Supplemental Material

A slit-diaphragm-associated protein network for dynamic control of renal filtration

Maciej K. Kocylowski, Hande Aypek, Wolfgang Bildl, Martin Helmstädter, Philipp Trachte, Bernhard Dumoulin, Sina Wittösch, Lukas Kühne, Ute Aukschun, Oliver Kretz, Botond Gaal, Akos Kulik, Corinne Antignac, Geraldine Mollet, Anna Köttgen, Burulca Göcmen, Jochen Schwenk, Uwe Schulte, Tobias B. Huber, Bernd Fakler and Florian Grahammer

• Supplementary Figures 1 – 9

Supplementary Figure 1 (information related to Figure 1)

Supplementary Figure 1 Characterization of glomerular membrane fractions

(A), Denaturing gel separation of the protein fractions obtained during preparation of the glomerular 'membrane fraction' (MF) used for meAPs Western-probed for the indicated proteins. The alpha1-subunit of the Na-K-ATPase was used a marker for plasma membrane proteins. Experiment was repeated at least four times. (B), Abundance of all proteins determined by MS-analysis in two independent preparations of the MF-fraction. Note enrichment of the SD core components in either preparation.

Supplementary Figure 2 (information related to Figures 1, 2)

				oproportinger.		
Nephrin	a1	Progen	GP-N2	1243-1256	Progen	1.00
Nephrin	a2	R&D Systems	AF3159	37-1049	R&D Systems	0.70
Nephrin	a3	Santa-Cruz	sc19000	N-terminus	Santa-Cruz	0.07
Nephrin	a4	Santa-Cruz	sc28192	23-322	Santa-Cruz	0.00
Nephrin	a5	AbFrontier	pep3+6	491-509/1053-1073	this study	WB -
Neph1	a1	Pineda		767-788	Grahammer et al.	1.00
Neph1	a2	AbFrontier	рерЗ	658-678	this study	0.48
Neph1	a3	AbFrontier	R2	365-387/658-678	this study	0.12
Neph1	a4	AbFrontier	R1	365-387/658-678	this study	0.10
Neph1	a5	AbFrontier	pep1	365-387	this study	0.01
Podocin	a1	sigma	P0372	367-383	sigma	1.00
Podocin	a2	AbFrontier	pep1	34-47	this study	0.54
Podocin	a3	AbFrontier	рерЗ	354-368	this study	0.17
Podocin	a4	AbFrontier	C-term R1	135-383	Roselli et al.	0.07
Podocin	a5	AbFrontier	R1	34-47/354-368	this study	0.05
Podocin	a6	AbFrontier	R2	34-47/354-368	this study	0.01
Podocin	a7	AbFrontier	C-term R2	135-383	Roselli et al.	WB+
Podocin	a8	AbFrontier	C-term R3	135-383	Roselli et al.	WB+

Supplementary Figure 2 Characterization of antibodies

Epitope-localization and characterization of ABs against the SD core components Nephrin, Neph1 and Podocin. The ABs highlighted in bold for each target were finally used for the meAPs reported in this work. Efficiency reflects the relative abundance of the respective target protein in APs determined by MS-analysis and normalized to the best performing AB. WB -/+ indicates that antibody efficiency was tested only by AP-WB.

Supplementary Figure 3 (information related to Figures 1, 2)

Supplementary Figure 3 Solubilization efficiency and gel separation of CL-91 solubilized membrane fractions

(**A**), SDS-PAGE separation of unsolubilized (T) and CL-solubilized (S) membrane fractions Western-probed for the indicated SD core constituents; MW scaling as indicated. Experiment was at least five times. (**B**), Two-dimensional gel separation of CL-91 solubilized membrane fractions prepared from isolated rat glomeruli, Western-probed with ABs against the indicated proteins. Apparent molecular mass (native PAGE, 1st dimension) and molecular weight (denaturing SDS-PAGE, 2nd dimension) are indicated; gel separations were repeated twice with similar results.

Supplementary Figure 4 (next page, information related to Figures 1, 2)

Coverage of primary sequences and phosphorylation status of the indicated SD core components derived from MS/MS-identified peptides

Left panel: Peptides identified by mass spectrometry are in red; those accessible to but not identified in MS/MS analyses are in black, and peptides hardly or not accessible to our MS/MS analyses used are given in grey. Phosphorylated residues are highlighted in yellow; transmembrane segment is indicated by a line.

Right panel: Exemplary MS/MS spectra (b- and y-ion series) of the indicated phosphorylated peptides of Nephrin (top), Neph1 (middle) and Podocin (bottom).

Note the 'triple phosphorylation' occurring in the 'acidic cluster' C-terminal to the transmembrane domain of Nephrin.

 $L \begin{bmatrix} 4 \\ A \end{bmatrix} E \end{bmatrix} E \end{bmatrix} I \end{bmatrix} \begin{bmatrix} PH \\ S \end{bmatrix} E \end{bmatrix} K$

NPHN_RAT (Q9R044) - Nephrin
Coverage is 45.4% absolute, 64.2% relative.

	0				
0001	MGAKRVTVRG	ARTSPIHRMS	SLTPLLLMGM	LTSGLAESPV	PTSAPRGFWA
0051	LSENLTAVEG	TTVKLWCGVR	APGSVVQWAK	DGLLLGPNPK	MPGFPRYSLE
0101	GDRAKGEFHL	LIEACDLSDD	AEYECQVGRS	ELGPELVSPK	VILSILVSPK
0151	VLLLTPEAGS	TVTWVAGQEY	VVTCVSGDAK	PAPDITFIQS	GRTILDVSSN
0201	VNEGSEEKLC	ITEAEARVIP	QSSDNGQLLV	CEGSNPALDT	PIKASFTMNI
0251	LFPPGPPVID	WPGLNEGHVR	AGENLELPCT	ARGGNPPATL	QWLK NGKPVS
0301	TAWGTEHAQA	VAHSVLVMTV	RPEDHGAR LS	CQSYNSVSAG	TQERSITLQV
0351	TFPPSAITIL	GSVSQSENKN	VTLCCLTKSS	RPRVLLR WWL	GGRQLLPTDE
0401	TVMDGLHGGH	ISMSNLTFLV	RREDNGLPLT	CEAFSDAFSK	ETFKKSLTLN
0451	VKYPAQKLWI	EGPPEGQYIR	TGTRVRLVCL	AIGGNPDPSL	IWFKDSRPVS
0501	EPRQPQEPRR	VQLGSVEKSG	STFSRELVLI	IGPPDNRAKE	SCKAGQLSAS
0551	TQLVVQFPPT	NLTILANSSA	LRPGDALNLT	CVSISSNPPV	NLSWDK EGER
0601	LEDVAAKPQS	APFKGSAASR	SVFLRVSSRD	HGQRVTCR AH	SEALRETVSS
0651	FYRFNVLYPP	EFLGEQVRAV	TVVEQGQVLL	PVSVSANPAP	EAFNWTFR GY
0701	RLSPAGGPRH	RILSGGALQL	WNVTRADDGF	YQLHCQNSEG	TAEALLKLDV
0751	HYAPTIRALR	DPTEVNVGGS	VDIVCTVDAN	PILPEMFSWE	RLGEEEEDLN
0801	LDDMEKVSKG	STGRLRIRQA	KLSQAGAYQC	IVDNGVAPAA	RGLVRLVVRF
0851	APQVDQPTPL	TKVAAAGDST	SSATLHCRAR	GVPNIDFTWT	KNGVPLDLQD
0901	PRYTEHRYHQ	GVVHSSLLTI	ANVSAAQDYA	LFK CTATNAL	GSDHTNIQLV
0951	SISRPDPPLG	LEVVSISPHS	VGLEWKPGFD	GGLPQRFQIR	YEALETPGFL
1001	HVDVLPTQAT	TFTLTGLKPS	TRYRIWLLAS	NALGDSGLTD	KGIQVSVTTP
1051	GPDQAPEDTD	HQLPTELPPG	PPRLPLLPVL	FAVGGLLLLS	NASCVGGLLW
1101	R RRLR RLAEE	I <mark>SEKTEAGS</mark> E	DRIRNEYEES	QWTGDRDTRS	STVSTAEVDP
1151	NYYSMRDFSP	QLPPTLEEVL	YHQGAEGEDM	AFPGHLHDEV	ERAYGPPGAW
1201	GPLYDEVRMD	PYDLRWPEVQ	CEDPRGIYDQ	VAADMDAVEA	S <mark>S</mark> LPFELRGH
1251	LV				

KIRR1_RAT (Q6X936) - Kin Of IRRE-like Protein 1 Coverage is 49.9% absolute, 68.9% relative.

0001	MTLENRSTCL	MTCQSSLLPK	KPRFLSQKMW	APHLVVAYLI	FVTLALALPG
0051	TQTRFSQEPA	DQTVVAGHRA	VLPCVLLNYS	GIVQWTKDGL	ALGMGQGLKA
0101	WPRYRVVGSA	DAGQYNLEIT	DAELSDDASY	ECQATEAALR	SRRAKLTVLI
0151	PPEDTRIDGG	PVILLQAGTP	YNLTCRAFNA	RPAATIIWFR	DGTQQEGAVT
0201	STELLKDGKR	ETTISQLLIQ	PTDLDIGRVF	TCRSMNEAIP	NGRETSIELD
0251	VHHPPTVTLS	IEPQTVLEGE	RVIFTCQATA	NPEILGYRWA	KGGFLIEDAH
0301	ESRYETNVDY	SFFTEPVSCE	VYNKVGSTNV	STLVNVHFAP	RIVVYPKPTT
0351	TDIGSDVTLT	CVWVGNPPLT	LTWTKKDSNM	VLSNSNQLLL	KSVTQADAGT
0401	YTCR AIVPRI	GVAEREVPLY	VNGPPIISSE	AVQFAVRGDG	GEVECFIGST
0451	PPPDRIAWAW	KENFLEVGTL	ERYTVER TNS	GSGVLSTLTI	NNVMEADFQT
0501	HYNCTAWNSF	GPGTAIIQLE	EREVLPVGII	AGATIGAGIL	LVFSFAALVF
0551	FLYRRRKGSR	KDVTLRKLDI	KVETVNR EPL	TMHSDREDDT	TSISTATRVM
0601	KAIYSSFKDD	VDLKQDLHCD	TIETREEYEM	KDPTNGYYNV	RAHEDRPSSR
0651	AVLYADYRAP	GPTRFDGRPS	SRLSHSSGYA	QLNTYSRAPA	SDYGTEPTPS
0701	GPSAPGGTDT	tsql <mark>s</mark> yen <mark>y</mark> e	KFNSHPFPGA	AGYPTYRLGY	PQAPPSGLER
0751	TPYEAYDPIG	KYATATRFSY	TSQHSDYGQR	FQQRMQTHV	

	undetectable	indirectly findable	findable
found		SEQUENCE	SEQUENCE
not found	SEQUENCE	SEQUENCE	SEQUENCE

PODO_MOUSE (Q91X05) - Podocin Coverage is 65.5% absolute, 91.6% relative.

0001	MDSRARSSSR	EAHGRSSRSS	SRDDKKAKAG	RGSRGRARPD	AGAERQSTGR
0051	TATRGEPRAP	AATATVVDVD	EVRGPGEEGT	EVVALLESER	PEEGIKPSGL
0101	GACEWLLVLA	SLIFIIMTFP	FSIWFCIKVV	QEYERVIIFR	LGHLLPGRAK
0151	GPGLFFFLPC	LDTYHKVDLR	LQTLEIPFHE	VVTKDMFIME	IDAVCYYRME
0201	NASLLLSSLA	HVSKAIQFLV	QTTMKRLLAH	RSLTEILLER	KSIAQDVKVA
0251	LDAVTCIWGI	KVERTEIKDV	RLPAGLQHSL	AVEAEAQRQA	KVRVIAAEGE
0301	KAASESLRMA	AEILSGTPAA	VQLRYLHTLQ	SLSTERPATV	VLPLPFDMLS
0351	LLSSPGNRAQ	GSINYPSSSK	PVEPLNPKKK	DSPML	

Supplementary Figure 4

Supplementary Figure 5 (information related to Figures 1, 2)

Supplementary Figure 5

Target-normalization of protein abundance ratios in APs versus control

Upper panel: Formula used for calculating tnR from respective protein ratio, target protein ratio and the mean of background protein ratios in log space. Lower panel: Histogram illustrating an example distribution of protein ratios in AP vs control (arbitrary values) together with the determination of the specificity threshold (tnR = 0.25). Distribution of ratios determined for background proteins is indicated by a blue line (fit of a Gaussian distribution, peak close to 0 in log space), the ratio of the AP target protein is given by the triangle in green. Note that normalization of protein ratios is prerequisite for direct comparison of results from APs with different antibodies and control IgGs.

Supplementary Figure 6 (next page, information related to Figure 3)

Characterization of glomeruli and podocytes in *Nphs1*^{$\Delta iPod$}, *Nphs2*^{$\Delta iPod$} and *Neph1*^{$\Delta iPod$} knockout mice

(**A**), Immuno-staining of podocytes (from three animals each) for Nephrin, Neph1 and Podocin (left panels), PAS-staining of kidney tissue and EM analysis of FPs in wildtype (control), $Nphs1^{\Delta iPod}$ and $Neph1^{\Delta iPod}$ knockout mice 4 weeks after induction by doxycycline. $Nphs1^{\Delta iPod}$ showed no changes in immuno-staining pattern nor in glomerulus morphology compared to wildtype. In $Neph1^{\Delta iPod}$ mice Neph1-staining was slightly reduced at unchanged PAS staining, podocyte FPs appeared widely flattened in line with the pronounced albuminuria (Fig. 3B). (**B**), In $Nphs2^{\Delta iPod}$ mice immuno-staining (from three animals each) was reduced for all three SD core proteins, PAS stain indicated segmental loss of the glomerular tuft with extensive synechia of Bowman's capsule. In addition, the FPs were largely flattened correlating with the massive albuminuria (Fig. 3C).

Supplementary Figure 6

Supplementary Figure 7 (next page, information related to Figure 3)

Alterations in the SD-associated network following induced knock-down of the SD core-components

Protein abundances were determined in (unsolubilized) total membrane fractions by mass spectrometry.

(**A**), Abundance ratios (log10) determined for the indicated constituents of the Nephrin interactome (relative to controls (without doxycycline administration, 'WT') at distinct periods (1 week (green), 6 weeks (purple) and 12 weeks (orange)) after induction of Nephrin KO (Nphs1^{Δ iPod}</sub>). (**B**), Abundance ratios as in the top panel determined 4 weeks after induction of Neph1 KO (Neph1^{Δ iPod}</sub>). (**C**), Abundance changes determined for the indicated constituents of the Podocin interactome 2 weeks after induction of Podocin KO (Nphs2^{Δ iPod}</sub>). (**D**), Overlay of the changes determined for the common SD-core interactors at the indicated time points after KO induction. Note consistency and interdependence in stability of these SD constituents.

Supplementary Figure 7

Supplementary Figure 8 (next page, information related to Figure 3)

Changes in Nephrin phosphorylation after induction of its knock-down

Results from total membrane analysis (Fig. S7) were inspected for changes in intensity of peptides derived from the C-terminal phosphorylation cluster of Nephrin (Fig. S4, sequence RLAEELSEKTEAGSEEDRLR) 1 and 6 weeks after induction of Nephrin KO ('KO'). Control was without induction ('WT'). (**A**), Abundance ratios as in Fig. S7 for the indicated non-phosphorylated ('non-phospho') and phosphorylated ('phospho') peptides (phosphorylated residues highlighted in red). (**B**), Changes in Nephrin phosphorylation determined by comparing MS-intensity of the indicated phosphorylated peptide species to its non-phosphorylated counterpart in the indicated datasets. Note the roughly 2-fold increase in relative phosphorylation upon induction of Nephrin KO for all three sites/peptides.

А

Nephrin phosphorylation

В

Nephrin phosphorylation

Change in phosphorylation status induced by KO

Supplementary Figure 8

Supplementary Figure 9 (next page, information related to Discussion)

Supplementary Figure 9

Enrichment of interactomes with genes causing kidney phenotypes in humans and mice

(A), Intersection plot showing overlap between genes in the interactomes determined for Nephrin/Neph1 and Podocin with genes known to cause four different kidney phenotypes in genetically manipulated mice (based on MGI database, <u>http://www.informatics.jax.org/, accessed on July 14, 2021</u>). Genes implicated in abnormal kidney morphology, kidney physiology, and urine protein level were found to be significantly enriched in the Podocin interactome. (B), Intersection plot as in (A) but performed with genes known to cause four different subtypes of monogenic kidney disease in humans (based on ¹). Genes implicated

in glomerular kidney disease were found to be significantly enriched in the Podocin interactome. One sided Fisher's exact test was performed in R to test for enrichment of the different gene lists assuming 20,000 total protein-coding genes and a p-value threshold of 0.05/8 = 6.25E-03 to account for multiple testing. Confidence intervals for the odds ratios were computed using the exact2x2 package with tsmethod="minlike" (doi: 10.1093/biostatistics/kxp050). The p-value and odds ratio for each test is in the table, with significant results shown in bold. Odds ratios and p-values are N.A. if no overlap exists. Genes that are common between interactome lists and various kidney phenotype gene lists are labeled with the gene symbol. As negative controls we used genes related to brain size (414 unique genes) and respiratory system development (167 unique genes).

References

 Rasouly, H.M. *et al.* The Burden of Candidate Pathogenic Variants for Kidney and Genitourinary Disorders Emerging From Exome Sequencing. *Ann Intern Med* **170**, 11-21 (2019).