i← 1, minlcp ←M , next ← 0
3: while i < M do
4: while i < M and GSA[i + next] = GSA[i +

next + 1] do
5: next← next + 1
6: end while
7: for j from next to 0 do
8: minlcp ← min{minlcp, LCP[i+ j + 1]}
9: LCPu[i+ j]← minlcp

10: end for
11: i← i+ next + 1
12: minlcp ←M , next ← 0
13: end while
14: i←M , minlcp ←M , next ← 0
15: while i > 1 do

16: while i > 1 and GSA[i−next] = GSA[i−next−
1] do

17: next← next + 1
18: end while
19: for j from next to 0 do
20: minlcp ← min{minlcp, LCP[i− j]}
21: LCPu[i− j]← max{LCPu[i− j],minlcp}
22: end for
23: i← i− next− 1
24: minlcp ←M , next ← 0
25: end while
26: for i from 1 to M do
27: LCPu[i]← max{LCPu[i], Lmin}
28: end for
29: return LCPu

Algorithm 3 LCPdFromLCP(GSA, LCP, Lmin)

1: LCPd ← array of length M
2: LCPu ← LCPuFromLCP(GSA, LCP, M , Lmin)
3: LCPd′ ← LCPdFromLCP+(GSA, LCP)
4: LCPd′′ ← LCPdFromLCP−(GSA, LCP)
5: for i from 1 to M do
6: LCPd[i]← max{min{LCPd′ [i], LCPd′′ [i]}, Lmin}
7: if LCPd[i] ≥ LCPu[i] then
8: LCPd[i]←∞
9: end if

10: end for
11: return LCPd

Lemma 3. Both LCPuFromLCP and LCPdFromLCP run in O(M) time.
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Algorithm 4 LCPdFromLCP+(GSA, LCP)

1: LCP∗d ← array of length M
2: i← 1, minlcp ←M , next1 ← 0, next2 ← 1
3: while i < M do
4: while i < M and GSA[i+ next1] = GSA[i+ next1 + 1] do
5: next1← next1 + 1
6: end while
7: while i < M and GSA[i+ next1 + next2] = GSA[i+ next1 + next2 + 1] do
8: next2← next2 + 1
9: end while

10: for j from next1 + next2 to 0 do
11: minlcp ← min{minlcp, LCP[i+ j + 1]}
12: if j ≤ next1 then
13: LCP∗d[i+ j]← minlcp
14: end if
15: end for
16: i← i+ next1 + 1
17: minlcp ←M , next1 ← 0, next2 ← 1
18: end while
19: i←M , minlcp ←M , next1 ← 0
20: while i > 1 do
21: while i > 1 and GSA[i− next1] = GSA[i− next1− 1] do
22: next1← next1 + 1
23: end while
24: for j from next1 to 0 do
25: minlcp ← min{minlcp, LCP[i− j]}
26: LCP∗d[i− j]← max{LCP∗d[i− j],minlcp}
27: end for
28: i← i− next1− 1
29: minlcp ←M , next1 ← 0
30: end while
31: return LCP∗d

Proof. Through a simple aggregate analysis, we can see that LCPuFromLCP visits each entry of GSA, LCP
and LCPu 2 times; LCPdFromLCP+ (Algorithm 4) and LCPdFromLCP− (Algorithm 5) both visit each entry
of GSA, LCP 3 times and each entry of LCP∗d 2 times.

Combining the above lemmata, we concluse that

Theorem 4. Both SU and SD can be computed in in O(M) time.

2 Sparsifying unique substrings

Recall that Ui = {ui,1(l1, r1), ui,nui(lnui , rnui)} defines either the collection of all shortest unique substrings
or unique substrings with minimum length Lmin on a given genome si (sorted by lx, namely l1 ≤ · · · ≤ lnui).
In fact, the list of left indices l1, · · · , lnui are stored in the corresponding r1, · · · , rnui entries in SU array.
Due to the minimum length constraint, no substring ui,x ∈ Ui can be a substring of any other ui,y ∈ Ui if
they are not identical (in fact, there could be some {ui,x(lx, rx) = {ui,y(ly, ry) ∈ Ui for x 6= y). This makes
l1 < · · · < lnui and r1 < · · · < rnui . The goal of sampling unique substrings from Ui is to identify and
maintain the smallest number of unique substrings such that they cover the same set of unique L-mers on
si as Ui (if Lmax = L then the sampled unique substrings should cover all unique L-mers).

Here we present the greedy sampling strategy implemented by CAMMiQ to sample unique substrings from
Ui. Denote by begini the beginning position of si in s and by U ′i the unique substrings already sampled
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Algorithm 5 LCPdFromLCP−(GSA, LCP)

1: LCP∗d ← array of length M
2: i← 1, minlcp ←M , next1 ← 0
3: while i < M do
4: while i < M and GSA[i+ next1] = GSA[i+ next1 + 1] do
5: next1← next1 + 1
6: end while
7: for j from next1 to 0 do
8: minlcp ← min{minlcp, LCP[i+ j + 1]}
9: LCP∗d[i+ j]← minlcp

10: end for
11: i← i+ next1 + 1
12: minlcp ←M , next1 ← 0
13: end while
14: i←M , minlcp ←M , next1 ← 0, next2 ← 1
15: while i > 1 do
16: while i > 1 and GSA[i− next1] = GSA[i− next1− 1] do
17: next1← next1 + 1
18: end while
19: while i > 1 and GSA[i− next1− next2] = GSA[i− next1− next2− 1] do
20: next2← next2 + 1
21: end while
22: for j from next1 + next2 to 0 do
23: minlcp ← min{minlcp, LCP[i− j]}
24: if j ≥ next2 then
25: LCP∗d[i− j]← max{LCP∗d[i− j],minlcp}
26: end if
27: end for
28: i← i− next1− 1
29: minlcp ←M , next1 ← 0, next2 ← 1
30: end while
31: return LCP∗d

(initially U ′i is empty). Starting with begini, consider every L-mer of si from left to right; if it does not
include any unique substring, then ignore this L-mer; otherwise add its rightmost unique substring into U ′i
and move to the next L-mer that does not include this substring until reaching the L-mer that ends at
begini + |si| − 1. At the and of this, add the sampled unique substrings in U ′i to the hash table (and trie)
described in Section CAMMiQ Index, main text.

In the following we show that the above greedy strategy obtains the smallest number of unique substrings
that cover the same set of unique L-mers as Ui, provided that each unique substring in Ui occurs only one
time (i.e., any ui,x ∈ Ui is not identical to another ui,y ∈ Ui if x 6= y). As a result, the total number of
unique substrings in U ′ = ∪mi=1U ′i included in CAMMiQ index is also as small as possible.

Theorem 5. If ui,x ∈ Ui 6= ui,y ∈ Ui for x 6= y, then GreedySampling returns the smallest U ′i such that if
an L-mer includes some ui,x ∈ Ui, then it also includes at least one ui,x′ ∈ U ′i .

Proof. Consider U ′i = {u′i,1(l′1, r
′
1), · · · , u′i,|U ′i |(l

′
|U ′i |

, r′|U ′i |
)} that GreedySampling returns; also consider an

alternative sample U ′′i = {u′′i,1(l′′1 , r
′′
1 ), · · · , u′′i,|U ′′i |(l

′′
|U ′′i |

, r′′|U ′′i |
)} of Ui that covers the same set of L-mers;

assume both sets are sorted by the left indices (l′1 < · · · < l′|U ′i |
; l′′1 < · · · < l′′|U ′′i |

). First, observe that l′1 ≥ l′′1
since u′i,1 is the rightmost unique substring in Ui that is fully contained in the leftmost unique L-mer. As
a consequence we must have l′2 ≥ l′′2 (and so on). Otherwise, if l′1 = l′′1 then u′i,2(l′2, r

′
2) is not the rightmost

unique substring in the next unique L-mer whose left index is greater than l′1, and if l′1 > l′′1 then there
is some unique L-mer not covered by any unique substring in U ′′i . Therefore |U ′i | ≤ |U ′′i | since there is a
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Algorithm 6 GreedySampling(Ui = {ui,1(l1, r1), ui,nui(lnui , rnui)}, L)

1: U ′i ← ∅
2: cur← begini // begini: the beginning position of si in s
3: ui,last(llast, rlast)← NIL

4: for x from 1 to nui do
5: if ui,last 6= NIL and rx ≥ cur + L then
6: U ′i ← U ′i ∪ {ui,last(llast, rlast)}
7: cur← llast + 1
8: end if
9: ui,last(llast, rlast)← ui,x(lx, rx)

10: end for
11: return U ′i

injection between the elements in U ′i and U ′′i until reaching the last unique L-mer on si.

Corollary 6. If ui,x ∈ Ui 6= ui,y ∈ Ui for x 6= y on each si, then U ′ = ∪mi=1U ′i is the smallest set of unique
substrings such that if an L-mer on si includes some ui,x ∈ Ui, then it also includes at least one ui,x′ ∈ U ′i .

We note that the greedy sampling strategy works in practice even if there are actually unique substrings
occurring more than once in a given genome, meaning ui,x = ui,y ∈ Ui for some y > x, leading to U ′i (and thus
U ′) being close to optimality, since these unique substrings would constitute a very small proportion (≤ 0.1%)
with the default minimum length Lmin = 26 of unique substrings. This gives significantly smaller indices
than alternative k-mer based tools, and results in an integer program with a small number of constraints.

We applied the above strategy to sample doubly-unique substrings in Di, to obtain the minimum size D′i
for each genome si so that the aggregate set of doubly-unique substrings D′ is at most twice the optimal,
provided that each doubly-unique substring occurs once in each of the corresponding genomes.

Corollary 7. If di,x ∈ Di 6= di,y ∈ Di for x 6= y on each si, then D′ = ∪mi=1D′i is at most twice as large as
the smallest set of doubly-unique substrings such that if an L-mer on si includes some di,x ∈ Di, then it also
includes at least one di,x′ ∈ D′i.

3 Query Processing Stage 1: Preprocessing the Reads

Let U and D be the collection(s) of indexed unique and doubly-unique substrings, respectively. Remind that
we maintain a counter c(ui) for each unique substring ui ∈ U , and a counter c(di) for each unique substring
di ∈ D, indicating how many reads in a query Q include ui and di. To process each read rj ∈ Q, we follow
the following procedure.

1. Identify the set Uj = {uj,1, . . . uj,`} ⊂ U of unique substrings in rj ; similarly identify the set Dj =
{dj,1, . . . dj,`′} ⊂ D of doubly-unique substrings in rj .

2. (a) If Uj = Dj = ∅ then discard rj .

(b) If Uj 6= ∅ but it includes a pair of unique substrings uj,i and uj,i′ that originate from different
genomes, then discard rj .

(c) If Uj 6= ∅ and all its unique substrings originate from the same genome sk, however Dj includes
a substring dj,i that cannot originate from sk, then again discard rj .

(d) If Uj = ∅ and the intersection of the set of genomes from where the substrings in Dj can originate
is empty, then also discard rj .

(e) If on the other hand,

i. Uj 6= ∅, all its unique substrings originate from the same genome sk, and each doubly-unique
substring dj,i′ ∈ Dj can originate from sk, or
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ii. Uj = ∅, however the intersection between the genomes where the doubly-unique substrings of
rj can originate from is comprised of only one genome, sk, or

iii. Uj = ∅ and dj is comprised of doubly-unique substrings that can only originate from the same
pair of genomes sk and sk′ , then

then increase c(uj,i) by 1 for each uj,i ∈ Uj and c(dj,i) by 1 for each dj,i ∈ Dj .

4 Proof of Theorem 1

We begin with the following theorem from Weissman et al. [5] that bounds the L1 distance between the
empirical distribution of a sequence of independent, identically distributed random variables and the true
distribution.

Theorem 8. Let P be a probability distribution on the set A = {1, · · · , a}. Let X1, X2, · · · , Xn be i.i.d.
random variables distributed according to P . Then, for any given ε > 0,

Pr[||P − P̄ ||1 ≥ ε] ≤ (2a − 2) exp(−nε2/2)

where P̄ is the empirical estimation of P defined as P̄ (i) =
∑n
j=1 δ(Xi=j)

n , where δ(e) = 1 if and only if e is
true and δ(e) = 0 otherwise.

Now consider a collection of genomes A = {s1, · · · , sa} with relative abundances p1, · · · , pa and the set
Q = {r1, · · · , rn} of n reads (i.e., L-mers) sampled independently and uniformly at random from A according

to p1, · · · , pa. On each genome si let nLi denote the total number of L-mers and qi =
nuLi
nLi

be the proportion

of unique L-mers; then the probability of a read rj ∈ Q corresponds to a unique L-mer on si is
pin

L
i∑a

i′=1
pi′n

L
i′
·qi,

and the probability of a read rj ∈ Q does not correspond to any unique L-mers on si is
pin

L
i∑a

i′=1
pi′n

L
i′
· (1− qi).

Therefore r1, · · · , rj are i.i.d. distributed according to (
p1n

L
1∑a

i′=1
pi′n

L
i′
·q1, · · · , pan

L
a∑a

i′=1
pi′n

L
i′
·qa,

∑a
i=1

pin
L
i∑a

i′=1
pi′n

L
i′
·

(1−qi)) = (p′1q1, · · · , p′aqa,
∑a
i=1 p

′
i(1−qi)) where the last term corresponds to the reads that are not unique

to any si ∈ A.

Proof of Theorem 1. Let ci be the number of reads assigned to si. Also let p′ = (p′1, · · · , p′a). We

set p̂ = (p̂1, · · · , p̂a), by defining p̂i = ci/qi
n to be the predicted abundance of si based on the number of

reads assigned to it. Consider P = (p′1q1, · · · , p′aqa,
∑a
i=1 p

′
i(1 − qi)) and P̂ = ( c1n , · · · ,

ca
n , 1 −

∑a
i=1

ci
n ) =

(p̂1q1, · · · , p̂aqa, 1 −
∑a
i=1

ci
n ); by definition, we have ||P − P̂ ||1 ≥

∑a
i=1 |p′i − p̂i|qi ≥ qmin ·

∑a
i=1 |p′i − p̂i| =

qmin · ||p′ − p̂||1. Then the following three theorem statements hold.

• (i) Given that n ≥ 2(a+1)+ln 1
ζ

(pminqmin)2 , we have

Pr

[
||p′ − p̂||1 ≥ pmin

]
= Pr

[
qmin||p′ − p̂||1 ≥ pminqmin

]
≤ Pr

[
||P − P̂ ||1 ≥ pminqmin

]
≤ 2a+1 exp(−n(pminqmin)2/2)

≤ 2a+1 exp(−
2(a+ 1) + ln 1

ζ

(pminqmin)2
(pminqmin)2/2)

=
2a+1

ea+1
ζ

≤ ζ.

This implies that with probability ≥ 1− ζ the L1 distance between p′ and p̂ is upper bounded by pmin.
As a result we have p̂i > 0 for each p̂i, i.e. ci ≥ 0.
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• (ii) The proof follows by simply replacing pmin with ε in the proof of (i).

• (iii) The proof follows by simply replacing pmin with

√
2(ln 1

ζ+(a+1))

nq2min
in the proof of (i). Specifically,

Pr

[
||p′ − p̂||1 ≥

√
2(ln 1

ζ + (a+ 1))

nq2
min

]
= Pr

[
qmin||p′ − p̂||1 ≥ qmin ·

√
2(ln 1

ζ + (a+ 1))

nq2
min

]

≤ Pr

[
||P − P̂ ||1 ≥

√
2(ln 1

ζ + (a+ 1))

n

]
≤ 2a+1 exp(−n

2
·

2(ln 1
ζ + (a+ 1))

n
)

=
2a+1

ea+1
ζ

≤ ζ.

5 The Experimental Setup: Index Datasets, Queries and Bench-
marked Methods

5.1 Species-Level Index Dataset

species-level-all Index Dataset. Our species-level-all index dataset consists of all complete ar-
chaeal, bacterial, and viral genomes in NCBI’s RefSeq Database [6] (as per the “RefSeq-CG” dataset intro-
duced in the recent benchmark [7]). For the species-level-all index dataset we used release version 205
of RefSeq, downloaded on 05/28/2021. We (randomly) selected one representative genome per species out
of 32454 complete reference genomes representing respectively 6040, 10087 and 291 distinct bacterial, viral
and archaeal species. This resulted in a total of m = 16418 genomes with a total length of M = 5.5 ∗ 1010,
including the reverse complement contigs. On this index dataset we used the CAMI and IMMSA queries - as
will be described below in Supplementary Notes 5.4.1 and 5.4.2. On these queries we benchmark the
performance of CAMMIQ on genome identification against available metagenomics classification and profiling
tools, namely, Kraken2 [8] (the latest version of Kraken [9]), KrakenUniq [10], CLARK [11], Centrifuge [12]
and Bracken [13]. These five tools provide very similar functionality to CAMMiQ such as read level classifi-
cation and abundance estimation. We built indices for CAMMiQ, Kraken2, KrakenUniq, CLARK, Centrifuge
and Bracken all on the species-level-all index dataset to support the CAMI and IMMSA queries.

species-level-bacteria Index Dataset. Our species-level-bacteria index dataset consists of all
complete bacterial genomes in an earlier release version of RefSeq, i.e., release version 93, downloaded on
06/16/2019. Again, we (randomly) selected one representative genome per species out of 13737 complete
reference genomes representing 4122 distinct species. This resulted in a total of m = 4122 genomes with a
total length of M = 3.4∗1010 including the reverse complement contigs. On this index dataset we composed
14 queries - including 10 challenging queries and 4 easier queries - as will be described in Supplementary
Note 5.4.2. On these queries we benchmarked CAMMiQ against Kraken2, KrakenUniq, CLARK, Centrifuge,
Bracken, and additionally against MetaPhlAn2, a marker-gene based profiling tool, with an emphasis on
genome identification and also quantification (profiling). We built indices for CAMMiQ, Kraken2, KrakenUniq,
CLARK, Centrifuge and Bracken on the species-level-bacteria index dataset. For MetaPhlAn2 we used
its own (prebuilt) index, as it does not support indices built on a custom dataset.

5.2 Strain-Level Index Dataset

Our strain-level index dataset is smaller: it is restricted to 614 Human Gut related genomes/strains (ac-
cording to [14]) in RefSeq1 and is designed to evaluate CAMMiQ’s strain-level identification and quantification

1The complete set of genomes in this database is 617 but only 614 can be downloaded from RefSeq.
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performance against the available tools mentioned above. For the strain-level index dataset we used re-
lease version 93 of RefSeq. Majority of these genomes are incomplete and are comprised of multiple contigs;
we filtered out any contig with length < 10KB and built the index on the remaining contigs. This resulted
in seven strains without a single unique 100-mer and one strain without a single unique or doubly-unique
100-mer. The last genome with no unique or doubly-unique 100-mers, Bacillus andreraoultii, was excluded
when generating our strain-level query sets since it contains no indexable substring. We simulated 4 query
sets for this index dataset, see Supplementary Note 5.5 for the detailed information of these query sets.
Finally, on the strain-level index dataset we built indices for CAMMiQ, Kraken2, KrakenUniq, Centrifuge
and CLARK (we did not report Bracken results as it was not designed to handle strain level queries), with
the same setting as species-level-bacteria index dataset. For MetaPhlAn2, we used its own (prebuilt)
index, as it does not support indices built on a custom dataset.

5.3 Subspecies-Level Index Dataset

Perhaps our most interesting results are on the subspecies-level index dataset, which consists of 3395
selected genomes from the 13737 complete bacterial genomes in release version 93 of RefSeq; this dataset
was primarily designed to evaluate CAMMiQ’s accuracy on real metatranscriptomic query sets obtained from
262 single human immune cells [15], each exposed to or infected with distinct Salmonella strains.

To create our subspecies-level dataset, we first identified 2753 out of the total 4122 species to which
at least 10 reads were mapped using GATK PathSeq [16] - and then we subsampled the 4325 (out of the
total 13737) genomes from these 2753 species by only keeping one representative for each child of a species
level taxonomic ID in NCBI’s Taxonomy Database; The only exception is we replaced the sampled genome
of Salmonella enterica subsp. enterica (Taxonomy ID: 59201) with the genome of the two related strains
D23580 (Taxonomy ID: 568708) and LT2 (Taxonomy ID: 99287), which results in the final 3395 subspecies
level representatives. As a final step, we removed all plasmids contained in these genomes, since the plasmids
in many genomes downloaded from RefSeq were missing, which may cause potential false positive “unique”
or “doubly unique” substrings. On these 3395 genomes we built the index for CAMMiQ and PathSeq to support
the scRNA-seq queries (see Supplementary Note 5.6).

5.4 Species-Level Queries

The species-level queries consist of (i) 8 CAMI query sets and 8 IMMSA query sets utilized in two recent
benchmark studies for comparing metagenomic profiling tools [7, 17], on which we ran our A2 type of query;
and (ii) 14 synthetic query sets constructed by sampling reads uniformly at random from selected genomes in
our species-level-bacteria index dataset (as such referred to as species-level-bacteria queries/query
sets), on which we ran our A3 type of query. Both query sets are summarized in Table 1 in the main text.

5.4.1 IMMSA Query Sets

The 8 IMMSA query sets, namely “IMMSA-buccal-12”, “IMMSA-citypark-48”, “IMMSA-gut-20”, “IMMSA-
house-31”, “IMMSA-house-21”, “IMMSA-soil-50”, “IMMSA-simBA-525” and “IMMSA-nycsm-20” were ini-
tially compiled in [17] to standardize the benchmark of metagenomic classification and profiling tools (see
https://www.microbialstandards.org/standards-related-resources), and later adopted in another
leading benchmark [7] of metagenomics tools. All of these 8 query sets are synthetic - the first 6 queries
were created using the ART simulator with default error and quality base profiles [18] to simulate 100-bp
Illumina reads from selected sets of reference genomes. Each of these 6 query sets represents a distinct
microbial habitat based on studies that characterized real metagenomes found in the human body (mouth,
gut, etc.) and in the natural or built environment (city parks/medians, houses, and soil). The seventh query
set, “IMMSA-simBA-525” comprised 100-bp simulated reads from 525 randomly selected species. The last
query set, “IMMSA-nycsm-20”, was created to represent the organisms of the New York City subway system
as described in the study of Afshinnekoo et al. [19], using the same methodology as in [20]. Together, these
eight unambiguously mapped query sets of reads contain a total of 657 distinct species.

Note that reads in the 8 IMMSA benchmark query sets were not sampled from any (including the most
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Query Set Num. Species Num. Species Num. Reads Num. Reads
in Index Dataset in Index Dataset

IMMSA-buccal-12 12 11 600000 550000
IMMSA-citypark-48 48 47 1200000 1175000
IMMSA-gut-20 20 19 500000 475000
IMMSA-house-30 30 27 750000 660185
IMMSA-house-20 20 19 500000 475000
IMMSA-soil-50 50 48 2500000 2400000
IMMSA-simBA-525 525 492 5727654 5402857
IMMSA-nycsm-20 20 19 500000 475000

Supplementary Table 1: Additional information on the 8 IMMSA query sets. The second and fourth
column indicate the total number of species and number of reads in each query set, respectively. The
third and fifth column indicate the number of species and the number of reads from a genome in the
species-level-all index dataset for each query set, respectively.

Query Set Num. Species Num. Species in Index Dataset Num. Reads

CAMI-LC-1 23 4 99796358
CAMI-MC-1 72 22 99837678
CAMI-MC-2 72 22 99787568
CAMI-HC-1 243 20 99811870
CAMI-HC-2 243 20 99808454
CAMI-HC-3 243 20 99809214
CAMI-HC-4 243 20 99805006
CAMI-HC-5 243 20 99803592

Supplementary Table 2: Additional information on the 8 CAMI query sets. The second and fourth
column indicate the total number of species and number of reads in each query set, respectively. The third
column indicates the number of species (whose taxonomic ID is) included in the species-level-all index
dataset, for each query set.

comprehensive species-level-all) index dataset2. However, to measure the classification performance,
namely precision and recall, we still obtained the “ground truth” genome for each read rj by first mapping
the contig accession number that produces rj to a species level taxonomic ID (through querying NCBI
accession2taxid database https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/accession2taxid/), and then
pick the genome within that taxonomic ID (as we only kept one representative genome per species in our
species-level-all index dataset). We consider the ground truth of any reads that were not assigned to
a genome in our species-level-all index dataset as “unassigned” - any assignment by CAMMiQ or other
tools built on such index dataset was considered “false positive”. In addition, to measure the performance
of species level identification, we consider the true number of species existing in each of the 8 query sets
as the number of genomes included in the species-level-all index dataset (i.e., having at least one read
assigned to due to the procedure above), regardless of how many species these query sets of reads were
initially sampled from. See Supplementary Table 1 for more details.

5.4.2 CAMI Query Sets

The CAMI query sets include 1 low complexity (in terms of number of species in the mixture) metagenome
containing bacteria, and viruses, namely ‘CAMI-LC-1’; 2 medium complexity metagenomes containing ar-
chaea, bacteria and viruses, namely ‘CAMI-MC-1’ and ‘CAMI-MC-2’; and 5 high complexity metagenomes
containing archaea and bacteria, namely ‘CAMI-HC-1’ to ‘CAMI-HC-5’. These metagenomes contain only

2In fact, reads may be sampled from multiple incompletely assembled genomes or plasmids from the same species. As such,
we run the A2 type of query for CAMMiQ on these query sets.

12



about 30-40% of genomes from known species in these kingdoms, and as such even less genomes in the index
dataset, see Supplementary Table 2. The rest of the abundance in these samples is characterized by
(i) added plasmids, (ii) novel new species, genera, and (iii) simulated evolved strains from existing species.
Reads in these queries were simulated as 150bp mate-pairs with insert size 270bp. Note that the ground
truth on these queries only include the abundance of each species (and higher taxonomies), but not the
species (or lower) level taxonomic ID for each individual read. Therefore, we focus on the species level
genome identification performance, but not on read classification performance. We assume a true positive
genome if its species level taxonomic ID exists in the ground truth files, even if that genome may
not have been used in the CAMI simulation process.

5.4.3 species-level-bacteria Query Sets

We generated 14 query sets based on species-level-bacteria index dataset, including 10 challenging
queries and 4 easier queries. Details of these query sets are summarized in Supplementary Table 3.

Challenging Queries. The first set of simulated metagenomes aim to assess how well CAMMiQ identifies
species in a query. For that we simulated a metagenome consisting of the 20 genomes that have the lowest
number of unique L-mers in our species-level dataset. Each genome in the mixture was simulated to have
the same read coverage (indicated by uniform in the name of a query). The very first query we generated
from this mixture, Least-20-uniform-1, has no read errors. The second query, Least-20-uniform-2, comes
with i.i.d. substitution errors occurring at a rate of 1%. The third query, Least-20-uniform-3, is distinct to
the previous two queries in the way that reads are sampled with a GC bias (See ”GC Bias” below) applying
to each of the 20 genomes. Additionally, Least-20-uniform-3 also comes with 1% error rate. Note that the
20 genomes we used in this mixture are intrinsically difficult to be identified by CLARK and other tools
we compared. However since these genomes have many doubly-unique L-mers, which are sometimes shared
with multiple other genomes, they could be identified by CAMMiQ (see Supplementary Figure 2 for a more
detailed explanation).

The second set of metagenomes we simulated aim to assess the species-level quantification performance of
CAMMiQ. This simulated metagenome consists of the 20 genomes from among the 50 genomes in our species-
level dataset with the lowest proportion of unique L-mers, but has the highest proportion of doubly-unique
L-mers, making them somewhat easier to identify in comparison to the simulated metagenome above, but
difficult to quantify by tools other than CAMMiQ. We again synthesized three queries from this mixture, with
no sequencing errors in the first query Least-quantifiable-20-uniform-1; with 1% substitution error in the
second query Least-quantifiable-20-uniform-2; and with GC bias as well as 1% error in the last query Least-
quantifiable-20-uniform-3. The ability of CAMMiQ’s ILP formulation to simultaneously determine the presence
and abundance of genomes in these queries help it outperform the alternatives. (See also Supplementary
Figure 2 for a more detailed explanation.)

Supplementary Figure 2 presents 50 genomes in our species-level dataset with the least number of
unique L-mers. In this graph each node represents one such genome; each edge connects two nodes if
they share a doubly-unique substring. Solid black edges indicate a pair of nodes that share at least 30
doubly-unique substrings; the remaining edges in grey indicate node pairs with fewer number of shared
doubly-unique substrings. Notice that there is a special node in the center, representing the union of all
genomes not included in these 50-genome subset. Any node connected to this special node by a single edge,
or by a path, is identifiable and quantifiable by CAMMiQ, provided that all edges in this path are black (22
of these 50 nodes are as such) or all nodes in this path have sufficient abundance. Note that 20 of the
genomes here are connected to this special node by a black edge: these are the genomes that form the 3
least-quantifiable-20 queries in our experiments.

Even though RefSeq identifies each genome in our species-level dataset to represent a distinct species,
a few of them have “unclassified” lineages at the species level. (Some of the genomes in the above queries
are among them; see Supplementary Figure 2.) For example, Rhizobium sp. N1314 with Taxonomy
ID: 1703961 has Rank: species; however its Lineage is noted as unclassified Rhizobium. Because of this
ambiguity, we generated a third set of metagenomes, again consisting 20 of those 50 genomes with the lowest
proportion of unique L-mers, this time making sure that each of these 20 genomes represent a distinct genus.
We synthesized 4 queries from this set of genomes. The first one has the same read coverage over all genomes,
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Supplementary Figure 2: Shared doubly-unique substrings among the 50 genomes with the least num-
ber of unique L-mers in our species-level dataset consisting of 4122 RefSeq bacteria genomes. Each node
represents one of these 50 genomes, labeled with its NCBI taxID at species level. The central node specially
represents the remaining 4072 genomes. An edge connecting two nodes indicate at least one doubly-unique
substring shared between them. A black edge indicates ≥ 30 doubly-unique substrings in CAMMiQ’s index
shared between the two corresponding genomes. All other edges in grey imply < 30 shared doubly-unique
substrings. A blue-colored node indicates one that is connected to the central node through a path of black
edges. As such, they are relatively easy to identify and quantify; 22 of these 50 nodes are blue. The remaining
(red) nodes can be identified by CAMMiQ provided they have “sufficient abundance” in the query.

and no GC bias as well as sequencing errors, denoted as Least-20-genera-uniform-1. The second query has
the same setup, except a 1% substitution errors. The third query has 1% substitution errors and also GC
bias. Finally, the coverage of each genome in the last query (denoted Least-20-genera-lognormal) follows a
lognormal distribution with mean 0.0 and standard deviation 1.0.

Easier Queries. In addition to the above particularly challenging queries, we simulated a number of
additional read collections from 20 to 100 randomly chosen genomes from our species-level dataset. All these
read collections come with i.i.d. substitution errors; the first three queries at a rate of 1% and the last query
at a rate of 0.6%. Among them, the first simulated query (denoted Random-20-uniform) included reads from
20 genomes, each with similar read coverage. The second (denoted Random-20-lognormal) again included
reads from 20 genomes, this time with coverages following a log-normal distribution with mean 0.0 and
standard deviation 1.0. The third (denoted Random-20-lognormal-a.g.) included reads from 20 genomes,
again with log-normal coverage distribution; what makes this query unique is that 10% of the reads were
from an additional genome (denoted in the dataset name as a.g.) not included in our species-level dataset
and thus is not part of CAMMiQ’s index. The fourth (denoted Random-100-uniform) included reads from 100
randomly chosen genomes from our species-level dataset, all with the same coverage.

GC Bias. To demonstrate the impact of non-uniform coverage from metagenomic datasets to our A3

type queries, we simulated 3 challenging query sets with GC bias from the species-level-bacteria index
dataset; namely Least-20-uniform-3, Least-quantifiable-20-uniform-3, and Least-genera-20-uniform-3. We
applied the following GC bias model used in a recent Illumina reads simulator InSilicoSeq [21]: randomly
pick one read from the genome; if the proportion of GC is between 0.4-0.6, we always keep the read; if the
proportion is between 0.2-0.4 or 0.6-0.8, we keep the read with probability 0.5; if the proportion is between
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Query Set GC Bias Dist. Error Rate Num. Genomes Num. Reads

Least-20-uniform-1 N Uniform 0 20 4.8M
Least-20-uniform-2 N Uniform 0.01 20 4.8M
Least-20-uniform-3 Y Uniform 0.01 20 4.8M
Least-quantifiable-20-uniform-1 N Uniform 0 20 5.0M
Least-quantifiable-20-uniform-2 N Uniform 0.01 20 5.0M
Least-quantifiable-20-uniform-3 Y Uniform 0.01 20 5.0M
Least-20-genera-uniform-1 N Uniform 0 20 4.0M
Least-20-genera-uniform-2 N Uniform 0.01 20 4.0M
Least-20-genera-uniform-3 Y Uniform 0.01 20 4.0M
Least-20-genera-lognormal N Lognormal 0.01 20 4.0M
Random-20-uniform N Uniform 0.01 20 4.4M
Random-20-lognormal N Lognormal 0.01 20 5.0M
Random-20-lognormal-a.g. N Lognormal 0.01 21 1.1M
Random-100-uniform N Uniform 0.006 100 21.5M

Supplementary Table 3: Additional information on the 14 species-level-bacteria query sets, includ-
ing (i) whether GC bias was introduced through simulation; (ii) distribution of genomes in the mixture; (ii)
error rate; (iv) number of genomes in each query set; and finally (v) number of reads in each query set.

Query Set Min P-value Max P-value Median P-value

Least-20-uniform-3 5.084 ∗ 10−7 0.7406 0.0004
Least-quantifiable-20-uniform-3 2.976 ∗ 10−14 0.1162 0.0002
Least-20-genera-uniform-3 2.880 ∗ 10−9 0.3212 0.0024

Supplementary Table 4: The 3 species-level-bacteria query sets with GC bias. Min/Max/Median
P-value: the smallest (most significant), largest (least significant) and median P value, with two sample
Kolmogorov-Smirnov tests, of uniform read sampling on a single genome, among the 20 genomes in each
query set.

0-0.2 or 0.8-1.0, we keep the read with probability 0.1. We repeated the process until sufficient (i.e., the
same as the corresponding queries without GC bias) number of reads were sampled on each genome. Note
that the distribution of reads across different genomes in the mixture is still uniform in all 3 cases.

We then compared the distributions of reads on each genome with and without GC bias procedure,
through a two-sample Kolmogorov-Smirnov (KS) test. For each genome, we obtained the distribution of the
number of reads in each 25Kbp bin both with and without GC-bias on that genome. We conducted the two-
sample KS test for each of the 20 genomes in each query set. As demonstrated in Supplementary Table 4,
most genomes showed a significant difference between uniform and GC-bias (non-uniform) sampling. We will
demonstrate, however, such significant GC-bias has only limited impact on the A3 (genome quantification)
queries in main text, Table 3.

5.5 Strain-Level Queries

To assess CAMMiQ’s performance in strain level identification and quantification, we also simulated 4 queries
involving genomes from a database of 614 genomes of human gastrointestinal bacteria [14] from 409 species
and 515 strains. The first one involving reads from 25 strains with the smallest number of unique L-mers
(denoted HumanGut-least-25), next two involving reads from randomly selected 100 strains, the first with
L = 100 as per the remainder of the queries (denoted HumanGut-random-100-1), and the second with
L = 125 (denoted HumanGut-random-100-2), and the final involving reads sampled from 409 randomly
picked strain level genomes (denoted HumanGut-all), each from a distinct species (species-level taxonomic
ID) in the index dataset - which made it easier for us to determine the total number of genomes identified
by other tools like Kraken2 etc. in a query. Note that we additionally excluded the genomes with neither
unique nor doubly-unique 100-mers when sampling the genomes to compose our strain-level queries. The
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4 strain-level queries are also summarized in Table 1, and on these queries, we evaluated CAMMiQ on the
most general A3 type queries.

5.6 Subspecies-Level Queries

In our final experiment, we applied CAMMiQ to a “gold-standard” query set consisting of immune cells in-
fected ex vivo with an intracellular bacteria Salmonella enterica and subsequently sequenced using single-cell
RNAseq (scRNA-seq) [15] to validate its feasibility of identifying microbial reads from real datasets. Specifi-
cally, this query, denoted as Filtered-scRNA-seq and also summarized in Table 1, consists of 262 monocyte-
derived dendritic cells (moDCs) infected with either the D23580 (STM-D23580) or the LT2 (STM-LT2)
strain of Salmonella enterica and sequenced using Smart-seq2 platform. Additionally there are 80 unin-
fected cells used as negative controls. The reads from each cell (out of the total 342 cells) forms a natural
query set for this index dataset. We preprocess the queries to filter out the reads potentially originate from
human genome by aligning the reads to the reference human genome using STAR aligner [22]. Then, we
remove all mapped reads and use the remaining as our scRNA-seq queries. A recent study [23] used the
GATK PathSeq tool [16] to validate the Salmonella strains associated with each cell with limited success.
Unlike the tools benchmarked above, PathSeq is alignment-based; as a consequence it is slower than the
above alternatives but is expected to be more accurate.

The corresponding index we built to respond to this query consisted of the sparsified set of unique and
doubly-unique substring (with L = 75, Lmin = 26 and Lmax = 50) from our subspecies-level dataset
of 3395 selected complete bacterial genomes in NCBI’s RefSeq Database. Interestingly, CAMMiQ’s ability to
distinguish cells exposed to or infected with specific strains of Salmonella was better than PathSeq’s ability
to do the same (importantly, with the same index dataset) - with the added bonus that it is much faster.
Also note that on metatranscriptomic query sets we used query types A1 and A2, rather than the most
general query type A3.

6 Setup and Parameters Used for Individual Software Tools in
Our Benchmarking Study

6.1 Accounting for Genome Lengths in Abundance Profiles

A number of tools, including CAMMiQ, Centrifuge, Bracken and MetaPhlAn2, output read depth (a.k.a. read
coverage) as “abundance”; i.e., they report as abundance the number of reads assigned to a certain genome,
normalized by genome length. Other tools, including Kraken2, KrakenUniq and CLARK, simply report the
total number of reads assigned to each genome (or each taxonomic rank) as its abundance. Throughout this
paper we compute the L1 or L2 distance between the estimated abundance and true abundance using the
normalized abundance values for CAMMiQ, Bracken and MetaPhlAn2:

Lp{CAMMiQ, Bracken, Centrifuge, MetaPhlAn2} =

a∑
i=1

|pi − p̂i|p, (p = 1, 2),

where pi is the (normalized) read depth for genome si in the ground truth A = {s1, · · · , sa}; p̂i is the
abundance of genome si reported by each individual software tool. On the other hand, we use total read
counts as abundance values for Kraken2, KrakenUniq and CLARK:

Lp{Kraken2, KrakenUniq, CLARK} =

a∑
i=1

|p′i − p̂i|p, (p = 1, 2),

where p′i is the (normalized) total read count for genome si in the ground truth A = {s1, · · · , sa}, which
can be obtained by multiplying the read depth by genome length and then renormalized by the sum over all
genomes in the ground truth

p′i =
pi · |si|∑
i′ pi′ · |si′ |

;

and p̂i is again the abundance of genome si reported by each individual software tool.
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6.2 CAMMiQ Commands and Setup

Index construction.

cammiq --build --both -k 26 -L 100 -Lmax 50 -h 26 -f genome map.out -D cammiqDB -i

index u.bin1 index d.bin2 -t 32

Unless otherwise specified (see Supplementary Note 8), we required (i) minimum substring length
(-k) 26 for both unique and doubly-unique substrings; (ii) maximum substring length (-Lmax) 50 for both
unique and doubly-unique substrings; and (iii) read length (-L) 100 in CAMMiQ index construction, even
if some query sets (e.g. the 8 CAMI queries) have reads longer than 100. Note that (unlike Bracken, which
will be described later,) CAMMiQ indices constructed with -L 100 can naturally support querying reads longer
than 100. We assume all genomes (*.fna) are stored under the directory cammiqDB. The required format of
CAMMiQ genome map.out file can be found at https://github.com/algo-cancer/CAMMiQ.

Query.
(1) Compute A1. cammiq --query --read cnts -h 26 26 -f genome map.out -i index u.bin1

index d.bin2 -q query.fq -o cammiq.out -t 1

(2) Compute A2. cammiq --query --read cnts --doubly unique -h 26 26 -f genome map.out -i

index u.bin1 index d.bin2 -q query.fq -o cammiq.out -t 1

(3) Compute A3. cammiq --query -h 26 26 -f genome map.out -i index u.bin1

index d.bin2 -q query.fq -o cammiq.abundance -t 1

CAMMiQ query requires a single-end fastq query.fq as input, and output (i) the set of genomes in
A1, as well as the number of reads assigned uniquely to each genome, when computing A1; (ii) the minimum
set of genomes A2, as well as the number of reads assigned uniquely or doubly-uniquely to each genome when
computing A2; (iii) the set of genomes in A3 along with the abundance of each genome, when computing
and A3. Note that the A1 and A2 collections can be further processed by keeping only genomes with a
sufficient counts of unique (and/or doubly-unique) substrings covered by reads in the query (See below and
Section Query Processing Stage 1: Preprocessing the Reads, main text).

Note additionally that CAMMiQ’s primary goal is not to classify each read, but rather to identify and
quantify genomes in a query. Nonetheless, we still report its intermediate output as follows. CAMMiQ considers
certain reads as conflicting; here we consider them as not assigned. It assigns certain reads to a single genome;
we consider each such read assigned, and if the assignment is correct, also correctly assigned. CAMMiQ then
assigns each remaining read ambiguously to two potential genomes.3 We consider this read assigned when
evaluating its classification precision and recall with our species level queries (i.e., the 16 CAMI and IMMSA
queries and 14 species-level-bacteria queries), and in case one of these two genomes is correct, also
correctly assigned.

Unless otherwise specified, we ran CAMMiQ with α = 0.0001 for A3 and similarly by filtering out genomes
with unique or doubly-unique counters add up to a value smaller than 0.0001nuLi or 0.0001ndLi respectively.
For subspecies-level (scRNA-seq) queries, we alternatively set up a hard threshold t to filter out genomes
with unique or doubly-unique counters add up less than t, see Figure 2b in the main text.

6.3 MetaPhlAn2 Commands and Setup

Query.

python metaphlan2.py query.fq --input type fastq -o abundance.txt --nproc 1

We also ran MetaPhlAn2 with a single-end fastq query.fq as input, and used the abundance values re-

3This happens if the read includes one or more doubly-unique substrings from the same pair of genomes but no unique
substring.
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ported in its default output, abundance.txt, to compare with other tools. Note that the default abundance
cut-off for MetaPhlAn2 is 0.01%, i.e., MetaPhlAn2 does not report any genome with abundance less than
0.01% of the total abundance in abundance.txt.

For MetaPhlAn2, we did not give the precision and recall values in species-level-bacteria queries.
This is primarily due to MetaPhlAn2’s use of an index based on a predetermined and very different database
of marker genes, which contains insufficient information to correspond them to the taxonomic IDs of the
genomes indexed by other software tools. As such, we could not claim a read assignment by MetaPhlAn2 is
“correct” and measure the precision and recall for read classification. In fact, the goal of MetaPhlAn2 is not
to assign reads to genomes, but to identify distinct genomes in a metagenomic sample (as per CAMMiQ); so
it is less meaningful to consider its classification performance. It was deigned as an alignment based tool -
and to reduce the intensive alignment task, MetaPhlAn2 relies on a much smaller database of marker genes,
which is sufficient for genome identification, than the collection of (complete) genomes indexed by the other
four tools. As a consequence, it only assigns very few reads to the marker genes in its database and thus
would have very low recall (even if all reads were assigned correctly) as discussed in the main text.

As MetaPhlAn2 does not explicitly support taxonomic IDs, we have to map the name of each item in its
output at a given taxonomic level (genus or species level) to the corresponding taxonomic ID. In Table 3
and Supplementary Table 5, we mapped each species level output from MetaPhlAn2 to a genus level
taxonomic ID, and then (i) computed the F1 scores by assuming all genomes at species level within some
genus g in a query were correctly identified, if the taxonomic ID of g is found in post-processed MetaPhlAn2
output; and (ii) computed the L1 and L2 error by summing up the difference between the true abundance
of each genus g and the sum of the predicted abundance for all species map to g. When measuring its strain
level performance in Table 5, we mapped each strain level output from MetaPhlAn2 to a species level
taxonomic ID, and computed the performance metrics in a similar way. However, such mapping at strain
level is not guaranteed to be correct.

6.4 Kraken2 Commands and Setup

Index construction.
(1) Install taxonomy tree

kraken2-build --download-taxonomy --db KrakenDB

(2) Prepare all genomes in the index dataset in Kraken2 format. Note that this step was repeated for
all fasta files and the running time for this step was included in Kraken2’s total running time.

kraken2-build --add-to-library genome.fna --db KrakenDB

(3) Build index with 32 threads, with k-mer length 26.

kraken2-build --build --db KrakenDB --threads 32 --kmer-len 26 --minimizer-len 21

--minimizer-spaces 5

Query.

kraken2 --db KrakenDB --output query.reads --report-file query.report --threads 1

query.fq

Each Kraken2 query takes a single-end fastq query.fq as input, and output 2 files including query.reads,
which specifies the assignment of each read; and query.report, which specifies the abundance of each tax-
onomic rank. We measured read classification performance by parsing query.reads, and genome identifica-
tion/quantification performance by parsing query.report. We always forced a single thread for comparing
the query time for each tool we tested. All other parameters were default.

Kraken2 usually takes a minimal amount of time to preload its index in to memory. Even if that is the
case, we still exclude its index loading time when reporting Kraken2 query time in Table 4, main text.
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6.5 KrakenUniq Commands and Setup

Index construction.
(1) Download taxonomy tree

krakenuniq-download --db KrakenUniqDB taxonomy

(2) Create a subdirectory named ‘library’ and copy all genomes (*.fna) to library. For each genome,
we created a 3 column, tab-separated ‘*.map’ file also under the library directory, which maps each contig
(accession number) to the corresponding taxonomic ID and genome (species or strain) name. As this step
took minor time and was not implemented by KrakenUniq, we did not include it in KrakenUniq index con-
struction time in Table 4, main text.

(3) Build the index with 32 threads, with k-mer length 26.

krakenuniq-build --db KrakenUniqDB --taxids-for-genomes --taxids-for-sequences --kmer-len

26

Query. krakenuniq --db KrakenUniqDB -preload --threads 8

Before running KrakenUniq queries, its index needs to be preloaded into memory (RAM). This process
usually takes a couple minutes, depending on the size of KrakenUniq index. As per CAMMiQ and other tools,
we did not measure the time for loading KrakenUniq index into memory.

krakenuniq --db KrakenUniqDB --fastq-input query.fq --output query.reads --report-file

query.report --threads 1

Each KrakenUniq query takes a single-end fastq query.fq as input, and output 2 files in similar format
to Kraken2, including query.reads, which specifies the assignment of each read; and query.report, which
specifies the abundance of each taxonomic rank. We measured read classification performance by parsing
query.reads, and genome identification/quantification performance by parsing query.report. We always
forced a single thread for comparing the query time for each tool we tested. All other parameters were
default.

6.6 Bracken Commands and Setup

Index construction.

bracken-build -d KrakenDB -t 32 -k 26 -l <100/150> -x KrakenDIR

Bracken index construction requires the availability of (i) Kraken(2) database (including the taxonomy
tree and fasta preparations in Kraken(2) format) and (ii) Kraken(2) executables. We first ran the steps (1)
and (2) in Kraken2 index construction, and then input the path to KrakenDB in its ‘-d’ option, and the
Kraken2 directory, KrakenDIR, in its ‘-x’ option.

Bracken, similar to CAMMiQ, requires a potential read length value (-l) for its index construction. To
maximize its performance, we built two separate indices on our species-level-all index dataset, one with
option -l 150 and used for CAMI queries (read length 150); the other with option -l 100 and used for
IMMSA queries (read length 100). Recall in Supplementary Note 6.2 that for CAMMiQ we only built one
index on the species-level-all dataset with -L 100, and used it on both IMMSA and CAMI queries.

Query.

bracken -d KrakenDB -i query.report -o query.bracken -r <100/150> -l S

Unlike other tools which take a fastq file, a Bracken query parses and post-processes the corresponding
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Kraken2 report file query.report and produces a new report file in similar format query.bracken. We
measured the genome identification and quantification performance by parsing query.bracken. All other
parameters were default. Note that Bracken can support at most species level resolution (-l ‘S’). As such
we did not run Bracken on our strain-level index dataset.

Bracken usually takes a minimal amount of time for both index construction and query. As it does not
actually process the fastq files, we did not benchmark its running time against other tools.

6.7 Centrifuge Commands and Setup

Index construction.

python centrifuge-build --threads 32 --conversion-table centrifuge.conv --taxonomy-tree

nodes.dmp --name-table names.dmp --kmer-count 26 centrifuge genomes.fna centrifugeDB

where centrifuge.conv is a two column, tab-separated file, which maps each contig (here we used the acces-
sion number for each contig as per KrakenUniq) to the corresponding taxonomic ID; centrifuge genomes.fna

is a combined fasta file of all input genomes; centrifugeDB is the path to the directory holding centrifuge
indices. We used k-mer size 26 (the same as other tools) to construct any centrifuge indices. The taxonomy
tree (nodes.dmp and names.dmp) was obtained by running step (1) for Kraken2 index construction. The
running time for combining the *.fna input and preparing centrifuge.conv were excluded for Centrifuge
index construction time in Table 4, main text.

Query.

centrifuge -k 1 -x centrifugeDB -U query.fq -S query.reads --report-file query.report

--threads 1

In centrifuge queries, we only focused on a single (i.e., the primary) assignment for each read by setting
-k 1. We performed centrifuge queries in its single-end (-U) mode. Similar to Kraken* tools, Centrifuge
outputs 2 files for each query.fq, including query.reads, which specifies the assignment of each read; and
query.report, which specifies the abundance of each taxonomic rank. We again measured read classifica-
tion performance by parsing query.reads, and genome identification/quantification performance by parsing
query.report. We always forced a single thread for comparing the query time for each tool we tested. All
other parameters were default.

6.8 CLARK Commands and Setup

Index construction and query.

CLARK -k 26 -T genome map clark.out -D CLARK DB -O query.fq -R query -n <32/1>

Differing from the above tools, CLARK runs index construction and query together. It first tries to search if
an index already exists under CLARK DB directory. If not found, then it will first build and index and stored
the index under CLARK DB; otherwise it proceeds with the query. We ran CLARK commands two times. For
the first time we ran CLARK with a dummy query with a single read, and measured the elapsed time for
index construction. Although we used -n 32 in this step, it turns out CLARK actually only supported a
single thread during its index constriction process. Therefore, CLARK index construction time reported in
Table 4, main text is much larger than that from other tools. For the second time, as CLARK index was
already in CLARK DB, we ran CLARK with -n 1 and measured its query time. Note that we used CLARK
reported query time in its log for a fair comparison to other tools, which already excluded the time to load
its index into main memory/RAM.

Similar to CAMMiQ, CLARK queries also take a genome map file. We produced such file by keeping the
*.fna file name and the corresponding (species or strain level) taxonomic ID for that fasta, i.e., the first and
third column respectively from genome map.out for CAMMiQ. CLARK results were stored in CSV format in
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the file query.csv (the extension “.csv” is automatically added to the filename prefix query specified in -R).
We parsed this file to measure both CLARK’s read classification performance and its genome identification
and quantification performance. All other parameters were default.

Query Set CAMMiQ Kraken2 KrakenUniq CLARK Centrifuge Bracken MetaPhlAn2

IMMSA-buccal-12 0.2785 0.0120 0.1782 0.1897 0.1982 0.0150

N/A

IMMSA-citypark-48 0.5935 0.3007 0.4632 0.4360 0.4973 0.2115

IMMSA-gut-20 0.2500 0.0174 0.1974 0.1977 0.2156 0.0278

IMMSA-house-30 0.4685 0.0525 0.3288 0.3034 0.3768 0.0644

IMMSA-house-20 0.3953 0.0427 0.2885 0.2810 0.3119 0.0463

IMMSA-soil-50 0.4920 0.2953 0.4369 0.4292 0.4608 0.2201

IMMSA-simBA-525 0.8852 0.6732 0.8756 0.8764 0.8779 0.7027

IMMSA-nycsm-20 0.2615 0.0253 0.1948 0.1789 0.2012 0.0497

CAMI-LC-1 0.0188 0.0021 0.0076 0.0073 0.0065 0.0019

CAMI-MC-1 0.0502 0.0112 0.0374 0.0353 0.0317 0.0108

CAMI-MC-2 0.0694 0.0116 0.0517 0.0477 0.0409 0.0111

CAMI-HC-1 0.0278 0.0089 0.0229 0.0231 0.0206 0.0098

CAMI-HC-2 0.0272 0.0089 0.0225 0.0215 0.0212 0.0092

CAMI-HC-3 0.0277 0.0088 0.0233 0.0226 0.0213 0.0097

CAMI-HC-4 0.0268 0.0088 0.0230 0.0222 0.0208 0.0092

CAMI-HC-5 0.0279 0.0089 0.0240 0.0231 0.0216 0.0099

Least-20-uniform-1 1.0 0.0195 0.9189 0.9474 0.9474 0.5000 <0.7879

Least-20-uniform-2 0.8333 0.0059 0.1695 0.0255 0.2615 0.2683 <0.7879

Least-20-uniform-3 0.8163 0.0061 0.1477 0.0244 0.2481 0.3038 <0.7879

Least-quantifiable-20-uniform-1 1.0 0.0171 0.9744 1.0 0.9744 0.4615 <0.9473

Least-quantifiable-20-uniform-2 0.8511 0.0144 0.1024 0.0260 0.2836 0.2012 <0.9473

Least-quantifiable-20-uniform-3 0.8889 0.0099 0.0957 0.0263 0.2734 0.2166 <0.9473

Least-20-genera-uniform-1 1.0 0.0180 0.9474 0.9474 0.9744 0.5000 <0.6154

Least-20-genera-uniform-2 0.9091 0.0105 0.0978 0.0193 0.2667 0.2500 <0.6000

Least-20-genera-uniform-3 0.9302 0.0144 0.0974 0.0192 0.2535 0.2344 <0.6316

Least-20-genera-lognormal 0.7547 0.0081 0.0902 0.0185 0.3091 0.1871 <0.6000

Random-20-uniform 1.0 0.2628 0.9756 0.9524 0.8696 0.2093 <0.5500

Random-20-lognormal 0.9756 0.6061 0.9524 0.9302 0.8333 0.5797 <0.4865

Random-20-lognormal-a.g. 1.0 0.6909 0.9091 0.9091 0.9302 0.7170 <0.7647

Random-100-uniform 1.0 0.9851 0.9950 0.9950 0.9852 0.9662 <0.8085

HumanGut-least-25 0.9412 0.2396 0.7692 0.7692 0.6757

N/A

∼0.8182

HumanGut-random-100-1 0.9950 0.5513 0.9851 0.9950 0.9340 ∼0.8087

HumanGut-random-100-2 0.9901 0.6263 0.9798 0.9899 0.8959 ∼0.7791

HumanGut-all 0.9902 0.9500 0.9801 0.9839 0.9739 ∼0.7815

Supplementary Table 5: The F1 score of CAMMiQ, Kraken2, KrakenUniq, CLARK, Centrifuge, Bracken
and MetaPhlAn2 on all species-level-all, species-level-bacteria and strain-level queries, for
genome identification.

6.9 Genome Identification Threshold for Kraken2, KrakenUniq, Centrifuge,
CLARK and Bracken

To minimize the number of false positives and allow a fair comparison to CAMMiQ, we filtered out genomes
reported by Kraken2, KrakenUniq, Centrifuge, and Bracken with read count less than 0.0001 times the total
number of reads assigned to species level, and reported the number of remaining genomes in Table 3 and
Table 5, main text. For CLARK, we filtered out genomes with read count less than 0.0001 times the total
number of read assignments. In addition, since genomes in our strain-level index dataset sometimes have
species level taxonomic IDs (which will lead to a species-level assignment for these tools), we used the total
number of reads assigned to any taxonomic ID in the strain-level index dataset as the total strain level
read counts to do the filtering. This process resulted in significantly less false positives. However, it may
also lead to a miss of true positive genomes, as per CAMMiQ.
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7 Alternative Performance Metrics for Genome Identification and
Quantification

7.1 F1 Score for Genome Identification

The F1 score for genome identification in Supplementary Table 5 was computed as

F1 =
2 ·Genome Identification Precision ·Genome Identification Recall

Genome Identification Precision + Genome Identification Recall
.

Note that for MetaPhlAn2 at species level, as we actually used the genus level identifications to compute the
precision and recall (there should be less true positive counts at specie level), we may overestimate its F1
score. As such we used its genus level F1 score as an upper bound of its species level score, and marked ‘<’
in front of the values. However, at strain level, it is possible for both missing true positive identifications,
and ‘false’ true positive identifications due to matching species/strain names. Therefore, the resulting F1
score might be inaccurate, and are marked with ‘∼’ in front of the values.

8 CAMMiQ Parameters

As a part of our performance benchmark, we finally evaluated different choices on two major parameters
that can impact CAMMiQ’s accuracy performance on read classification and genome identification and quan-
tification: α, the minimum relative read count threshold for reporting a genome, and Lmin, the minimum
unique or double-unique substring length (values larger than the default value of 50 for Lmax did not have
a big impact and thus are not reported here). Note that in CAMMiQ implementations we also allow users to
adjust other parameters, e.g. h, the length of the prefix of substrings that is not chained in the hash table;
and Lmax, the maximum length of a unique or doubly unique substring that is hashed. Since the value of h
does not impact which substrings are hashed but rather alters how they are hashed, it only impacts speed,
but not accuracy. In contrast, as Lmax increases, the number of unique substrings in a genome and thus the
accuracy of CAMMiQ should improve. In practice, however, we observe very few unique and doubly unique
substrings between L/2 (CAMMiQ’s default setting for Lmax) and L, where L is the read length in a query.
Therefore, CAMMiQ’s performance was minimally impacted after increasing the value of Lmax, for any of the
four index data sets we used. Since these are good representatives of an index data set to be used in practice,
we believe setting Lmax to half of the read length is a good rule of thumb.

In Supplementary Table 6 we report the results for each possible combination of Lmin = 21, 26, 31
and α = 0.001, 0.0001, on 8 of the 11 queries, omitting the 3 error free queries (on which the impact on
classification precision is minimal). As we increase Lmin, CAMMiQ’s classification precision improves, however
its read assignment performance (classification recall) deteriorates. Interestingly, its predicted abundance
values did not change much with increasing Lmin. As a result we set the default Lmin to 26 in CAMMiQ.
On the other hand, increasing the value of α, decreased the number of false positives in CAMMiQ’s output,
particularly in the most difficult queries. However, as a result of this, for the queries Least-20-genera-
lognormal and Random-20-lognormal-a.g., those genomes with low abundance values were disregarded by
CAMMiQ, leading to false negatives. CAMMiQ allows the user to set the parameter α with prior knowledge on
the reads to be queried (e.g., the expected read coverage or the number of genomes in the query); we set its
default value to 0.0001.

9 blastn analysis of Salmonella strains

The RNASeq reads for each cell studied in [15] are stored as separate read sets in the Sequence Read
Archive (SRA) [24]. To reduce the number of reads that need to be downloaded or aligned, we used
ReadFinder (https://github.com/morgulis/ReadFinder) to find any reads that could plausibly map to either
the Salmonella strains LT2 or D23580 with permissive parameters allowing alignments that stray by as
much as four diagonals from the main diagonal. ReadFinder uses similar methods as SRPRISM [25] to
search SRA without the need to download the data and is more streamlined than SRPRISM for our purpose
of finding candidate matching reads. We then used blastn [26] with word size 16 to find local (and ideally,
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Query Set Lmin
Classif-
ication

Num.
Assi-

Num. Identified Species L1 Err.

Precision gned
Reads

α = 0.001 α = 0.0001 α = 0.001 α = 0.0001

Least-20-uniform
21 0.887 1.69M 20/21 31/32 0.0835 0.0836
26 0.974 1.57M 20/21 28/29 0.0929 0.0929
31 0.980 1.49M 20/20 22/23 0.1064 0.1060

Least- 21 0.967 2.85M 20/20 29/31 0.0423 0.0400
quantifiable 26 0.989 2.81M 20/20 27/29 0.0294 0.0278
-20-uniform 31 0.992 2.70M 20/20 24/26 0.0344 0.0326
Least-20- 21 0.974 2.61M 20/20 25/26 0.0706 0.0715
genera- 26 0.993 2.58M 20/20 24/26 0.0585 0.0591
uniform 31 0.995 2.48M 20/20 23/24 0.0688 0.0683
Least-20 21 0.974 2.56M 19/19 34/35 0.0394 0.0418
genera- 26 0.993 2.53M 19/19 33/34 0.0416 0.0439
lognormal 31 0.995 2.43M 19/19 32/33 0.0355 0.0374
Random-20- 21 0.993 3.83M 20/20 20/20 0.0220 0.0220
uniform 26 0.997 3.84M 20/20 20/20 0.0113 0.0113

31 0.998 3.69M 20/20 20/20 0.0294 0.0294
Random-20- 21 0.996 4.50M 20/20 21/21 0.0432 0.0431
lognormal 26 0.998 4.48M 20/20 21/21 0.0039 0.0038

31 0.998 4.32M 20/20 21/21 0.0062 0.0058
Random-20- 21 0.989 0.92M 17/17 20/20 0.1492 0.1268
lognormal- 26 0.998 0.91M 16/16 20/20 0.1631 0.1262
a.g.* 31 0.999 0.87M 16/16 20/20 0.1658 0.1298
Random-100- 21 0.996 19.5M 100/100 100/100 0.0176 0.0176
uniform 26 0.998 19.5M 100/100 100/100 0.0096 0.0096

31 0.999 19.0M 100/100 100/100 0.0104 0.0104

Supplementary Table 6: Performance of CAMMiQ as a function of minimum unique/doubly-unique sub-
string length Lmin = 21, 26, 31, and minimum relative read count threshold α = 0.001, 0.0001 to report a
genome. Classification Precision: the proportion of reads correctly assigned to a genome among the set of
reads assigned to some genome, correctly or incorrectly. Number of assigned reads: the total number of reads
assigned to some genome. Number of identified genomes: the number of genomes returned by CAMMiQ’s ILP
formulation v.s. the number of genomes that have sufficient read assignments (determined by α). L1 error:
the L1 distance between the true relative abundance values (between 0 and 1) and the predicted abundance
values for each genome in the corresponding query.
*: 10% reads in the query Random-20-lognormal-a.g. are from a genome not in the index; any assignment
of such a read to a genome is necessarily incorrect.
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global) alignments between the reads identified by ReadFinder and either Salmonella strain. This test is
much simpler than the CAMMiQ test because we did not consider alignments to any Salmonella strains other
than the two actually used in the original wet lab experiment.

Most reads that align to either strain actually align to the two strains equally well. To decide which
reads align strictly better to one strain or the other, we implemented an in-house script with the following
rules. A blastn alignment is ”high-quality ” if it has length at least 70 (taking into account that the reads
are of length 75), has identity percentage ≥ 98. A read R maps better to the LT2 strain if either:

• R has a high-quality alignment to the LT2 strain but R has no high-quality alignment to the D23580
strain or

• R has high-quality alignments to both strains and the best LT2 alignment is at least as good as the
best D23580 alignment on i) length ii) identity percentage, iii) gaps and is better than the best D-strain
alignment on at least one of the thee Roman numeral criteria.

The criteria for mapping better to the D-strain are symmetric. The script reports counts of how many reads
map align strictly better to each of the two strains. Although the data in [15] consist of paired reads, each
mate pair was treated individually in the blastn analysis.
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