Arene radiofluorination enabled by photoredox-mediated halide interconversion

Wei Chen¹, Hui Wang¹, Nicholas E. S. Tay², Vincent A. Pistritto², Kang-Po Li¹, Tao Zhang¹, Zhanhong Wu¹, David A. Nicewicz^{2*}, Zibo Li^{1*}

¹Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA.

²Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3290, United States

Correspondence to: nicewicz@unc.edu; ziboli@med.unc.edu

This PDF file includes:

1.	General information		
2.	Preparation of arene substrates and fluoroarene standards		2
3.	Radiolabeling experiments		53
	3.1	Reagents and equipment information	53
	3.2	General procedure for the preparation of [18F]TBAF	54
	3.3	General HPLC conditions	54
	3.4	General procedure for photoredox-mediated halide/18F interconversion	55
	3.5	Radio-HPLC analysis and characterization of ¹⁸ F-labeled arenes	57
	3.6	General procedure for deprotection of ¹⁸ F-labeled tyrosine derivatives	139
	3.7	¹⁸ F-labeling of DOPAs via halide/ ¹⁸ F interconversion	147
	3.8	Small scale synthesis [¹⁸ F]FDOPA from preformed [¹⁸ F]TBAF	155
	3.9	Scale-up synthesis of [18F]FDOPA from [18F]F-	157
	3.10	Molar activity calculation	160
	3.11	Less effective substrates for halide/18F interconversion	162
4.	. Positron emission tomography (PET) imaging study		163
5.	. Reference		166
6.	NMR spectra (1H NMR, 13C NMR, 19F NMR)		168

1. General information

Methods and materials: Commercially available chemicals reagents and solvents were purchased from Sigma-Aldrich, Alfa Aesar, TCI, Acros, Combi-Blocks,Matrix Scientific, Oakwood Chemical, Chem Impex International, and Fisher Scientific etc. and used as received.

Anhydrous acetonitrile (MeCN), dichloromethane (DCM), tetrahydrofuran (THF) and dimethylformamide (DMF) were dried by an Inert solvent purification system (PS-MD-5). Nuclear magnetic resonance spectra were obtained using a Varian 400 MR or Inova 500 spectrometers. ¹H NMR and ¹³C NMR spectra are referenced to Chloroform-d (¹H NMR: 7.26 ppm and ¹³C NMR: 77.00 ppm), Dimethyl sufoxide-d6 (¹H NMR: 2.50 ppm and ¹³C NMR: 39.63 ppm), D₂O (¹H NMR: 4.79 ppm). All spectra are reported as parts per million. ¹H, ¹³C, and ¹⁹F NMR data are reported as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, dd = doublet of doublets, td = triplet of doublets, ddd = double of doublet of doublets, m = multiples, app = apparent), coupling constants (Hz), and integration.

High Resolution Mass Spectra (HRMS) were analysed on either ThermoFisher GC Exactive with an Electron Ionization (EI) source or ThermoFisher Q Exactive HF-X (ThermoFisher, Bremen, Germany) mass spectrometer with positive mode electrospray ionization (ESI).

Reverse-phase flash liquid chromatography was performed using a Biotage® Isolera One instrument with a Biotage® SNAP Ultra C18 cartridge.

2. Preparation of arene substrates and fluoroarene standards

Compounds 1-chloro-4-methoxybenzene(1-CI), 1-bromo-4-methoxybenzene(1-Br), 1-iodo-4methoxybenzene(1-I), 1-fluoro-4-methoxybenzene(1-F), 1-methoxy-4-nitrobenzene (1-NO₂), 4methoxyphenyl trifluoromethanesulfonate (1-OTf), 1-bromo-4-(tert-butoxy)benzene (5-Br), 4chloro-1-methoxy-2-methylbenzene(**6**), 4-fluoro-1-methoxy-2-methylbenzene, 1-chloro-4methoxy-2-methylbenzene (7), 1-fluoro-4-methoxy-2-methylbenzene, 1-bromo-2,4dimethoxybenzene (10-Br), 1-iodo-2,4-dimethoxybenzene(**10-I**), 2,4-dimethoxy-1nitrobenzene(10-NO₂), 1-fluoro-2,4-dimethoxybenzene, 1-chloro-2-methoxybenzene(17), 1fluoro-2-methoxybenzene, 1-chloronaphthalene(21-CI), 1-fluoronaphthalene(21-F), 5-chloro-2,3,3-trimethyl-3H-indole(**30-CI**), 4-fluorobenzo[b]thiophene(33), 3-bromo-2,6dimethoxypyridine(35), 6-fluorochroman-4-one(36), Cliofibrate(43), fluorouracil (53), methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(3,4-dimethoxyphenyl)propanoate(**L-64**) and other unlabeled reagents were purchased and used directly.

1-chloro-4-propoxybenzene (2). To a solution of the 4-chlorophenol (386 mg, 3 mmol, 1.5 equiv.) in DMF was added anhydrous potassium carbonate (829 mg, 6 mmol, 3 equiv.) follow by the 1-iodopropane (340 mg, 2 mmol, 1 equiv.). The reaction was stirred under room temperature overnight and then extracted with ethyl acetate and water. The organic phase was washed with water, NaOH solution (10%, w/w), water, saturated brine, dried with Na₂SO₄, filtered, and concentrated in vacuo to give the title compound as a colorless liquid (310 mg, 91%) which was used without further purification. Spectral data matched literature data¹

¹**H NMR (400 MHz, CDCl**₃) δ7.25 – 7.18 (m, 2H), 6.86 – 6.78 (m, 2H), 3.89 (†, *J* = 6.6 Hz, 2H), 1.87 – 1.73 (m, 2H), 1.03 (†, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 157.72, 129.22, 125.25, 115.74, 69.79, 22.51, 10.46.

1-fluoro-4-propoxybenzene (2-F). Follow the preparation procedure of compound **2**, the title compound was obtained as a colorless liquid (305 mg, 66%) from with 4-fluorophenol and 1-iodopropane.

¹H NMR (400 MHz, CDCl₃) δ7.03 – 6.91 (m, 2H), 6.89 – 6.77 (m, 2H), 3.88 (†, *J* = 6.6 Hz, 2H), 1.86 – 1.73 (m, 2H), 1.03 (†, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ157.09(d, J = 237 Hz), 155.23 (d, J = 2.1 Hz), 115.68 (d, J = 23Hz), 115.40 (d, J = 8Hz), 70.13, 22.59, 10.48.

¹⁹F NMR (376 MHz, CDCl₃) δ -124.53 (ddd, J = 12.5, 8.3, 4.4 Hz).

1-chloro-4-isopropoxybenzene(3). Follow the preparation procedure of compound **2**, the title compound was obtained as a colorless liquid (135 mg, 40%) from 4-chlorophenol and 2-iodopropane.

¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.17 (m, 2H), 6.84 – 6.78 (m, 2H), 4.49 (septet, J = 6.0 Hz, 1H), 1.32 (d, J = 6.0 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 156.46, 129.29, 125.24, 117.17, 70.32, 21.92.

1-fluoro-4-isopropoxybenzene(3-F). Follow the preparation procedure of compound **2**, the title compound was obtained as a colorless liquid from 4-fluorophenol and 2-iodopropane. Spectral data matched literature data²

¹**H NMR (400 MHz, CDCI**₃) δ 7.00 - 6.89 (m, 2H), 6.87 - 6.78 (m, 2H), 4.45 (septet, J = 6 Hz, 1H), 1.31 (d, J = 6.0 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) 8157.14 (d, J = 237 Hz), 153.92 (d, J = 2.1 Hz), 117.21 (d, J = 8.0 Hz), 115.75(d, J = 23 Hz), 70.85, 22.00.

¹⁹F NMR (376 MHz, CDCl₃) δ -124.11 (††, *J* = 8.5, 4.5 Hz).

1-(but-3-en-1-yloxy)-4-chlorobenzene (**4-Cl**). To a solution of 4-chlorophenol (257 mg, 2 mmol) in MeCN were added 4-Bromobut-1-ene (540 mg, 4 mmol, 2 equiv.) and potassium carbonate (553 mg, 4 mmol, 2 equiv.). The mixture was stirred under reflux for overnight. The reaction was condensed under reduced pressure and extracted with ethyl acetate and water. The organic phase was washed with NaOH solution (10%, w/w), water, saturated brine, dried with Na₂SO₄, filtered, and concentrated in vacuo and purified by silica gel column with hexane as the eluant to give the title compound as colorless liquid (149 mg, 41%).

¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.20 (m, 2H), 6.86 – 6.79 (m, 2H), 5.89 (ddt, J = 17.0, 10.3, 6.7 Hz, 1H), 5.17 (ddd, J = 17.2, 3.2, 1.6 Hz, 1H), 5.14 – 5.09 (m, 1H), 3.98 (t, J = 6.7 Hz, 2H), 2.53 (qt, J = 6.7, 1.3 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 157.49, 134.20, 129.27, 125.51, 117.16, 115.82, 67.50, 33.54.
 HRMS (EI): Calculated for C₁₀H₁₁ClO [M]⁺: 182.0498; found: 182.0493.

1-(but-3-en-1-yloxy)-4-fluorobenzene (4-F). Follow the preparation procedure of compound
4-CI, the title compound (4-F) was obtained as a colorless liquid (158 mg, 48%).

¹**H NMR (400 MHz, CDCl**₃) δ 7.05 − 6.90 (m, 2H), 6.88 − 6.79 (m, 2H), 5.90 (ddt, *J* = 17.0, 10.3, 6.7 Hz, 1H), 5.17 (ddd, *J* = 17.2, 3.2, 1.6 Hz, 1H), 5.14 − 5.08 (m, 1H), 3.98 (t, *J* = 6.7 Hz, 2H), 2.53 (qt, *J* = 6.7, 1.3 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 157.21 (d, *J* = 238.0 Hz), 154.99 (d, *J* = 2.1 Hz), 134.33, 117.06, 115.73 (d, *J* = 23.1 Hz), 115.53 (d, *J* = 7.9 Hz), 67.86, 33.64.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -124.12 - -124.26 (m).

HRMS (EI): Calculated for C₁₀H₁₁FO [M]⁺: 166.0794; found: 166.0789.

1-(tert-butoxy)-4-chlorobenzene (5-Cl). The title compound was prepared from reported method³. To a solution of 4-chlorophenol (2mmol) and Mg(ClO₄)₂ (45 mg, 0.2mmol, 10%) in dichloromethane was added Boc₂O (4.6 mmol, 1.0 g, 2.3 equiv.). The resulting solution was heated at 40°C overnight. The solvent was removed under reduce pressure. The residue was extracted with EA and water. The organic phase was washed with 1N HCl, 10% NaOH solution, water, saturated brine in sequence, dried with Na₂SO₄, filtered and concentrated in vacuo to give the product as a colorless liquid (172mg, 47%) which was used without further purification. Spectral data matched literature data⁴.

¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.19 (m, 2H), 6.96 – 6.88 (m, 2H), 1.33 (s, 9H).
 ¹³C NMR (100 MHz, CDCl₃) δ 153.94, 128.85, 128.54, 125.44, 78.90, 28.73.

1-(tert-butoxy)-4-iodobenzene(5-I). Follow the same preparation procedure of 1-(tert-butoxy)-4-chlorobenzene(4-CI), the title compound was obtained as a white solid (278 mg, 50%) from 4-iodophenol and purified by silica gel column with ethyl acetate/ hexane (1/20) as the eluant. Spectral data matched literature data⁵.

¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.51 (m, 2H), 6.79 – 6.70 (m, 2H), 1.33 (s, 9H).
 ¹³C NMR (100 MHz, CDCl₃) δ 155.33, 137.87, 126.34, 86.71, 78.96, 28.75.

1-(tert-butoxy)-4-fluorobenzene (5-F). The title compound was prepared from the reported literature. Spectral data matched literature data³

¹H NMR (400 MHz, CDCl₃) δ 6.95 (d, J = 0.5 Hz, 2H), 6.93 (s, 2H), 1.31 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 159.08 (d, J = 240 Hz), 151.07 (d, J = 2.7 Hz), 125.53 (d, J = 8.3 Hz), 115.24 (d, J = 22.7 Hz), 78.52 (d, J = 1.1 Hz), 28.67.

2-chloro-5-methoxybenzyl acetate (8). To a solution of 2-chloro-5-methoxybenzaldehyde (340 mg, 2 mmol, 1 equiv.) in methanol was added NaBH₄ (152 mg, 4 mmol, 2 equiv.) portion-wise. The reaction was stirred under room temperature for 1h and then quenched by the addition of 1N HCl solution. The mixture was extracted with ethyl acetate and water. The organic phase was washed with saturated brine, dried with Na₂SO₄, filtered, and concentrated in vacuo to give the crude intermediate which was then dissolved in dichloromethane followed by the addition of DMAP (12 mg, 0.2 mmol, 0.05 equiv.), triethyl amine (558 µl, 4 mmol, 2 equiv.) acetic anhydride (284 µl, 3 mmol, 1.5 equiv.). The mixture was stirred under room temperature for 2h. Solvent was removed under reduce pressure. The residue was extracted with ethyl acetate and water. The organic phase was washed with 1N HCl, water, saturated brine, dried with Na₂SO₄, filtered, and concentrated in vacuo to give the dudition of DMAP (12 mg, 0.2 mmol, 0.05 equiv.).

¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, J = 8.8 Hz, 1H), 6.95 (d, J = 3.0 Hz, 1H), 6.80 (dd, J = 8.8, 3.0 Hz, 1H), 5.17 (s, 2H), 3.80 (s, 3H), 2.14 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) & 170.59, 158.35, 134.47, 130.18, 124.72, 115.32, 114.65, 63.60, 55.53, 20.86.

HRMS (EI): Calculated for C10H11CIO3 [M]+: 214.0397; found: 214.0392.

2-fluoro-5-methoxybenzyl acetate(8-F). Follow the preparation procedure of compound **8**, the title compound was obtained as a colorless oil (322 mg, 81%) from 2-fluoro-5-methoxybenzaldehyde.

¹H NMR (400 MHz, CDCl₃) δ 6.99 (†, J = 9.1 Hz, 1H), 6.89 (dd, J = 5.8, 3.2 Hz, 1H), 6.84 - 6.78 (m, 1H), 5.13 (s, 2H), 3.78 (s, 3H), 2.11 (d, J = 3.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) & 170.69, 155.59 (d, J = 2.1 Hz), 155.23 (d, J = 239.6 Hz), 123.64 (d, J = 16.4 Hz), 115.98 (d, J = 23 Hz), 115.28 (d, J = 3.7 Hz), 114.90 (d, J = 8.0 Hz), 60.21 (d, J = 3.9 Hz), 55.76, 20.88.

¹⁹F NMR (376 MHz, CDCl₃) δ -129.10 (ddd, J = 9.6, 5.6, 4.3 Hz).

HRMS (EI): Calculated for C₁₀H₁₁FO₃ [M]⁺: 198.0692; found: 198.0687.

2-chloro-5-methoxy-1,1'-biphenyl (9). Bromobenzene (0.63 g, 4 mmol, 1.0 equiv.) was weighed in a 100 ml flask with a stir bar. (2-chloro-5-methoxyphenyl)boronic acid (1.83 g, 6 mmol, 1equiv.), potassium carbonate(1.66 g, 12 mmol, 3 equiv.), Pd(PPh₃)₄ (462 mg, 0.4 mmol, 0.1 equiv.) were added in sequence. Dioxane and H₂O (3:1, 60 ml) was then added. Vacuumize and refill the mixture with N₂ three times while stirring. The reaction was heated under 100°C for 16 h under N₂. Most of the solvent was then removed under reduced pressure before ethyl acetate (100 mL) was added to the residue. The solution was passed through a pile of Celatom. Wash the Celatom with additional ethyl acetate (50 mL). The filtration was extracted with water and the organic phase was separated and washed with saturated brine, dried over with Na₂SO₄, filtered and concentrated in vacuo to give crude product which was purified by silica gel column with hexane as the eluant to give the title compound as colorless oil (763 mg, 87%).

¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.43 (m, 4H), 7.43 – 7.39 (m, 1H), 7.38 (d, J = 8.8 Hz, 1H), 6.90 (d, J = 3.0 Hz, 1H), 6.85 (dd, J = 8.7, 3.1 Hz, 1H), 3.82 (s, 3H).

13C NMR (100 MHz, CDCl₃) & 158.18, 141.27, 139.45, 130.55, 129.31, 128.02, 127.65, 123.87, 116.53,

114.30, 55.54.

HRMS (EI): Calculated for C₁₃H₁₁ClO [M]⁺: 218.0498; found: 202.0493.

2-fluoro-5-methoxy-1,1'-biphenyl(9-F). 2-bromo-1-fluoro-4-methoxybenzene (205 mg, 1 mmol, 1.0 equiv.) was weighed in a 100 ml flask with a stir bar. Phenylboronic acid (183 mg, 1.5 mmol, 1 equiv.), potassium carbonate (414 mg, 3 mmol, 3 equiv.), Pd(PPh₃)₄ (58 mg, 0.05 mmol, 0.05 equiv.) were added in sequence. Dioxane and H₂O (3:1, 60 ml) was then added. Vacuumize and refill the mixture with N₂ three times while stirring. The reaction was heated under 100°C for 16h under N₂. Most of the solvent was then removed under reduced pressure. Ethyl acetate(100ml) was added to the residue. The solution was passed through a pile of Celatom. Washed the Celatom with additional ethyl acetate (50 ml). The filtration was extracted with Na₂SO₄, filtered and concentrated in vacuo to give crude product which was purified by silica gel column with ethyl acetate/ hexane (1/20) as the eluant to give the title compound as colorless oil (176 mg, 87%).

¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.52 (m, 2H), 7.49 – 7.42 (m, 2H), 7.42 – 7.34 (m, 1H), 7.08 (dd, J = 9.8, 9.1 Hz, 1H), 6.96 (dd, J = 6.3, 3.2 Hz, 1H), 6.84 (dt, J = 8.9, 3.5 Hz, 1H), 3.83 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 155.73 (d, J = 2.2 Hz), 154.16 (d, J = 239 Hz), 135.85 (d, J = 1.4 Hz), 129.55 (d, J = 15.2 Hz), 128.95 (d, J = 3.0 Hz), 128.41, 127.74, 116.57 (d, J = 24.7 Hz), 115.46 (d, J = 3.3 Hz), 113.83 (d, J = 8.1 Hz), 55.79.

¹⁹F NMR (376 MHz, CDCl₃) δ -128.96(m).

HRMS (EI): Calculated for C₁₃H₁₁FO [M]⁺: 202.0794; found: 202.0789.

1-chloro-2,4-dimethoxybenzene(10-Cl). The title compound was prepared from reported literature⁶.

¹H NMR (400 MHz, CDCl₃) δ7.24 (d, J = 8.7 Hz, 1H), 6.50 (d, J = 2.7 Hz, 1H), 6.43 (dd, J = 8.7, 2.7 Hz, 1H), 3.87 (s, 3H), 3.79 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) & 159.44, 155.57, 130.08, 114.09, 105.11, 99.97, 56.01, 55.53.

2-chloro-1,3,5-trimethoxybenzene (11). The title compound was prepared from the reported literature procedure and further purified by stirring in methanol to remove the dechlorinated byproduct. Spectral data matched literature data⁷

¹H NMR (400 MHz, CDCl₃) δ 6.18 (s, 2H), 3.88 (s, 6H), 3.81 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) & 159.39, 156.52, 102.68, 91.57, 56.28, 55.52.

2-fluoro-1,3,5-trimethoxybenzene(11-F). The title compound was prepared from reported literature⁸.

¹H NMR (400 MHz, CDCl₃) δ 6.16 (d, J = 6.2 Hz, 2H), 3.87 (s, 6H), 3.78 (s, 3H).

¹³**C NMR (100 MHz, CDCI₃)** δ 155.50 (d, *J* = 3.0 Hz,), 148.59 (d, *J* = 9.2 Hz), 137.71 (d, *J* = 235.9 Hz), 92.23, 56.53, 55.65.

¹⁹F NMR (376 MHz, CDCl3) δ -168.37 (†, J = 6.1 Hz).

2-chloro-3,5-dimethoxybenzaldehyde (12). The title compound was prepared from reported chlorination method⁷. The crude solid product after work-up was purified by stirring in methanol. The title compound was obtained as a white solid after filtration.

¹H NMR (400 MHz, CDCl₃) δ 10.49 (s, 1H), 7.01 (d, J = 2.7 Hz, 1H), 6.73 (d, J = 2.8 Hz, 1H), 3.91 (s, 3H), 3.84 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 189.89, 159.07, 156.29, 133.52, 119.59, 106.00, 102.36, 56.50, 55.80. HRMS (EI): Calculated for C₉H₉ClO₃ [M]⁺: 200.0240; found: 200.0233.

2-fluoro-3,5-dimethoxybenzaldehyde(12-F). The title compound was prepared from the same procedure of **11-F**. The product was separated as a white solid which contains ~20% non-fluorinated starting material.

¹H NMR (400 MHz, CDCl₃) δ 10.37 (s, 1H), 6.83 (dd, J = 4.1, 3.1 Hz, 1H), 6.77 (dd, J = 7.2, 3.0 Hz, 1H), 3.90 (s, 3H), 3.82 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) & 171.13, 155.82, 155.53 (d, J = 2.0 Hz), 155.39 (d, J = 238 Hz), 153.42, 132.65, 130.17, 129.83, 129.30, 124.86 (d, J = 16.5 Hz), 124.00, 123.37, 119.11, 118.48, 115.70(d, J = 3.8 Hz), 115.46 (d, J = 23.9 Hz), 114.50 (d, J = 8.0 Hz), 55.63, 44.85 (d, J = 3.1 H), 22.11.

¹⁹F NMR (376 MHz, CDCl₃) δ -154.06 (dd, J = 7.3, 4.1 Hz).

HRMS (EI): Calculated for C₉H₉FO₃ [M]⁺: 184.0536; found: 184.0531.

methyl 2-chloro-3,5-dimethoxybenzoate(13). The title compound was obtained as a colorless oil from the reported chlorination method⁷ and purified by flash LC with ethyl acetate/ hexane. **¹H NMR (400 MHz, CDCl₃)** δ 6.84 (d, *J* = 2.8 Hz, 1H), 6.61 (d, *J* = 2.8 Hz, 1H), 3.92 (s, 3H), 3.88 (s, 3H), 3.81 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.50, 158.57, 156.35, 132.12, 113.94, 105.80, 102.80, 56.45, 55.69, 52.51.

HRMS (EI): Calculated for C10H11CIO4 [M]+: 230.0346; found: 230.0340.

methyl 2-fluoro-3,5-dimethoxybenzoate(**13-F**). The title compound was prepared from the same procedure as **11-F**. white solid was obtained (68 mg, 16%).

¹H NMR (400 MHz, CDCI3) δ 6.90 (dd, J = 4.5, 3.1 Hz, 1H), 6.69 (dd, J = 6.6, 3.1 Hz, 1H), 3.93 (s, 3H), 3.87 (s, 3H), 3.81 (s, 3H).

¹³C NMR (100 MHz, CDCI3) δ 164.99 (d, J = 3.3 Hz), 155.01 (d, J = 2.7 Hz), 149.12 (d, J = 12.3 Hz), 147.09 (d, J = 254.3 Hz), 118.76 (d, J = 8.7 Hz), 105.74 (d, J = 1.8 Hz), 104.05, 56.47, 55.75, 52.39. ¹⁹F NMR (376 MHz, CDCI3) δ -141.72 (dd, J = 6.4, 4.7 Hz).

HRMS (EI): Calculated for C10H11FO4 [M]+: 214.0641; found: 214.0636.

methyl 3-chloro-2,6-dimethoxybenzoate (14). The title compound was prepared from reported chlorination method⁷. The crude product was purified by silica gel column using ethyl acetate/ hexane (5% to 10%) to give the title compound as a white solid (190 mg, 83%).

¹**H NMR (400 MHz, CDCl**₃) δ 7.34 (d, *J* = 8.9 Hz, 1H), 6.64 (d, *J* = 8.9 Hz, 1H), 3.93 (s, 3H), 3.89 (s, 3H), 3.81 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 165.81, 155.84, 153.62, 131.51, 119.84, 119.48, 107.73, 61.97, 56.26, 52.62.

HRMS (EI): Calculated for C10H11CIO4 [M]+: 230.0346; found: 230.0342.

methyl 3-fluoro-2,6-dimethoxybenzoate (**14-F**). Follow the procedure to prepare compound **11-F**, the title compound was obtained as a colorless liquid (146 mg, 68%).

¹H NMR (400 MHz, CDCl₃) δ 7.06 (dd, *J* = 11.3, 9.1 Hz, 1H), 6.54 (dd, *J* = 9.1, 3.2 Hz, 1H), 3.94 (d, *J* = 2.1 Hz, 3H), 3.92 (s, 3H), 3.79 (s, 3H).

¹³C NMR (100 MHz, CDCI₃) & 165.64 (d, J = 3.4 Hz), 152.65 (d, J = 2.0 Hz), 149.50 (d, J = 241.0 Hz), 145.14 (d, J = 13.4 Hz), 118.58 (d, J = 2.4 Hz), 117.71 (d, J = 20.6 Hz), 105.78 (d, J = 7.2 Hz), 61.80 (d, J = 6.1 Hz), 56.34, 52.58.

19F NMR (376 MHz, CDCl₃) δ -139.63 - -139.75 (m)

HRMS (EI): Calculated for C₁₀H₁₁FO₄ [M]⁺: 214.0641; found: 214.0638.

1,5-dichloro-2,4-dimethoxybenzene (15). The title compound was prepared from reported procedure. Spectral data matched literature data⁹.

¹H NMR (400 MHz, CDCl₃) δ 7.34 (s, 1H), 6.52 (s, 1H), 3.90 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 154.50, 130.47, 113.99, 97.72, 56.49.

1-chloro-5-fluoro-2,4-dimethoxybenzene(**15-F**). The title compound prepared from reported literature chlorination method⁷. The crude solid product after work-up was purified by silica gel column using ethyl acetate/ hexane (5%) to give the title compound as a white solid (164 mg, 58%) from 1-fluoro-2,4-dimethoxybenzene (234 mg, 1.5 mmol).

¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, J = 10.6 Hz, 1H), 6.58 (d, J = 7.6 Hz, 1H), 3.90 (s, 3H), 3.88 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 151.53(d, J = 25 Hz), 146.72(d, J = 11 Hz), 146.38 (d, J = 240 Hz), 117.62 (d, J = 23 Hz), 113.06 (d, J = 8.8 Hz), 99.62 (d, J = 2.0 Hz), 56.88.

¹⁹F NMR (376 MHz, CDCl₃) δ -142.91 (dd, J = 10.6, 7.6 Hz).

HRMS (EI): Calculated for C₈H₈CIFO₂ [M]⁺: 190.0197; found: 190.0191.

1,5-dibromo-2,4-dimethoxybenzene (16). The title compound was prepared from reported procedure. Spectral data matched literature data¹⁰.

¹H NMR (400 MHz, CDCI₃) δ 7.63 (s, 1H), 6.47 (s, 1H), 3.89 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 156.14, 135.86, 102.39, 97.40, 56.51.

1-bromo-5-fluoro-2,4-dimethoxybenzene(16-F). Follow the reported method¹¹, the title compound was obtained as an off-white solid (225 mg, 64%) from 1-fluoro-2,4-dimethoxybenzene(234 mg, 1.5 mmol).

H NMR (400 MHz, CDCl₃) & 7.27 (d, *J* = 10.4 Hz, 1H), 6.56 (d, *J* = 7.4 Hz, 1H), 3.90 (s, 3H), 3.87 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 152.49 (d, J = 2.6), 147.35 (d, J = 11.4 Hz), 146.64(d, J = 241 Hz), 120.27 (d, J = 22.3 Hz), 100.72 (d, J = 8.1 Hz), 99.30, 56.92, 56.75 ¹⁹F NMR (376 MHz, CDCl₃) δ -142.78 - -143.13 (m).

HRMS (EI): Calculated for C₈H₈BrFO₂ [M]⁺: 190.0197; found: 190.0191.

1-chloro-2-isopropoxybenzene (**18**). Follow the preparation procedure of compound **2**, the title compound was obtained as a light-yellow liquid (380 mg, 75%) from 2-chlorophenol and 2-iodopropane.

¹H NMR (400 MHz, CDCl₃) & 7.36 (dd, J = 7.6, 1.6 Hz, 1H), 7.22-7.15 (m, 1H), 6.95 (dd, J = 8.4, 1.2Hz, 1H), 6.92-6.85 (m, 1H), 4.55 (septet, J = 6.0 Hz, 1H), 1.38 (d, J = 6.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 153.66, 130.40, 127.48, 124.30, 121.46, 116.13, 72.08, 22.05.

HRMS (EI): Calculated for C₉H₁₁CIO [M]⁺: 170.0498; found: 170.0490.

1-fluoro-2-isopropoxybenzene(**18-F**). Follow the preparation procedure of compound **2**, the title compound was obtained as a colorless liquid (403 mg, 87%) from 2-fluorophenol and 2-iodopropane.

¹**H NMR (400 MHz, CDCI**₃) δ 7.13 – 6.94 (m, 3H), 6.93 – 6.85 (m, 1H), 4.53 (hept, J = 6.1 Hz, 1H), 1.36 (d, J = 6.1 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 153.82 (d, J = 244 Hz), 145.81 (d, J = 10.3 Hz, 2H), 124.15 (d, J = 3.8 Hz), 121.39 (d, J = 7.0 Hz), 117.84 (d, J = 2.1 Hz), 116.37 (d, J = 18.9 Hz), 72.35, 22.07.
¹⁹F NMR (376 MHz, CDCl₃) δ -133.35 - -133.47 (m).

1-(tert-butoxy)-2-chlorobenzene(19-Cl). The title compound was prepared from the same procedure as compound 4-Cl starting with 2-chlorophenol. Colorless liquid (108 mg, 29%) was

obtained. Spectral data matched literature data¹².

¹H NMR (400 MHz, CDCl₃) δ 7.37 (dd, J = 8.0, 1.5 Hz, 1H), 7.20 – 7.08 (m, 2H), 6.99 (ddd, J = 7.9, 7.1, 1.9 Hz, 1H), 1.42 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 152.06, 130.27, 129.22, 127.02, 124.67, 123.94, 81.22, 28.89.

1-(tert-butoxy)-2-fluorobenzene(19-F). The title compound was prepared from the same procedure of compound **4-CI** from 2-fluorophenol. Colorless liquid (88 mg, 26%) was obtained. **1H NMR (400 MHz, CDCI₃)** δ 7.17 – 6.93 (m, 4H), 1.36 (d, J = 0.8 Hz, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 157.09 (d, J = 245.2 Hz), 142.72 (d, J = 11.6 Hz), 126.95 (d, J = 1.5 Hz), 124.42 (d, J = 7.3 Hz), 123.77 (d, J = 3.9 Hz), 116.43 (d, J = 20.2 Hz), 80.48, 28.46 (d, J = 1.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -127.05 – -127.20.

1-chloro-2-isopropoxy-4-methylbenzene (**20**). Follow the preparation procedure of compound **2**, the title compound was obtained as a colorless liquid (415 mg, 75%) from 2-chloro-5-methylphenol and 2-iodopropane.

¹**H NMR (400 MHz, CDCI₃)** δ 7.22 (d, J = 8.0 Hz, 1H), 6.77 (s, 1H), 6.70 (dd, J = 8.0, 1.1 Hz, 1H), 4.53 (hept, J = 6.1 Hz, 1H), 2.31 (s, 3H), 1.37 (d, J = 6.1 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 153.31, 137.5, 129.8, 122.25, 121.23, 117.16, 72.08, 22.09, 21.28.

HRMS (EI): Calculated for C₁₀H₁₃ClO [M]⁺: 184.0655; found: 184.0649.

1-fluoro-2-isopropoxy-4-methylbenzene(**20-F**). Follow the preparation procedure of compound **2**, the title compound was obtained as a colorless liquid (304 mg, 90%) from 2-fluoro-5-methylphenol and 2-iodopropane.

¹**H NMR (400 MHz, CDCI**₃) δ 6.94 (dd, J = 11.3, 8.2 Hz, 1H), 6.79 (dd, J = 8.0, 1.6 Hz, 1H), 6.72 - 6.64 (m, 1H), 4.51 (hept, J = 6.1 Hz, 1H), 2.29 (s, 3H), 1.35 (d, J = 6.1 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 151.97 (d, J = 242.4 Hz), 145.26 (d, J = 10.7 Hz), 133.81 (d, J = 3.9 Hz), 121.70 (d, J = 6.8 Hz), 118.69 (d, J = 1.9 Hz), 115.85 (d, J = 18.8 Hz), 72.35, 22.12, 21.01.
¹⁹F NMR (376 MHz, CDCl₃) δ -138.18 - -138.31 (m).

HRMS (EI): Calculated for C₁₀H₁₃FO [M]⁺: 168.0950; found: 168.0944.

1-chloro-4-methoxynaphthalene (**22**). To a solution of the 4-chloro-2-methylphenol (500 mg, 2.81 mmol, 1.0 equiv.) in acetone was added anhydrous potassium carbonate (776 mg, 5.62 mmol) follow by the iodomethane (875 μl, 14.05 mmol, 5 equiv.). The reaction was stirred under room temperature overnight. Solvent was removed under reduce pressure. The residue was then extracted with ethyl acetate and water. The organic phase was washed with water, NaOH solution (10%, w/w), water, saturated brine, dried with Na₂SO₄, filtered, and concentrated in vacuo to give the crude product which was then purified by silica gel column with ethyl acetate/ hexane (1/10) to afford the title compound in 85% yield (462 mg) as a colorless liquid. Spectral data matched literature data¹³.

¹H NMR (400 MHz, CDCl₃) δ 8.34 – 8.24 (m, 1H), 8.24 – 8.17 (m, 1H), 7.62 (ddd, J = 8.4, 6.9, 1.3 Hz, 1H), 7.54 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.46 (d, J = 8.2 Hz, 1H), 6.72 (d, J = 8.2 Hz, 1H), 3.99 (s, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 154.55, 131.25, 127.44, 126.56, 125.89, 125.72, 124.19, 123.16, 122.38, 103.77, 55.66.

1-chloro-4-isopropoxynaphthalene (23). To a solution of the 4-chloro-2-methylphenol (356 mg, 2 mmol, 1.0 equiv.) in DMF was added anhydrous potassium carbonate (552 mg, 4 mmol, 2 equiv.), follow by the 2-iodopropane (680 mg, 4 mmol, 2 equiv.). The reaction was stirred under room temperature overnight and then extracted with ethyl acetate and water. The organic phase was washed with water, NaOH solution (10%, w/w), water, saturated brine, dried with Na₂SO₄, filtered, and concentrated in vacuo to give the crude product which was then purified by silica gel column with ethyl acetate/ hexane (1/10) to afford the title compound in 70% yield (308 mg) as a colorless oil.

¹**H NMR (400 MHz, CDCI₃)** δ 8.37 – 8.27 (m, 1H), 8.24 – 8.15 (m, 1H), 7.60 (ddd, J = 8.4, 6.8, 1.3 Hz, 1H), 7.52 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.45 (d, J = 8.3 Hz, 1H), 6.75 (d, J = 8.3 Hz, 1H), 4.72 (hept, J = 6.0 Hz, 1H), 1.45 (d, J = 6.1 Hz, 7H).

¹³C NMR (100 MHz, CDCl₃) & 152.76, 131.50, 127.55, 127.31, 125.77, 125.69, 124.14, 122.76, 122.70, 106.26, 70.66, 22.00.

HRMS (EI): Calculated for C13H13CIO [M]+: 220.0655; found: 220.0649.

4-fluoronaphthalen-1-ol(23-F-i). The title compound was prepared from reported method¹⁴. **¹H NMR (400 MHz, CDCl₃)** δ 8.20 – 8.12 (m, 1H), 8.10-8.03 (m, 1H), 7.62 – 7.50 (m, 2H), 6.98 (dd, J = 10.2, 8.2 Hz, 1H), 6.71 (dd, J = 8.2, 4.0 Hz, 1H), 5.21 (br, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 153.19 (d, J = 243Hz), 147.31 (d, J = 3.1 Hz), 126.69 (d, J = 1.9 Hz), 126.17 (d, J = 0.6 Hz), 125.06 (d, J = 4.8 Hz), 124.36 (d, J = 18.2 Hz), 121.75 (d, J = 2.5 Hz), 120.52 (d, J = 4.5 Hz), 108.71 (d, J = 21.7 Hz), 107.47 (d, J = 8.0 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -132.40 (ddd, J = 10.2, 3.9, 1.8 Hz).

1-fluoro-4-isopropoxynaphthalene(**23-F**). Follow the preparation procedure of compound **23**, the title compound was obtained as a brown oil (134 mg, 66%) from 4-fluoronaphthalen-1-ol and 2-iodopropane.

¹**H NMR (400 MHz, CDCl**₃) δ 8.35-8.18 (m, 1H), 8.09 – 8.00 (m, 1H), 7.53 (pd, *J* = 6.9, 1.4 Hz, 2H), 7.03 (dd, *J* = 10.3, 8.4 Hz, 1H), 6.72 (dd, *J* = 8.4, 4.0 Hz, 1H), 4.68 (hept, *J* = 6.0 Hz, 1H), 1.44 (d, *J* = 6.1 Hz, 6H).

¹³**C** NMR (100 MHz, CDCl₃) δ 152.83 (d, J = 242 Hz), 149.74 (d, J = 3.0 Hz), 127.39 (d, J = 4.6 Hz,), 126.51 (d, J = 1.8 Hz), 125.91 (d, J = 0.5 Hz), 124.46 (d, J = 18.1 Hz), 122.48 (d, J = 2.4 Hz), 120.23 (d, J = 4.6 Hz), 108.62 (d, J = 21.4 Hz), 105.81 (d, J = 8.0 Hz, 12H), 71.01, 22.08.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -133.39 (ddd, J = 10.3, 3.9, 1.7 Hz).

HRMS (EI): Calculated for C₁₃H₁₃FO [M]⁺: 204.0950; found: 204.0946.

tert-butyl benzyl(4-fluorophenyl) carbamate (24). To a solution of tert-butyl (4-fluorophenyl)carbamate (211mg, 1mmol, 1equiv.) in DMF was added NaH (60% wt/wt, 60

mg, 1.5 mmol, 1.5 equiv.) at 0°C. The solution was stirred for additional 15 min. and benzyl bromide (143 μ l, 1.2 mmol, 1.2 equiv.) was then added. The reaction was warned to room temperature and stirred for 1h. The solution was then diluted with ethyl acetate and water. The organic phase was washed with water, saturated brine, dried over with Na₂SO₄, filtered and concentrated in vacuo to give the crude product which was purified by silica gel column with ethyl acetate/ hexane (1/20) as the eluant to give the title compound as a white solid (243 mg, 81%).

¹H NMR (400 MHz, CDCl₃) δ 7.34 - 7.23 (m, 3H), 7.23 - 7.18 (d, J = 6.8 Hz, 2H), 7.17 - 6.99 (s, 2H),
6.94 (t, J = 8.6 Hz, 2H), 4.79 (s, 2H), 1.42 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 160.59 (d, J = 245.2 Hz), 154.83, 138.60 (d, J = 2.5 Hz), 138.27, 128.50, 128.41, 127.59, 127.19, 115.39 (d, J = 22.5 Hz), 80.63, 54.03, 28.26.

¹⁹F NMR (376 MHz, CDCl₃) δ -116.33.

HRMS (EI): Calculated for C₁₈H₂₀FNO₂ [M]⁺: 301.1478; found: 301.1472.

tert-butyl (4-fluorophenyl)(phenyl)carbamate(25-F). The title compound was obtained from our reported method¹⁵.

¹**H NMR (400 MHz, CDCl**₃) δ 7.39 − 7.27 (m, 2H), 7.24 − 7.13 (m, 5H), 7.06 − 6.93 (m, 2H), 1.45 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 160.41 (d, J = 245.4 Hz), 153.76, 142.88, 139.00 (d, J = 3.2 Hz), 128.73, 128.67 (d, J = 8.4 Hz), 126.72, 125.67, 115.51 (d, J = 22.6 Hz), 81.29, 28.20.

19F NMR (376 MHz, CDCl₃) δ -116.61 (s).

tert-butyl (4-chlorophenyl)(phenyl)carbamate(25-Cl). To a solution of the 4-chloro-N-phenylaniline (102 mg, 0.5 mmol, 1.0 equiv.) and DMAP (61mg, 0.5 mmol, 1.0 equiv.) in toluene was added di-tert-butyl dicarbonate (131 mg, 0.6 mmol, 1.2 equiv.). The reaction was stirred under reflux for 1h and then extracted with ethyl acetate and water. The organic phase was washed with 1N HCl solution, saturated brine, dried with Na₂SO₄, filtered, and concentrated in vacuo to give the residue which was purified by silica gel chromatography using ethyl acetate/hexane (0 ~ 1/10) to afford the title compound as a white solid (140 mg, 92%). ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.28 (m, 2H), 7.28 – 7.23 (m, 2H), 7.22 – 7.10 (m, 5H), 1.44 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 153.54, 142.62, 141.64, 130.95, 128.83, 128.76, 127.99, 127.05, 125.95, 81.49, 28.20.

HRMS (EI): Calculated for C₁₇H₁₈CINO₂ [M]⁺: 303.1026; found: 303.1020.

N-(4-fluorophenyl)-N-phenylacetamide (26). To a solution of 4-fluoro-N-phenylaniline (187 mg, 1 mmol) in 5 ml acetic anhydride was added DMAP (122 mg, 1 mmol, 1equiv.). The solution was stirred under 100°C for 5h. The solution was poured into water and extracted with ethyl acetate. The organic phase was separated and washed with water, 10% (w/w) NaOH solution, saturated brine, dried with Na₂SO₄, filtered, and concentrated in vacuo to give the crude product which was purified by silica gel chromatography using ethyl acetate/hexane (3/10) to afford the title compound as a light-yellow oil (190 mg, 83%). Spectral data matched literature data¹⁶.

¹H NMR (400 MHz, CDCl₃) δ 7.54 – 6.88 (m, 9H), 2.06 (s, 3H).

¹³C NMR (125 MHz, CDCl₃, 55 °C) δ 170.17, 160.96 (d, *J* = 243.7 Hz), 143.08, 139.07, 131.19 – 125.21 (m), 115.87, 23.63 – 23.28 (m).

¹⁹F NMR (376 MHz, CDCl₃) δ -113.24, -115.98.

N-(4-fluorophenyl)-N-phenylbenzamide (27). To a solution of 4-fluoro-N-phenylaniline (94 mg, 0.5 mmol, 1 equiv.) in DCM were added pyridine (40 μ l, 1 mmol, 2 equiv.) and benzoyl chloride (70 μ l, 0.6 mmol, 1.2 equiv.) sequentially. The solution was stirred under room temperature for 3h. The mixture was then extracted with ethyl acetate and water. The organic phase was washed with water, 1N HCl solution, 10% NaOH solution, saturated brine, dried with Na₂SO₄, filtered, and concentrated in vacuo to give the crude product which was purified by stirring in ethyl acetate/ hexane (1/20). The title compound was obtained as an off-white solid after filtration (118 mg, 81%).

¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.40 (m, 2H), 7.32 – 7.26 (m, 2H), 7.24 – 7.17 (m, 3H), 7.17 – 7.09 (m, 4H), 7.05 – 6.93 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) & 170.58, 160.72 (d, J = 246.8 Hz), 143.76, 139.83 (d, J = 3.1 Hz), 135.81, 130.24, 129.17, 129.08, 129.02, 128.93, 127.90, 127.37, 126.44, 116.00 (d, J = 22.8 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -115.36.

HRMS (EI): Calculated for C₁₉H₁₄FNO [M]⁺: 291.1059; found: 291.1056.

tert-butyl 3-fluoro-9H-carbazole-9-carboxylate(28-F). The title compound was obtained from reported method¹⁵.

¹**H NMR (400 MHz, CDCl₃)** δ 8.40 – 8.20 (m, 2H), 7.92 (dd, *J* = 7.7, 0.6 Hz, 1H), 7.61 (dd, *J* = 8.3, 2.6 Hz, 1H), 7.49 (ddd, *J* = 8.5, 7.3, 1.2 Hz, 1H), 7.35 (ddd, *J* = 8.2, 7.5, 0.8 Hz, 1H), 7.18 (td, *J* = 9.0, 2.7 Hz, 1H), 1.77 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) & 159.26 (d, J = 240.6 Hz), 150.87, 139.14, 134.65 (d, J = 1.1 Hz), 127.63, 126.84 (d, J = 9.5 Hz), 125.09 (d, J = 3.6 Hz), 122.99, 119.76, 117.31 (d, J = 8.6 Hz), 116.41, 114.25 (d, J = 24.2 Hz), 105.54 (d, J = 23.9 Hz), 84.09, 28.36.

¹⁹F NMR (376 MHz, CDCl₃) δ -120.23 (td, J = 8.7, 4.6 Hz, 1H).

tert-butyl 3-chloro-9H-carbazole-9-carboxylate(**28-CI**). The title compound was prepared as a white solid from the same procedure of compound **28-F** starting with 3-chloro-9H-carbazole which was synthesized from reported procedure¹⁷.

¹H NMR (400 MHz, CDCl₃) δ 8.26 (dd, J = 14.0, 8.7 Hz, 2H), 7.96 – 7.89 (m, 2H), 7.53 – 7.46 (m, 1H),
7.41 (dd, J = 8.9, 2.2 Hz, 1H), 7.36 (td, J = 7.8, 0.8 Hz, 1H), 1.76 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 150.81, 138.86, 136.86, 128.56, 127.74, 127.09, 126.98, 124.66, 123.21, 119.75, 119.36, 117.36, 116.37, 84.32, 28.36.

HRMS (EI): Calculated for C₁₂H₈NCI [M]⁺: 201.0345; found: 201.0340.

3,3-dibenzyl-5-fluoroindolin-2-one(29-i). To a solution of 5-fluoroindolin-2-one (302 mg, 2 mmol, 1 equiv.) in DMF was added NaH (60% wt/wt, 160 mg, 4 mmol, 2 equiv.) at 0℃. The solution

was stirred for additional 30 min and benzyl bromide were (475 μ l, 4 mmol, 2 equiv.) then added. The reaction was warned to room temperature and stirred overnight. The reaction solution was poured into water. The crude solid product was collected by filtration and then stirred in hexane to get the intermediate which was used directly in the next step without further purification (419 mg, 63%).

¹H NMR (400 MHz, DMSO-d6) δ 9.95 (s, 1H), 7.43 (dd, J = 8.6, 2.5 Hz, 1H), 7.06 – 7.01 (m, 6H), 6.91
– 6.84(m, 4H), 6.75 (td, J = 9.7, 2.6 Hz, 1H), 6.30 (dd, J = 8.4, 4.4 Hz, 1H), 3.25 – 3.13 (m, 4H).

¹³C NMR (100 MHz, DMSO-d6) & 179.81, 157.92 (d, J = 235.8 Hz), 138.22 (d, J = 1.7 Hz), 136.40, 132.84 (d, J = 8.3 Hz), 129.89, 127.89, 126.67, 114.08 (d, J = 23.3 Hz), 112.69 (d, J = 24.5 Hz), 109.68 (d, J = 8.2 Hz), 57.30 (d, J = 1.7 Hz), 43.04.

¹**⁹F NMR (376 MHz, DMSO-d6)** δ -122.01 – -122.15 (m).

HRMS (EI): Calculated for C₂₂H₁₈FNO [M]⁺: 331.1372; found: 331.1369.

1,3,3-tribenzyl-5-fluoroindolin-2-one (29). To a solution of 5-fluoroindolin-2-one (166 mg, 0.5 mmol, 1equiv.) in DMF was added NaH (60% wt/wt, 30 mg, 0.75 mmol, 1.5 equiv.) at 0°C. The solution was stirred for additional 15 min and benzyl bromide were (71 μ l, 0.6 mmol, 1.2 equiv.) then added. The reaction was warned to room temperature and stirred for 2 h. The reaction solution was extracted with ethyl acetate and water. The organic phase was washed with water, saturated brine, dried over with Na₂SO₄, filtered and concentrated in vacuo to give the crude solid product which was washed with hexane to get the title compound as a light-yellow solid (125 mg, 60%).

¹H NMR (400 MHz, CDCl₃) δ 7.19 – 7.00 (m, 5H), 7.00 – 6.92 (m, 2H), 6.69 – 6.61 (m, 0H), 6.37 (d, J = 7.4 Hz, 1H), 6.03 (dd, J = 8.5, 4.2 Hz, 0H), 4.54 (d, J = 29.1 Hz, 1H), 3.42 (d, J = 13.0 Hz, 1H), 3.22 (d, J = 13.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) & 177.78, 158.68 (d, J = 240.1 Hz), 138.80 (d, J = 1.9 Hz), 135.53, 134.72, 131.97 (d, J = 7.8 Hz), 130.12, 128.44, 127.86, 126.97, 126.64, 126.24, 114.11 (d, J = 23.4 Hz), 112.00 (d, J = 24.5 Hz), 109.48 (d, J = 8.1 Hz), 56.98 (d, J = 1.7 Hz), 43.62, 43.13.

¹**⁹F NMR (376 MHz, CDCl**₃) δ -121.00 – -121.18 (m).

HRMS (EI): Calculated for C₂₉H₂₄FNO [M]⁺: 421.1842; found: 421.1838.

5-fluoro-2,3,3-trimethyl-3H-indole(30-F). The title compound was prepared from reported procedure. Spectra data were in agreement with literature values¹⁸.

¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.40 (m, 1H), 7.00 – 6.92 (m, 2H), 2.24 (s, 3H), 1.28 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) & 187.62 (d, J = 3.5 Hz), 161.12 (d, J = 243.6 Hz), 149.57 (d, J = 2.2 Hz), 147.55 (d, J = 8.5 Hz), 120.40 (d, J = 8.8 Hz), 114.01 (d, J = 23.6 Hz), 108.99 (d, J = 24.3 Hz), 54.09 (d, J = 2.2 Hz), 22.94 15.32.

1% F NMR (376 MHz, CDCl₃) δ -117.75 (††, J = 17.0, 8.5 Hz).

4-fluoro-1-methyl-1H-indazole (**31**). The title compound was prepared according to a published procedure; Spectra data were in agreement with literature values¹⁹.

¹**H NMR (400 MHz, CDCl**₃) δ 8.04 (s, 1H), 7.36 – 7.23 (m, 1H), 7.15 (d, *J* = 8.4 Hz, 1H), 6.85 – 6.72 (m, 1H), 4.07 (d, *J* = 0.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 155.80 (d, J = 252.3 Hz), 142.48 (d, J = 9.4 H), 129.15 (d, J = 2.0 Hz), 127.09 (d, J = 7.7 Hz), 114.29 (d, J = 23.4 Hz), 104.93 (d, J = 4.2 Hz), 104.65 (d, J = 18.6 Hz), 35.79.
¹⁹F NMR (376 MHz, CDCl₃) δ -118.13 (dd, J = 10.0, 4.9 Hz).

7-fluoro-1-methyl-1H-indazole (**32**). The title compound was prepared from a reported literature method. Spectra data were in agreement with literature values²⁰.

¹**H NMR (400 MHz, CDCl**₃) δ 7.96 (d, J = 2.4 Hz, 1H), 7.46 (dd, J = 6.2, 2.7 Hz, 1H), 7.06 – 6.97 (m, 2H), 4.26 (d, J = 0.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 148.57 (d, J = 246.8 Hz,), 133.08 (d, J = 1.3 Hz), 129.45 (d, J = 12.8 Hz), 128.00 (d, J = 4.3 Hz), 120.88 (d, J = 5.5 Hz), 116.69 (d, J = 4.3 Hz), 110.70 (d, J = 17.1 Hz), 38.20 (d, J = 4.3 Hz).

¹⁹**F NMR (376 MHz, CDCl**₃) δ -135.16 – -135.26 (m).

6-fluoro-1,3-dihexylquinazoline-2,4(1H,3H)-dione (34). The title compound was prepared from our reported method²¹.

¹**H NMR (400 MHz, CDCl**₃) δ 7.89 (dd, J = 8.2, 3.1 Hz, 1H), 7.37 (ddd, J = 9.2, 7.6, 3.1 Hz, 1H), 7.14 (dd, J = 9.2, 4.0 Hz, 1H), 4.20 – 3.91 (m, 4H), 1.76 – 1.59 (m, 4H), 1.48 – 1.20 (m, 12H), 0.95 – 0.81 (m, 6H).

¹³**C NMR (100 MHz, CDCl₃)** δ 160.78 (d, *J* = 2.8 Hz), 158.03 (d, *J* = 244.1 Hz), 150.34, 136.20 (d, *J* = 1.9 Hz), 122.52 (d, *J* = 23.9 Hz), 117.01 (d, *J* = 7.6 Hz), 115.37 (d, *J* = 7.4 Hz), 114.50 (d, *J* = 24.0 Hz), 44.03, 42.13, 31.46, 31.42, 27.68, 27.22, 26.61, 26.42, 22.53, 22.52, 14.00, 13.95.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -119.70 (td, *J* = 7.9, 4.0 Hz).

3-fluoro-2,6-dimethoxypyridine(35-F). To a solution of 2,3,6-trifluoropyridine (266 mg, 2 mmol, 1 equiv.) in anhydrous DMF was added sodium methoxide (648 mg, 12 mmol, 6 equiv.). The solution was stirred at 80°C under N₂ overnight. The reaction was then extracted with ethyl acetate and water. The organic phase was with water, saturated brine, dried over with Na₂SO₄, filtered and concentrated in vacuo to give the title compound as a pale-yellow liquid. (Product is volatile)

¹H NMR (400 MHz, CDCI₃) δ 7.28 (dd, *J* = 9.5, 8.5 Hz, 1H), 6.20 (dd, *J* = 8.4, 2.0 Hz, 1H), 4.00 (s, 3H), 3.88 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 157.70, 150.58, 141.95 (d, *J* = 244.5 Hz), 126.49 (d, *J* = 18.0 Hz), 99.93 (d, *J* = 2.3 Hz), 53.92, 53.59.

¹⁹F NMR (376 MHz, CDCl₃) δ -153.92 (dd, J = 9.6, 1.8 Hz).

HRMS (EI): Calculated for C7H8FNO2 [M]+: 157.0539; found: 157.0534.

N-(4-fluorophenyl) quinazolin-4-amine (37-i). To a solution of 4-chloroquinazoline (2 mmol, 329.2 mg) in EtOH were added 4-fluoroaniline (3 mmol, 333.4 mg, 1.5 equiv.) and potassium carbonate (4 mmol, 553 mg, 2 equiv.). The mixture was stirred under room temperature for 3 h. Water was then added to the reaction solution and solid precipitated. The title compound was obtained as a gray solid after filtration (427 mg, 89%) and used without further purification.

¹H NMR (400 MHz, CDCl₃) δ 8.74 (s, 1H), 7.95 – 7.85 (m, 2H), 7.86 – 7.73 (m, 1H), 7.72 – 7.61 (m, 2H), 7.61 – 7.49 (m, 2H), 7.17 – 7.06 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) & 159.76 (d, J = 244.5 Hz), 157.69, 154.89, 149.94, 133.96 (d, J = 2.9 Hz), 133.02, 128.97, 126.70, 124.15 (d, J = 8.0 Hz), 120.28, 115.85 (d, J = 22.6 Hz), 114.93.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -110.98 – -125.54 (m).

HRMS (EI): Calculated for C14H9FN3 [M]+: 238.0781; found: 238.0775.

N-(4-fluorophenyl)-N-(quinazolin-4-yl) acetamide (37). Follow the literature procedure²², the title compound was obtained as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 9.24 (s, 1H), 8.11 (d, J = 8.4 Hz, 1H), 8.07 – 7.98 (m, 1H), 7.93 (ddd, J = 8.4, 7.0, 1.4 Hz, 1H), 7.67 (ddd, J = 8.2, 7.0, 1.1 Hz, 1H), 7.46 – 7.36 (m, 2H), 7.14 – 7.04 (m, 2H), 2.17 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) & 171.07, 162.07, 161.79 (d, J = 248.7 Hz), 154.82, 152.75, 136.83 (d, J = 3.3 Hz), 134.39, 129.60 (d, J = 8.7 Hz), 129.14, 128.73, 124.70, 121.64, 116.49 (d, J = 22.8 Hz), 23.58.

¹⁹F NMR (376 MHz, CDCl₃) δ -112.95.

HRMS (EI): Calculated for C₁₆H₁₂FN₃O [M]⁺: 281.0964; found: 281.0959.

4-(4-fluorophenoxy) quinazoline (38). To a solution of 4-chloroquinazoline (329 mg, 2 mmol, 1 equiv.) in DMSO were added 4-flurorophenol (448 mg, 4 mmol, 2 equiv.) and anhydrous potassium carbonate (553 mg, 4 mmol, 2 equiv.). The mixture was stirred at 150° C for 2 h. Water and ethyl acetate were added to the reaction. The organic phase was separated and washed with water, 10% (w/w) NaOH solution, saturated brine, dried with Na₂SO₄, filtered, and concentrated in vacuo to give the residue which was purified by silica gel chromatography using ethyl acetate/ hexane (1/5 to 1/2) to afford the title compound as a white solid (394 mg, 82%).

¹H NMR (400 MHz, CDCl₃) δ 8.77 (s, 1H), 8.38 (dd, J = 8.3, 0.8 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H),
7.93 (ddd, J = 8.4, 7.0, 1.4 Hz, 1H), 7.68 (ddd, J = 8.2, 7.0, 1.1 Hz, 1H), 7.27 - 7.21 (m, 2H), 7.21 7.12 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 166.91, 160.32 (d, J = 244.6 Hz), 154.10, 151.68, 148.06 (d, J = 2.9 Hz,), 134.20, 127.81 (d, J = 28.6 Hz), 123.51, 123.36, 123.28, 116.48 (d, J = 23.6 Hz), 116.31.

19F NMR (376 MHz, CDCl₃) δ -106.15 – -121.21 (m).

HRMS (EI): Calculated for C14H9FN2O [M]⁺: 240.0699; found: 240.0670.

1-bromo-5-chloro-2,4-dimethoxybenzene (39). The title compound was prepared from reported procedure. Spectral data matched literature data¹¹.

¹H NMR (400 MHz, CDCl₃) δ 7.51 (s, 1H), 6.51 (s, 1H), 3.91 (s, 3H), 3.90 (s, 3H).

1-bromo-2-chloro-3,5-dimethoxybenzene (40). The title compound was prepared from the reported literature. Spectral data matched literature data⁷.

¹H NMR (400 MHz, CDCl₃) δ 6.78 (d, *J* = 2.7 Hz, 1H), 6.46 (d, *J* = 2.7 Hz, 1H), 3.87 (s, 3H), 3.79 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) & 158.96, 156.54, 123.60, 115.36, 109.41, 99.24, 56.43, 55.75.

1-bromo-2-fluoro-3,5-dimethoxybenzene(40-F). To a solution of 1-bromo-3,5-dimethoxybenzene (434 mg, 2 mmol) in acetonitrile was added selectfluor (779 mg, 2.2 mmol, 1.1 equiv.) at -40°C. The reaction was stirred at -40°C for 0.5 h and then stirred overnight at room temperature. The organic phase was washed with water, saturated brine, dried over with Na₂SO₄, filtered and concentrated in vacuo to give the crude product which was purified by flash LC with ethyl acetate / hexane (1/20) as the eluant to give the title compound as a colorless oil (178 mg, 38%).

¹**H NMR (400 MHz, CDCI**₃) δ 6.59 (dd, *J* = 4.6, 2.9 Hz, 1H), 6.47 (dd, *J* = 6.6, 2.9 Hz, 1H), 3.86 (s, 3H), 3.76 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) & 155.86 (d, J = 3.0 Hz), 148.86 (d, J = 12.6 Hz), 144.63 (d, J = 237.8 Hz), 109.23 (d, J = 19.5 Hz), 107.54 (d, J = 0.9 Hz), 100.63 (d, J = 0.6 Hz), 56.42, 55.87.

¹⁹F NMR (376 MHz, CDCl₃) δ -138.80 (dd, J = 6.5, 4.6 Hz).

HRMS (EI): Calculated for C₈H₈BrFO₂ [M]+: 233.9692; found: 233.9691

1-chloro-4-(2-(2-chloroethoxy) ethoxy) benzene (41). To a solution of the 4-chlorophenol (514 mg, 4 mmol, 1.0 equiv.) in DMF was added anhydrous potassium carbonate (1.1g, 8 mmol, 2.0

equiv.) follow by the 1-1-chloro-2-(2-chloroethoxy) ethane (572 mg, 4 mmol, 1 equiv.). The reaction was heated to 100 °C and stirred overnight. The reaction was cooled to room temperature and then extracted with ethyl acetate and water. The organic phase was washed with water, NaOH solution (10%, w/w), water, saturated brine, dried with Na₂SO₄, filtered, and concentrated in vacuo to give the crude product which was purified by flash LC using hexane/ ethyl acetate (0% to 5%) as a colorless oil (581mg, 62%).

¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.20 (m, 2H), 6.89 – 6.81 (m, 2H), 4.11 (dd, J = 5.4, 4.1 Hz, 2H),
3.87 (dd, J = 5.4, 4.1 Hz, 2H), 3.82 (t, J = 5.9 Hz, 2H), 3.65 (t, J = 5.8 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 157.22, 129.23, 125.75, 115.86, 71.47, 69.60, 67.67, 42.64.

HRMS (EI): Calculated for C10H12Cl2O2 [M]+: 234.0214; found: 234.0210

1-chloro-4-(2-(2-chloroethoxy) ethoxy) benzene(41-F). The title compound was obtained as a colorless oil (548 mg, 63%) from the same preparation procedure of the compound 41 staring with 4-fluorophenol.

¹**H NMR (400 MHz, CDCl**₃) δ 7.00 – 6.91 (m, 2H), 6.91 – 6.81 (m, 2H), 4.11 – 4.05 (m, 2H), 3.87 – 3.83 (m, 2H), 3.81 (t, *J* = 5.8 Hz, 2H), 3.65 (t, *J* = 5.9 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) & 157.36 (d, J = 238.5 Hz), 154.77 (d, J = 2.1 Hz), 115.80 (d, J = 17.6 Hz), 115.64 (d, J = 2.4 Hz), 71.53, 69.78, 68.10, 42.68.

¹⁹F NMR (376 MHz, CDCl₃) δ -123.69 - -123.81 (m).

HRMS (EI): Calculated for C₁₀H₁₂CIFO₂ [M]⁺: 218.0510 found: 218.0504

2-(4-chlorophenoxy) ethyl 4-methylbenzenesulfonate (**41-F-a**). To a solution of 2-(4-chlorophenoxy) ethyl 4-methylbenzenesulfonate (164 mg, 0.5 mmol, 1 equiv.) in DMF were added NaOH (49 mg, 1.5 mmol, 3 equiv.) and 2-fluoroethanol (87 μ l, 1.5 mmol, 3 equiv.). The reaction was stirred under 100°C for 1h and then extracted with ethyl acetate and water. The organic phase was washed with water, NaOH solution (10%, w/w), water, saturated brine, dried with Na₂SO₄, filtered, and concentrated in vacuo to give the residue which was purified by silica gel chromatography using ethyl acetate/ hexane (10%) as the eluent to afford the title compound as a colorless oil (72 mg, 66%).

¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.20 (m, 2H), 6.88 – 6.81 (m, 2H), 4.69 – 4.58 (m, 1H), 4.56 – 4.49 (m, 1H), 4.11 (dd, J = 5.4, 4.1 Hz, 2H), 3.90 – 3.86 (m, 2H), 3.86 – 3.83 (m, 1H), 3.73 – 3.80 (m, 1H).
¹³C NMR (100 MHz, CDCl₃) δ 157.30, 129.27, 125.78, 115.90, 83.11 (d, J = 169.1 Hz), 70.58 (d, J = 19.6 Hz), 69.81, 67.74.

¹⁹F NMR (376 MHz, CDCl₃) δ -222.74 - -223.15 (m).

HRMS (EI): Calculated for C10H12CIFO2 [M]+: 218.0510 found: 218.0505

2,5-dichloro-N-(4-fluorophenyl) pyrimidin-4-amine (**42-i**). To a solution of 2,4,5trichloropyrimidine (1.1 g, 6 mmol, 1.2 equiv.) in ethanol were added potassium carbonate (1.04 g, 7.5 mmol, 1.5 equiv.) and 4-fluoroaniline (555 mg, 5 mmol, 1 equiv.). The mixture was stirred under room temperature for 3 h and then extracted with ethyl acetate and water. The organic phase was washed with 1N HCl solution, saturated brine, dried with Na₂SO₄, filtered, and concentrated in vacuo to give the crude solid which was washed with ethyl acetate/ hexane (1/10) to give the title compound as an off-white solid after filtration (848 mg, 66%).

¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 7.63 – 7.50 (m, 2H), 7.20 (br,1H), 7.14 – 7.05 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) & 159.95 (d, J = 245.2 Hz), 158.26, 156.47, 154.64, 132.67 (d, J = 3.0 Hz), 123.29 (d, J = 8.1 Hz), 115.96 (d, J = 22.8 Hz), 113.57.

¹⁹F NMR (376 MHz, CDCl₃) δ -115.03 - -117.87 (m).

tert-butyl (2,5-dichloropyrimidin-4-yl) (4-fluorophenyl) carbamate (42). To a solution of the 2,5dichloro-N-(4-fluorophenyl) pyrimidin-4-amine (129 mg, 0.5 mmol, 1 equiv.) in THF was added DMAP (61 mg, 0.5 mmol, 1 equiv.) and followed by the addition of Boc₂O (218 mg, 1 mmol, 2 equiv.). The solution was stirred under room temperature for 2 h. After the solvent was removed, the residue was extracted with ethyl acetate and water. The organic phase was washed with water, 1N HCl solution, saturated brine, dried with Na₂SO₄, filtered, and concentrated in vacuo to give the title compound (146 mg, 82%) as a solid which was used without further purification. **1H NMR** (400 MHz, CDCl₃) δ 8.61 (s, 1H), 7.30 – 7.24 (m, 12), 7.11 – 7.01 (m, 2H), 1.46 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) & 161.65 (d, J = 248.0 Hz), 159.97, 158.43, 151.52, 135.08 (d, J = 3.2 Hz), 129.44 (d, J = 8.7 Hz), 126.97, 116.07 (d, J = 22.9 Hz), 83.66, 27.92.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -113.50 – -113.63 (m).

HRMS (EI): Calculated for C15H14Cl2FN3O2 [M]+: 357.0447 found: 357.0443

Ethyl 2-(4-fluorophenoxy)-2-methylpropanoate (**43-F**). The title compound was prepared from reported procedure²³.

¹H NMR (400 MHz, CDCl₃) δ 6.95-6.88, (m, 2H), 6.79-6.87 (m, 2H), 4.22 (q, J = 7.2 Hz, 2H), 3.94 (s, 3H), 1.46(s, 6H), 1.26(t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCI₃) & 174.01,158.31 (d, J =239 Hz), 151.27 (d, J = 2.5 Hz), 121.25 (d, J = 8.1 Hz), 115.53 (d, J = 22.9 Hz), 79.71, 61.40, 25.25, 14.05.

¹⁹F NMR (376 MHz, CDCl₃) δ -121.42 (ddd, J = 14.7, 8.3,4.6 Hz).

(R)-tert-butyl methyl(3-phenyl-3-(o-tolyloxy) propyl) carbamate(44-i). To the solution of atomoxetine hydrochloride (292 mg, 1mmol, 1 equiv.) in dichloromethane were added DIPEA (435 µl, 2.5 mmol, 2.5 equiv.) and DMAP (12.2 mg, 0.1 mmol, 0.1 equiv.) follow by the addition of Boc₂O (262 mg, 1.2 mmol, 1.2 equiv.). The reaction was stirred under room temperature overnight. The reaction was extracted with ethyl acetate and water. The organic phase was washed with 1N HCl, water, saturated brine, dried over with Na₂SO₄, filtered and concentrated in vacuo to give the product as a colorless oil (quantitative yield) which used in the next step without further purification.

¹**H NMR (400 MHz, CDCl**₃) 6 7.42 – 7.27(m, 4H), 7.26-7.21 (m, 1H), 7.11 (d, *J* = 7.3 Hz, 1H), 6.95 – 6.90 (m, 1H), 6.77 (†, *J* = 7.1 Hz, 1H), 6.57 (d, *J* = 8.2 Hz, 1H), 5.15 (d, *J* = 4.4 Hz, 1H), 3.44 (s, 2H), 2.84 (s, 3H), 2.34 (s, 3H), 2.27 – 1.97 (m, 2H), 1.38 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) & 155.76, 141.78, 130.57, 128.63, 127.49, 126.85, 126.53, 125.58, 120.21, 112.50, 79.33, 77.20, 45.97, 37.30, 34.41, 28.34, 16.52.

HRMS (ESI): Calculated for C₂₂H₃₀NO₃ (M+H)+: 356.2220; found: 356.2216

tert-butyl (R)-(3-(4-chloro-2-methylphenoxy)-3-phenylpropyl) (methyl)carbamate (44). Follow the reported method¹⁷, the title compound was purified as a colorless oil (323 mg, 83%) by silica gel column using ethyl acetate/ hexane (1/20).

¹H NMR (400 MHz, CDCl₃) δ 7.36 − 7.21 (m, 5H), 7.08 (d, J = 2.2 Hz, 1H), 6.89 (dd, J = 8.7, 2.6 Hz, 1H), 6.47 (d, J = 8.7 Hz, 1H), 5.10 (d, J = 4.2 Hz, 1H), 3.44 (s, 2H), 2.84 (s, 3H), 2.30 (s, 3H), 2.25 − 2.02 (m, 2H), 1.37 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) 6 155.71, 154.33, 141.23, 130.35, 128.73, 127.72, 126.13, 125.56, 124.91, 113.64, 79.40, 77.20, 45.88, 37.20, 34.43, 28.34, 16.40.

HRMS (ESI): Calculated for C₂₂H₂₉CINO₃ (M+H)+: 390.1830; found: 390.1826

tert-butyl (3-(4-fluoro-2-methylphenoxy)-3-phenylpropyl) (methyl)carbamate (44-F). To a solution of tert-butyl (3-chloro-3-phenylpropyl) (methyl)carbamate (284 mg, 1 mmol, 1 equiv.) in DMF were added 4-fluoro-2-methylphenol (256 mg, 2 mmol, 2 equiv.) and potassium carbonate (276 mg, 2 mmol, 2 equiv.). The reaction was stirred under 100°C overnight and then extracted with ethyl acetate and water. The organic phase was washed with water, NaOH solution (10%, w/w), water, saturated brine, dried with Na₂SO₄, filtered, and concentrated in vacuo to give residue which was purified by silica gel chromatography with ethyl acetate/hexane (1/20) to afford the title compound as a colorless oil (82 mg, 22%).

¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.21 (m, 5H), 6.83 (dd, J = 8.9, 2.8 Hz, 1H), 6.61 (td, J = 8.5, 3.0 Hz, 1H), 6.47 (dd, J = 8.8, 4.6 Hz, 1H), 5.07 (dd, J = 8.3, 3.8 Hz, 1H), 3.44 (br, 2H), 2.84 (s, 3H), 2.31 (s, 3H), 2.24 – 1.98 (m, 2H), 1.37 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 156.62 (d, J = 236.7 Hz), 155.72, 151.80, 141.47, 128.68, 127.65, 125.62, 117.23 (d, J = 22.5 Hz), 113.22, 112.15 (d, J = 22.4Hz), 79.37, 77.20, 45.90, 37.17, 34.36, 28.33, 16.59.
¹⁹F NMR (376 MHz, CDCl₃) δ -124.73.

HRMS (ESI): Calculated for C₂₂H₂₉FNO₃ (M+H)+: 374.2126; found: 374.2121

methyl 2-(2-fluoro-[1,1'-biphenyl]-4-yl) propanoate (**45**). The title compound was prepared from reported procedure. Spectral data matched literature data²⁴.

¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.52 (m, 2H), 7.49 – 7.34 (m, 4H), 7.20 – 7.12 (m, 2H), 3.79 (q, J

= 7.2 Hz, 1H, 3.72 (s, 3H), 1.56 (d, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) & 174.35, 159.62 (d, J = 248.4 Hz), 141.75 (d, J = 7.7 Hz), 135.42 (d, J = 1.2 Hz), 130.76 (d, J = 4.0 Hz), 128.87 (d, J = 2.9 Hz), 128.37, 127.78 (d, J = 13.5 Hz), 127.59, 123.46 (d, J = 3.3 Hz), 115.17 (d, J = 23.7 Hz), 52.12, 44.84 (d, J = 1.3 Hz), 18.37.

¹⁹F NMR (376 MHz, CDCl₃) δ -117.51 – -117.62 (m, 1H).

methyl 2',4'-difluoro-4-methoxy-[1,1'-biphenyl]-3-carboxylate (**46**). The title compound was obtained as a white solid from reported procedure²⁵. Spectral data matched literature data.

1**H NMR (400 MHz, CDCl₃)** δ 7.93 (dd, J = 2.2, 1.0 Hz, 1H), 7.64 – 7.58 (m, 1H), 7.38 (td, J = 8.7, 6.5 Hz, 1H), 7.05 (d, J = 8.7 Hz, 1H), 6.98 – 6.85 (m, 2H), 3.95 (s, 3H), 3.90 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.34, 162.15 (dd, J = 249.0, 11.9 Hz), 159.63 (dd, J = 250.2, 11.8 Hz), 158.67, 133.83 (d, J = 3.4 Hz), 132.01 (d, J = 2.4 Hz), 131.08 (dd, J = 9.4, 4.8 Hz), 126.90 (d, J = 1.2 Hz), 123.93 (dd, J = 13.7, 3.9 Hz), 120.11, 112.13, 111.58 (dd, J = 21.1, 3.8 Hz), 104.35 (dd, J = 26.6, 25.3 Hz), 56.13, 52.11.

¹⁹F NMR (376 MHz, CDCl₃) δ -111.42 (dt, J = 15.4, 7.7 Hz, 1H), -113.74 (dd, J = 17.5, 8.8 Hz, 1H).

tert-butyl (2-fluoro-4,5-dimethoxyphenethyl) carbamate (47-F). To a 25 ml round bottom flask with stir bar was added 2-(2-fluoro-4,5-dimethoxyphenyl) ethan-1-amine (173 mg, 0.87 mmol, 1 equiv.) prepared from reported literature²⁶ and triethylamine (176 mg, 1.74 mmol, 2 equiv.) dissolved in dichloromethane. The flask was sealed with a rubber septum and cooled to 0°C for 5 minutes, di-tert-butyl decarbonate (228 mg, 1.04 mmol, 1.2 equiv.) was then added. The reaction was stirred at 0 °C for 15 minutes, then warmed to room temperature and stirred overnight. The reaction was quenched with brine and diluted with dichloromethane. After separation, the aqueous layer was extracted with dichloromethane. The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. The title compound was isolated as a brown solid (165.4 mg, 64%).

¹H NMR (400 MHz, CDCl₃) δ 6.65 (d, J = 6.8 Hz, 1H), 6.61 (d, J = 11.0 Hz, 1H), 4.58 (s, 1H), 3.89 – 3.74 (m, 6H), 3.33 (q, J = 6.0 Hz 2H), 2.76 (†, J = 7.0 Hz, 2H), 1.42 (s, 9H).

¹³C NMR (100 MHz, CDCI₃) & 156.34, 154.92 (d, J = 189.0 Hz), 148.31 (d, J = 9.2 Hz), 145.09 (d, J = 2.6 Hz), 116.13 (d, J = 17.6 Hz), 113.12 (d, J = 6.6 Hz), 100.09 (d, J = 28.5 Hz), 79.22, 56.25 (d, J = 28.9 Hz), 40.77, 29.20, 28.38.

¹⁹F NMR (376 MHz, CDCl₃) δ -125.86 - -126.21 (m).
 HRMS (ESI): Calculated for C₁₀H₁₅FNO₂ (M+H)+: 200.1081; found: 274.1075

tert-butyl (2-chloro-4,5-dimethoxyphenethyl) carbamate (47-Cl). The title compound was obtained as a white solid from reported procedure¹⁴. Spectral data matched literature value. ¹H NMR (400 MHz, CDCl₃) δ 6.85 (s, 1H), 6.71 (s, 1H), 4.77 – 4.17 (m, 1H), 3.85 (s, 3H), 3.85 (s, 3H), 3.36 (d, J = 6.7 Hz, 2H), 2.86 (t, J = 7.0 Hz, 2H), 1.43 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 155.85, 148.11, 147.76, 128.32, 124.89, 113.38, 112.56, 79.19, 56.10, 56.07, 40.32, 33.53, 28.38.

General procedure to synthesize substrates 48 to 50 and fluorine standards (48-F to 49-F) (General procedure A)

To the solution of the aldehyde (1 mmol, 1 equiv.) in 1,2-dichloroethane (DCE) was added 2phenoxyaniline (222 mg, 1.2 mmol, 1.2 eq). The solution was stirred under room temperature for 30 min. and NaBH(OAc)₃ (424 mg, 2 mmol, 2 equiv.) was then added in portion at 0°C. The resulting solution was warmed to room temperature and stirred for additional 3 h. After fully conversion of the aldehyde (monitored by TLC), 1,2-dichloroethane (DCE) was removed under reduce pressure. The residue was extracted with ethyl acetate and water. The organic phase was washed with 1N HCl, saturated brine, dried with Na₂SO₄, filtered, and concentrated in vacuo to give the crude intermediate which were then dissolved in 5 ml acetic anhydride. This solution was then stirred under room temperature for 5 h. After fully conversion of the amine intermediate, most of the acetic anhydride was removed under reduce pressure. The residue was dissolve in ethyl acetate and washed with 10% (w/w) NaOH solution, 1N HCl, water, saturated brine, dried with Na₂SO₄, filtered, and concentrated in vacuo to give the crude product which was then purified by silica gel column with ethyl acetate/ hexane (20% to 50%) as the eluant to afford the target compound as a colorless oil or white solid.

N-(2-chloro-5-methoxybenzyl)-N-(2-phenoxyphenyl) acetamide (48). Follow the general procedure A, the title compound was obtained as a white solid (313 mg, 82%) from 2-chloro-5-methoxybenzaldehyde.

¹**H NMR (400 MHz, CDCI₃)** δ 7.38 – 7.28 (m, 2H), 7.21 (ddd, J = 8.3, 7.5, 1.8 Hz, 1H), 7.16 – 7.10 (m, 2H), 7.08 (dd, J = 7.9, 1.7 Hz, 1H), 7.04 (d, J = 3.1 Hz, 1H), 7.00 (td, J = 7.6, 1.3 Hz, 1H), 6.93 – 6.88 (m, 2H), 6.86 (dd, J = 8.3, 1.3 Hz, 1H), 6.67 (dd, J = 8.8, 3.1 Hz, 1H), 5.22 (d, J = 15.0 Hz, 1H), 4.79 (d, J = 15.0 Hz, 1H), 3.66 (s, 3H), 1.99 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) & 171.15, 158.30, 155.78, 153.43, 135.85, 132.71, 130.18, 129.85, 129.72, 129.30, 125.12, 124.04, 123.42, 119.16, 118.47, 115.94, 114.55, 55.39, 48.86, 22.08.
HRMS (ESI): Calculated for C₂₂H₂₁ClNO₃ (M+H)⁺: 382.1204; found: 382.1200.

N-(2-fluoro-5-methoxybenzyl)-N-(2-phenoxyphenyl) acetamide(48-F). Follow the general procedure **A**, the title compound was obtained as a colorless oil from 2-fluoro-5-methoxybenzaldehyde and gradually solidify after stay (259 mg, 71%).

¹H NMR (400 MHz, CDCl₃) & 7.37 - 7.27 (m, 2H), 7.24 - 7.18 (m, 1H), 7.13 (t, J = 7.4 Hz, 1H), 7.06 6.97 (m, 2H), 6.96 (dd, J = 5.9, 3.2 Hz, 1H), 6.91 - 6.83 (m, 3H), 6.81 (t, J = 9.1 Hz, 1H), 6.72 - 6.63 (m, 1H), 5.13 (d, J = 14.6 Hz, 1H), 4.72 (d, J = 14.6 Hz, 1H), 3.66 (s, 3H), 1.96 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) & 171.13, 155.82, 155.53 (d, J = 2.0 Hz), 155.39 (d, J = 238 Hz), 153.42, 132.65, 130.17, 129.83, 129.30, 124.86 (d, J = 16.5 Hz), 124.00, 123.37, 119.11, 118.48, 115.70 (d, J = 3.8 Hz), 115.46 (d, J = 23.9 Hz), 114.50 (d, J = 8.0 Hz), 55.63, 44.85 (d, J = 3.1 H), 22.11.

¹⁹F NMR (376 MHz, CDCl₃) δ -129.80 – -129.92 (m).

HRMS (ESI): Calculated for C₂₂H₂₁FNO₃ (M+H)⁺: 366.1500; found: 382.1497.

N-(3-chloro-2,6-dimethoxybenzyl)-N-(2-phenoxyphenyl) acetamide (49). Follow the general procedure **A**, the title compound was obtained as a colorless oil (362 mg, 88%) from 3-chloro-2,6-dimethoxybenzaldehyde(49-i).

¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.28 (m, 2H), 7.17 (d, J = 8.9 Hz, 1H), 7.15 – 7.09 (m, 2H), 6.92 – 6.84 (m, 3H), 6.82 (dd, J = 7.8, 1.7 Hz, 1H), 6.76 (d, J = 8.3 Hz, 1H), 6.42 (d, J = 8.9 Hz, 1H), 5.33 (d, J = 13.5 Hz, 1H), 4.85 (d, J = 13.5 Hz, 1H), 3.69 (s, 3H), 3.50 (s, 3H), 1.90 (s, 3H).

¹³**C NMR (100 MHz, CDCl₃)** & 170.23, 158.14, 155.99, 155.72, 154.31, 131.92, 130.82, 129.78, 129.53, 129.00, 124.02, 122.54, 120.56, 119.51, 119.36, 117.49, 106.89, 60.98, 55.60, 39.30, 22.27.

HRMS (ESI): Calculated for C₂₃H₂₃CINO₄ (M+H)⁺: 412.1310; found: 412.1305.

3-chloro-2,6-dimethoxybenzaldehyde(49-i). The title compound was prepared from reported chlorination procedure⁷. The crude product was purified by silica gel chromatography purification with ethyl acetate/ hexane (1/10) and give the title compound as a light brown solid (476mg, 79%).

¹H NMR (400 MHz, CDCl₃) δ 10.41 (s, 1H), 7.50 (d, J = 9.0 Hz, 1H), 6.72 (d, J = 9.0 Hz, 1H), 3.92 (s, 3H), 3.89 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 188.58, 160.46, 157.95, 135.65, 120.44, 120.27 108.17, 62.47, 56.29. HRMS (ESI): Calculated for C₉H₁₀ClO₃ (M+H)⁺: 201.0313; found: 201.0311.

N-(3-fluoro-2,6-dimethoxybenzyl)-N-(2-phenoxyphenyl)acetamide(49-F). Follow the general

procedure **A**, the title compound was obtained as a colorless oil (253 mg, 64%) from 3-fluoro-2,6-dimethoxybenzaldehyde(**49-F-i**).

¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.29 (m, 2H), 7.16 – 7.09 (m, 2H), 6.93 – 6.82 (m, 5H), 6.76 (dd, J = 8.3, 1.0 Hz, 1H), 6.33 (dd, J = 9.1, 3.6 Hz, 1H), 5.28 (d, J = 13.3 Hz, 1H), 4.86 (d, J = 13.3 Hz, 1H), 3.67 (d, J = 2.1 Hz, 3H), 3.52 (s, 3H), 1.90 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.14, 155.73, 154.97 (d, J = 1.8 Hz), 154.34 (s, 3H), 149.94 (d, J = 238 Hz), 147.25 (d, J = 11.5 Hz), 132.02, 130.83, 129.77, 128.92, 124.02, 122.49, 119.55, 117.41, 115.54, 115.34, 104.66 (d, J = 7.4 Hz), 61.03 (d, J = 6.7 Hz), 55.73, 39.03 (d, J = 2.2 Hz), 22.28.

19F NMR (376 MHz, CDCl₃) δ -139.63 - -139.81 (m).

HRMS (ESI): Calculated for C₂₃H₂₃FNO₄ (M+H)+: 396.1606; found: 396.1601

3-fluoro-2,6-dimethoxybenzaldehyde(49-F-i). To a solution of 2,6-dimethoxybenzaldehyde (332mg, 2 mmol) in acetonitrile was added selectfluor (779 mg, 2.2 mmol, 1.1 equiv.) at -40 °C. The solution was stirred overnight and then extracted with ethyl acetate and water. The organic phase was washed with water, saturated brine, dried over with Na₂SO₄, filtered and concentrated in vacuo to give the crude product which was purified by silica gel chromatography with ethyl acetate/hexane (1/4) as the eluant to give the title compound as yellow to brown oil (295 mg, 80%).

¹**H NMR (400 MHz, CDCl₃)** δ 10.41 (d, J = 1.0 Hz, 1H), 7.24 (dd, J = 11.0, 9.2 Hz, 1H), 6.60 (dd, J = 9.2, 3.3 Hz, 1H), 4.01 (d, J = 2.3 Hz, 3H), 3.87 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) & 188.77 (d, J = 2.7 Hz), 157.25 (d, J = 1.8 Hz), 149.56 (d, J = 11.6 Hz), 149.42 (d, J = 241.4 Hz), 122.17 (d, J = 21.0 Hz), 119.17, 105.87 (d, J = 6.8 Hz), 62.25 (d, J = 6.4 Hz,), 56.31.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -139.72 – -139.88 (m).

HRMS (ESI): Calculated for C₉H₁₀FO₃ (M+H)+: 185.0608; found: 185.0609.

N-(5-chloro-2,4-dimethoxybenzyl)-N-(2-phenoxyphenyl) acetamide (50). Follow the general procedure A, the title compound was obtained as a white solid (311mg, 76%) from 5-chloro-

2,4-dimethoxybenzaldehyde(50-i).

¹**H NMR (400 MHz, CDCl₃)** δ 7.37 – 7.28 (m, 3H), 7.21 – 7.15 (m, 1H), 7.12 (†, *J* = 7.4 Hz, 1H), 7.04 – 6.95 (m, 2H), 6.89 (dt, *J* = 9.2, 1.9 Hz, 2H), 6.86 (dd, *J* = 8.3, 1.0 Hz, 1H), 6.30 (s, 1H), 4.99 (d, *J* = 14.6 Hz, 1H), 4.70 (d, *J* = 14.6 Hz, 1H), 3.84 (s, 3H), 3.57 (s, 3H), 1.93 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.84, 157.13, 155.87, 154.86, 153.42, 133.03, 131.60, 130.30, 129.77, 128.97, 123.88, 123.12, 119.05, 118.66, 118.40, 113.28, 96.18, 56.19, 55.56, 45.22, 22.22.

¹⁹F NMR (376 MHz, CDCl₃) δ -142.91 (dd, J = 10.3, 7.3 Hz).

HRMS (ESI): Calculated for C₂₃H₂₃CINO₄ (M+H)⁺: 412.1310; found: 412.1306.

5-chloro-2,4-dimethoxybenzaldehyde(**50-i**). The title compound was prepared from reported chlorination procedure⁷. The crude product after work-up was purified by stirring in the ethyl acetate/ hexane (1/10) solution. The title compound was obtained as a white solid after filtration (605 mg, 75%).

¹H NMR (400 MHz, CDCl₃) δ 10.25 (s, 1H), 7.83 (s, 1H), 6.47 (s, 1H), 3.98 (s, 3H), 3.95 (s, 3H).
 ¹³C NMR (100 MHz, CDCl₃) δ 187.18, 162.34, 160.81, 129.71, 118.75, 115.35, 95.65, 56.42, 56.00
 HRMS (EI): Calculated for C₉H₉ClO₃ [M]⁺: 200.0240; found: 200.0236

N-(5-fluoro-2,4-dimethoxybenzyl)-N-(2-phenoxyphenyl) acetamide(50-F). Follow the general procedure **A**, the title compound was obtained as a colorless oil (359 mg, 91%) from 5-fluoro-2,4-dimethoxybenzaldehyde (50-F-i).

¹**H NMR (400 MHz, CDCI**₃) δ 7.36 – 7.28 (m, 2H), 7.22 – 7.15 (m, 1H), 7.15 – 7.08 (m, 2H), 7.04 – 6.94 (m, 2H), 6.90 (dd, J = 9.9, 2.2 Hz, 2H), 6.87 – 6.82 (m, 1H), 6.35 (d, J = 7.1 Hz, 1H), 5.01 (d, J = 14.6 Hz, 1H), 4.68 (d, J = 14.6 Hz, 1H), 3.84 (s, 3H), 3.54 (s, 3H), 1.94 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) & 170.91, 155.91, 153.76 (d, J = 2.1 Hz), 153.39, 146.91 (d, J = 11.8 Hz), 146.56 (d, J = 236.5 Hz), 133.13, 130.28, 129.79, 128.98, 123.91, 123.16, 119.04, 118.46, 117.85 (d, J = 19.9 Hz), 117.83 (d, J = 5.7 Hz), 98.00 (d, J = 1.8 Hz), 56.60, 55.96, 45.30, 22.19.

¹⁹F NMR (376 MHz, CDCl₃) δ -145.34 - -145.45(m).

HRMS (ESI): Calculated for C₂₃H₂₃FNO₄ (M+H)+: 396.1606; found: 396.1601

5-fluoro-2,4-dimethoxybenzaldehyde(**50-F-i**). The title compound was prepared from reported literature²⁷.

¹H NMR (400 MHz, CDCl₃) δ 10.28 (d, J = 3.2 Hz, 1H), 7.54 (d, J = 11.2 Hz, 1H), 6.51 (d, J = 6.5 Hz, 1H), 3.97 (s, 3H), 3.93 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) & 188.77 (d, J = 2.7 Hz), 157.25 (d, J = 1.8 Hz), 149.56 (d, J = 11.6 Hz), 149.42 (d, J = 241.4 Hz), 122.17 (d, J = 21.0 Hz), 119.17 (d, J = 1.2 Hz), 105.87 (d, J = 6.8 Hz), 62.25 (d, J = 6.4 Hz), 56.31.

¹⁹F NMR (376 MHz, CDCl₃) δ -139.72 - -139.88 (m).

HRMS (ESI): Calculated for C₉H₁₀FO₃ (M+H)⁺: 185.0608; found: 185.0607.

2,4-di-tert-butoxy-5-chloropyrimidine (51). To a solution of 2,4,5-trichloropyrimidine (550 mg, 3 mmol, 1equiv.) in anhydrous THF was added potassium tert-butoxide ([†]BuOK, 1.34 g, 12 mmol, 4 equiv.) portion-wise at 0°C. The reaction was warm to room temperature and stirred for additional 5h. The reaction was quenched by addition of water and extracted with ethyl acetate. The organic phase was washed with water, saturated brine, dried over with Na₂SO₄, filtered and concentrated in vacuo to give the crude product which purified by silica gel chromatography using ethyl acetate/hexane (0% to 5%) to afford the title compound as white solid (498 mg, 64%).

¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 1.65 (s, 9H), 1.59 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 164.93, 162.14, 156.27, 111.09, 83.19, 80.72, 28.33, 28.29.

HRMS (ESI): Calculated for $C_{12}H_{20}CIN_2O_2^+$ (M+H)⁺: 259.1208; found: 259.1204.

2,4-di-tert-butoxy-5-fluoropyrimidine(52-F). Follow the preparation procedure of compound
51, the title compound was obtained as a colorless liquid (100 mg, 42%) from 2,4-dichloro-5-fluoropyrimidine. Spectral data matched literature data¹⁵.

¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 2.6 Hz, 1H), 1.65 (s, 9H), 1.58 (s, 9H).
¹³C NMR (100 MHz, CDCl₃) δ 158.96 (d, J = 3.4 Hz), 158.74 (d, J = 10.1 Hz), 143.46 (d, J = 252.2 Hz), 142.93 (d, J = 20.9 Hz), 83.14, 80.36, 28.37, 28.31.
¹⁹F NMR (376 MHz, CDCl₃) δ -163.58 (d, J = 2.6 Hz).

General procedure to synthesize tyrosine and DOPA derivatives (General procedure B)

Follow the reported procedure²⁸, to a solution of methyl 2-((tert-butoxycarbonyl) amino)-2-(dimethoxyphosphoryl) acetate (713 mg, 2.4 mmol, 1.2 equiv.) in 10 ml dry dichloromethane, was added DBU (358 ml, 2.4 mmol, 1.2 equiv.). The mixture solution was stirred at room temperature for 5 minutes. Then the aldehyde (2 mmol, 1 equiv.) in 5 ml dichloromethane was added dropwise to the solution. The reaction was monitored by TLC. After the reaction is finished (usually in 3 to 4h.), the solution was concentrated and extracted with ethyl acetate and water. The organic phase was separated and washed with 1N HCl, saturated brine, dried with Na₂SO₄, filtered and concentrated in vacuo to give the crude product which was then purified by silica gel column with ethyl acetate/ hexane (10% to 20%) or stirred in the ethyl acetate/ hexane when solid crude products were obtained to give the intermediate in 65-90% yield. To a round bottomed flask equipped with a stir bar was added the intermediate obtained above (1mmol, 1.0 equiv.), which was then dissolved in 20 ml of methanol (THF or EA was added when the material is not soluble in methanol). 10% Pd/C (30-40 mg) was added to the solution and the reaction was placed under N₂. The solution was purged and backfilled with H₂ and then stirred under H₂ atmosphere (1 atm) overnight at room temperature (reaction is typically done in about 2-3 hours). Once the reaction was complete, the solution was passed through a Celite plug and concentrated. The crude mixture was then purified by either silica gel chromatography or flash LC using ethyl acetate/ hexane (1/10 to 2/10) to yield the tyrosine derivatives in 90-98% yield.

methyl 2-((tert-butoxycarbonyl)amino)-3-(3-fluoro-4-methoxyphenyl)propanoate(54). Follow the general procedure **B**, the title compound was obtained as a white solid from 3-fluoro-4-methoxybenzaldehyde.
¹H NMR (400 MHz, CDCl₃) δ 6.99 – 6.67 (m, 3H), 5.10 – 4.65 (m, 1H), 4.58 – 4.28 (m, 1H), 3.86 (s, 3H), 3.72 (s, 3H), 3.15 – 2.76 (m, 1H), 1.42 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 172.10, 154.99, 152.13 (d, J = 245.8 Hz), 146.57, 128.93 (d, J = 6.1 Hz), 124.96, 116.98 (d, J = 18.2 Hz), 113.41 (d, J = 2.0 Hz), 80.02, 56.23, 54.36, 52.27, 37.40, 28.26.
¹⁹F NMR (376 MHz, CDCl₃) δ -134.80 - -135.40 (m).

methyl 2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-4-methoxyphenyl)propanoate(55). Follow the general procedure **B**, the title compound was obtained as a white solid from 2-fluoro-4-methoxybenzaldehyde.

¹H NMR (400 MHz, CDCl₃) δ 7.02 (†, J = 8.5 Hz, 1H), 6.69 – 6.48 (m, 2H), 5.11 – 4.64 (m, 1H), 4.62 – 4.23 (m, 1H), 3.76 (s, 3H), 3.71 (s, 3H), 3.19 – 2.75 (m, 2H), 1.40 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 172.28, 161.82 (d, J = 245.1 Hz), 160.03 (d, J = 10.6 Hz), 155.00, 131.84 (d, J = 6.5 Hz), 114.78 (d, J = 16.6 Hz), 109.88 (d, J = 3.0 Hz), 101.51 (d, J = 26.1 Hz), 79.81, 55.49, 53.74, 52.27, 31.28, 28.25.

¹⁹F NMR (376 MHz, CDCl₃) δ -115.45 – -115.65 (m).

methyl 2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-3-methoxyphenyl)propanoate(56). Follow the general procedure **B**, the title compound was obtained as a white solid from 2-fluoro-3-methoxybenzaldehyde.

¹H NMR (400 MHz, CDCl₃) δ 6.99 (td, J = 8.0, 1.4 Hz, 1H), 6.86 (t, J = 7.5 Hz, 1H), 6.72 (t, J = 6.7 Hz, 1H), 5.15 - 4.70 (m, 1H), 4.64 - 4.37 (m, 1H), 3.86 (s, 3H), 3.73 (s, 3H), 3.26 - 2.86 (m, 2H), 1.40 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 172.15, 155.03, 151.12 (d, *J* = 244.9 Hz), 147.68 (d, *J* = 11.2 Hz), 124.03 (d, *J* = 13.4 Hz), 123.77 (d, *J* = 4.6 Hz), 122.73 (d, *J* = 3.4 Hz), 112.19, 79.88, 56.18, 53.64, 52.35, 31.55, 28.24.

¹⁹F NMR (376 MHz, CDCl₃) δ -140.36 (†, J = 6.9 Hz).

HRMS (ESI): Calculated for C₁₁H₁₅NO₃F (M+H)⁺: 228.1030; found: 228.1028.

methyl 2-((tert-butoxycarbonyl) amino)-3-(4-fluoro-3-methoxyphenyl) propanoate (57). Follow the general procedure **B**, the title compound was obtained as a white solid from 4-fluoro-3-methoxybenzaldehyde.

¹**H NMR (400 MHz, CDCl**₃) δ 6.98 (dd, *J* = 11.2, 8.2 Hz, 1H), 6.72 (dd, *J* = 8.1, 2.0 Hz, 1H), 6.68 – 6.56 (m, 1H), 5.05 – 4.67 (m, 1H), 4.64 – 4.22 (m, 1H), 3.86 (s, 3H), 3.71 (s, 3H), 3.18 – 2.75 (m, 2H), 1.42 (s, 9H).

¹³**C NMR (100 MHz, CDCl₃)** δ 172.16, 154.98, 151.60 (d, *J* = 244.9 Hz), 147.43 (d, *J* = 10.6 Hz), 132.29 (d, *J* = 3.9 Hz), 121.47 (d, *J* = 6.8 Hz), 115.90 (d, *J* = 18.4 Hz), 114.37 (d, *J* = 1.9 Hz), 80.02, 56.15, 54.37, 52.26, 38.03, 28.28.

19F NMR (376 MHz, CDCl₃) δ -137.52 - -137.94(m).

methyl 2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-5-methoxyphenyl)propanoate(58-F). Follow the general procedure **B**, the title compound was obtained as a white solid from 2-fluoro-5-methoxybenzaldehyde. Spectral data matched literature data²⁸.

¹H NMR (400 MHz, CDCl₃) δ 6.94 (t, J = 9.1 Hz, 1H), 6.73 (dt, J = 8.9, 3.6 Hz, 1H), 6.65 (dd, J = 5.9, 3.1 Hz, 1H), 5.13 - 4.71 (m, 1H), 4.68 - 4.30 (m, 1H), 3.76 (s, 3H), 3.73 (s, 3H), 3.29 - 2.84 (m, 2H), 1.40 (s, 9H).

¹³C NMR (100 MHz, CDCI₃) & 172.13, 155.76 (d, J = 237.8 Hz), 155.50 (d, J = 1.6 Hz), 154.99, 123.77 (d, J = 17.8 Hz), 116.39 (d, J = 4.1 Hz), 115.74 (d, J = 24.3 Hz), 113.66 (d, J = 8.1 Hz), 79.90, 55.68, 53.59, 52.34, 32.06, 28.25.

¹⁹F NMR (376 MHz, CDCl₃) δ -137.52 - -137.94(m).

methyl 2-((tert-butoxycarbonyl)amino)-3-(3-methoxyphenyl)propanoate(58-Cl-i). The title compound was prepared according to reported procedure. Spectral data matched literature data²⁸

¹H NMR (400 MHz, CDCl₃) δ 7.20 (†, J = 7.9 Hz, 1H), 6.78 (dd, J = 8.2, 2.4 Hz, 1H), 6.71 (d, J = 7.5

Hz, 1H), 6.66 (s, 1H), 5.14 – 4.63 (m, J = 57.5 Hz, 1H), 4.63 – 4.27 (m, 1H), 3.78 (s, 3H), 3.72 (s, 3H), 3.16 – 2.76 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 172.28, 159.64, 155.05, 137.47, 129.50, 121.57, 114.93, 112.44, 79.90, 55.11, 54.31, 52.19, 38.29, 28.27.

methyl 2-((tert-butoxycarbonyl)amino)-3-(2-chloro-5-methoxyphenyl)propanoate(58-Cl). Follow the reported chlorination method¹⁷, the title compound was obtained as a white solid (234 mg, 68%) from compound **58-Cl-i** (309 mg, 1 mmol) and purified by flash LC using ethyl acetate/ hexane (1/20 to 1/10).

¹**H NMR (400 MHz, CDCl₃)** δ 7.24 (d, J = 9.3 Hz, 1H), 6.76 – 6.68 (m, 2H), 5.13 – 4.78 (m, 1H), 4.67 – 4.43 (m, 1H), 3.76 (s, 3H), 3.72 (s, 3H), 3.25 (dd, J = 13.8, 5.8 Hz, 1H), 3.12 – 2.80 (m, 1H), 1.38 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 172.28, 158.17, 154.92, 135.08, 130.10, 125.81, 116.56, 114.06, 79.86, 55.43, 53.42, 52.35, 36.25, 28.21.

HRMS (ESI): Calculated for C₁₆H₂₃CINO₅ (M+H)⁺: 344.1259; found: 344.1255.

methyl 2-((tert-butoxycarbonyl)amino)-3-(2,4-difluoro-5-methoxyphenyl)propanoate(59). Follow the general procedure **B**, the title compound was obtained as a white solid from 2,4difluoro-5-methoxybenzaldehyde.

¹H NMR (400 MHz, CDCl₃) δ 6.90 − 6.76 (m, 1H), 6.77 − 6.64 (m, 1H), 5.15 − 4.68 (m, 1H), 4.63 − 4.29(m, 1H), 3.84 (s, 3H), 3.73 (s, 3H), 3.20 − 2.75 (m, 2H), 1.41 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) & 171.99, 154.92, 154.47 (dd, J = 240.9, 10.3 Hz), 151.20 (dd, J = 248.6, 12.5 Hz), 143.95 (dd, J = 10.8, 3.0 Hz), 118.31 (dd, J = 17.3, 4.2 Hz), 115.68 (dd, J = 5.4, 2.8 Hz), 104.58 (dd, J = 28.2, 22.4 Hz), 80.01, 56.83, 53.54, 52.42, 31.63, 28.25.

19F NMR (376 MHz, CDCl₃) δ -124.12 - -124.28 (m), -131.8 - -132.64(m)

HRMS (ESI): Calculated for C11H14F2NO3 (M+H)+: 246.0936; found: 246.0934.

methyl 2-((tert-butoxycarbonyl)amino)-3-(3-fluoro-2-methoxyphenyl)propanoate(60). Follow the general procedure **B**, the title compound was obtained as a white solid from 3-fluoro-2-methoxybenzaldehyde.

¹H NMR (400 MHz, CDCl₃) δ 7.04 – 6.82 (m, 3H), 5.29 – 4.85 (m, 1H), 4.60 – 4.23 (m, 1H), 3.94 (d, J = 2.0 Hz, 3H), 3.71 (s, 3H), 3.19 – 2.83 (m, 2H), 1.38 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) & 172.49, 155.22 (d, J = 246.7 Hz), 155.15, 145.97 (d, J = 10.4 Hz), 130.70,
126.10 (d, J = 3.1 Hz), 123.25 (d, J = 8.0 Hz), 115.97 (d, J = 19.4 Hz), 79.76, 61.15 (d, J = 6.9 Hz),
54.15, 52.21, 32.71, 28.24.

19F NMR (376 MHz, CDCl₃) δ -129.90 - -130.40(m)

HRMS (ESI): Calculated for C11H15FNO3 (M+H)+: 228.1030; found: 228.1026.

methyl 2-((tert-butoxycarbonyl)amino)-3-(4-fluoro-2-methoxyphenyl)propanoate(61). Follow the general procedure **B**, the title compound was obtained as a white solid from 4-fluoro-2-methoxybenzaldehyde. Spectral data matched literature data¹⁶.

¹H NMR (400 MHz, CDCl₃) δ 7.10 – 6.93 (m, 1H), 6.71 – 6.35 (m, 2H), 5.14 – 4.78 (m, 1H), 4.67 – 4.18 (m, 1H), 3.81 (s, 3H), 3.69 (s, 3H), 3.15 – 2.83 (m, 2H), 1.38 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) & 172.73, 162.87 (d, J = 244.9 Hz), 158.64 (d, J = 9.8 Hz), 155.11, 131.63 (d, J = 9.9 Hz), 120.28 (d, J = 3.3 Hz), 106.73 (d, J = 21.1 Hz), 98.87 (d, J = 25.8 Hz), 79.63, 55.57, 53.73, 52.05, 32.46, 28.24.

¹**F NMR (376 MHz, CDCl**₃) δ -112.06 - -112.81 (m).

methyl 2-((tert-butoxycarbonyl)amino)-3-(5-fluoro-2-methoxyphenyl)propanoate(62). Follow the general procedure **B**, the title compound was obtained as a white solid from 5-fluoro-2-methoxybenzaldehyde. Spectral data matched literature data²¹.

1H NMR (400 MHz, CDCl₃) δ 6.90 (td, J = 8.7, 2.4 Hz, 1H), 6.82 (dd, J = 8.8, 2.4 Hz, 1H), 6.77 (dd, J

= 8.7, 4.3 Hz, 1H), 5.30 – 4.90 (m, 1H), 4.63 – 4.22 (m, 1H), 3.80 (s, 3H), 3.71 (s, 3H), 3.15 – 2.83 (m, 2H), 1.38 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) & 172.53, 156.50 (d, J = 281.7 Hz), 155.52, 153.75 (d, J = 1.8 Hz), 126.36 (d, J = 7.3 Hz), 117.83 (d, J = 23.3 Hz), 114.07 (d, J = 22.7 Hz), 111.08 (d, J = 8.3 Hz), 79.68, 55.84, 53.64, 52.11, 32.88, 28.22.

¹⁹F NMR (376 MHz, CDCl₃) δ -123.69 - -124.43 (m).

methyl 2-((tert-butoxycarbonyl)amino)-3-(4,5-difluoro-2-methoxyphenyl)propanoate(63). Follow the general procedure **B**, the title compound was obtained as a white solid from 4,5difluoro-2-methoxybenzaldehyde.

¹H NMR (400 MHz, CDCl₃) δ 6.84 (dd, J = 11.3, 6.9 Hz, 1H), 6.66 (dd, J = 10.8, 7.1 Hz, 1H), 5.19 – 4.69 (m, 1H), 4.60 – 4.27 (m, 1H), 3.84 (s, 3H), 3.72 (d, J = 11.3 Hz, 3H), 3.11 (dd, J = 14.0, 5.4 Hz, 1H), 2.95 (dd, J = 13.9, 6.2 Hz, 1H), 1.40 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) & 171.98, 157.01 (dd, J = 241.7, 2.5 Hz), 154.92, 148.25 (dd, J = 241.8, 2.9 Hz), 147.48 - 147.19 (m), 117.79 (dd, J = 20.3, 6.2 Hz), 114.37 (dd, J = 18.7, 6.2 Hz), 101.39 (d, J = 28.2 Hz), 79.98, 56.37, 53.51, 52.38, 31.21, 28.20.

¹⁹F NMR (376 MHz, CDCl₃) δ -120.26 - -120.60 (m), -140.17 - -141.11 (m).

HRMS (ESI): Calculated for C₁₁H₁₄F₂NO₃ (M+H)⁺: 246.0936; found: 246.0931.

methyl 2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-4,5-dimethoxyphenyl)propanoate(64-F). Follow the general procedure **B**, the title compound was obtained as a white solid (341 mg) from 2-fluoro-4,5-dimethoxybenzaldehyde.

¹H NMR (400 MHz, CDCl₃) δ 6.68 – 6.52 (m, 2H), 5.16 – 4.68 (m, 1H), 4.61 – 4.25 (m, 1H), 3.84 (s, 3H), 3.83 (s, 3H), 3.73 (s, 3H), 3.18 – 2.78 (m, 2H), 1.41 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) 6 172.23, 155.40 (d, J = 238.2 Hz), 154.97, 148.86 (d, J = 10.8 Hz), 145.06, 113.44 (d, J = 6.1 Hz), 113.27 (d, J = 17.5 Hz), 99.92 (d, J = 28.3 Hz), 79.87, 56.36, 56.07, 53.72, 52.33, 31.44, 28.27.

¹⁹F NMR (376 MHz, CDCl₃) δ -125.04 (dd, J = 10.7, 7.2 Hz).

HRMS (ESI): Calculated for C₁₂H₁₇FNO₄ (M+H)⁺: 258.1136; found: 258.1131.

methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(2-chloro-4,5-dimethoxyphenyl)propanoate(*L*-64-Cl). Follow the reported chlorination method¹⁷, the title compound was prepared as a white solid (190 mg, 42%) from compound *L*-64 (407 mg, 1.2 mmol) and purified by silica gel chromatography using ethyl acetate/ hexane (1/3) as eluent.

¹H NMR (400 MHz, CDCl₃) δ 6.85 (s, 1H), 6.67 (s, 1H), 5.20 – 4.70 (m, 1H), 4.72 – 4.35 (m, J = 6.6 Hz, 1H), 3.85 (s, 6H), 3.73 (s, 3H), 3.20 (dd, J = 14.0, 6.1 Hz, 1H), 3.13 – 2.81 (m, J = 14.0, 7.6 Hz, 1H), 1.39 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 172.37, 154.92, 148.50, 147.70, 125.79, 125.49, 113.54, 112.46, 79.89, 56.08, 53.58, 52.37, 35.66, 28.26.

HRMS (ESI): Calculated for C10H12F2NO3 (M+H)+: 274.0841; found: 274.0831

methyl

2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-4,5-

bis(methoxymethoxy)phenyl)propanoate(65). Follow the general procedure **B**, the title compound was obtained as a white solid from 2-fluoro-4,5-bis(methoxymethoxy)benzaldehyde which obtained from literature procedure²⁹.

¹H NMR (400 MHz, CDCl₃) δ 7.00 – 6.73 (m, 2H), 5.19 (s, 2H), 5.14 (q, J = 6.7 Hz, 2H), 5.10 – 4.64 (m, 1H), 4.64 – 4.25 (m, 1H), 3.74 (s, 3H), 3.53 – 3.47 (m, 6H), 3.18 – 2.62 (m, 2H), 1.41 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) 6 172.10, 156.32 (d, J = 240.5 Hz), 154.97, 147.19 (d, J = 10.3 Hz), 143.14, 119.41 (d, J = 5.8 Hz), 115.63 (d, J = 17.5 Hz), 104.37 (d, J = 28.1 Hz), 96.06, 95.38, 79.83, 56.18 (d, J = 9.3 Hz), 53.63, 52.28, 31.30, 28.24.

¹⁹F NMR (376 MHz, CDCl₃) δ -122.51 – -122.91 (m).

HRMS (ESI): Calculated for C19H29FNO8 (M+H)+: 418.1872; found: 418.1869.

methyl 2-((tert-butoxycarbonyl)amino)-3-(3-fluoro-2,6-dimethoxyphenyl)propanoate(66-F). Follow the general procedure **B**, the title compound was obtained as a white solid from 3fluoro-2,6-dimethoxybenzaldehyde(49-F-i).

¹H NMR (400 MHz, CDCl₃) δ 6.93 (dd, J = 11.3, 9.2 Hz, 1H), 6.49 (dd, J = 9.1, 3.6 Hz, 1H), 5.38 – 5.04(m, 1H), 4.54 – 4.17 (m, 1H), 3.94 (d, J = 2.2 Hz, 3H), 3.80 (s, 3H), 3.73 (s, 3H), 3.02 – 3.21 (m, 1H), 2.97 (dd, J = 13.1, 9.6 Hz, 1H), 1.35 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) & 173.08, 155.39, 154.09, 149.93 (d, J = 238.1Hz), 146.42 (d, J = 11.2Hz), 118.97, 114.81 (d, J = 20.5Hz), 110.00, 104.70 (d, J = 7.6 Hz), 79.46, 77.20, 61.15 (d, J = 7.2 Hz, 4H), 55.90, 53.59, 52.14, 28.24, 26.31.

¹⁹F NMR (376 MHz, CDCl₃) δ -139.00 - -139.40 (m).

HRMS (ESI): Calculated for C₁₂H₁₇FNO₄ (M+H)⁺: 258.1136; found: 258.1131.

methyl 2-((tert-butoxycarbonyl)amino)-3-(2,6-dimethoxyphenyl)propanoate(66-Cl-i). Follow the general procedure **B**, the title compound was prepared as a white solid from 2,6-dimethoxybenzaldehyde.

¹**H NMR (400 MHz, CDCl₃)** δ 7.16 (†, J = 8.3 Hz, 1H), 6.53 (d, J = 8.4 Hz, 2H), 5.45 – 5.14 (m, 1H), 4.46 – 4.15 (m, 1H), 3.80 (s, 6H), 3.71 (s, 3H), 3.20 – 2.92 (m, 2H), 1.34 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 173.33, 158.39, 155.43, 128.10, 112.86, 103.49, 79.12, 55.56, 53.72, 51.89, 28.18, 25.17.

HRMS (ESI): Calculated for C₁₂H₁₈NO₄ (M+H)+: 240.1230; found: 240.1226.

methyl 2-((tert-butoxycarbonyl)amino)-3-(3-chloro-2,6-dimethoxyphenyl)propanoate(66-Cl). Follow the reported chlorination method¹⁷, the title compound was obtained as a white solid (284 mg, 76%) from compound **66-Cl-i** (339 mg, 1 mmol) and purified by flash LC using ethyl acetate/ hexane (1/20 to 1/10).

¹**H NMR (400 MHz, CDCl₃)** δ 7.19 (d, J = 8.9 Hz, 1H), 6.58 (d, J = 8.9 Hz, 1H), 5.38 – 5.00 (m, 1H), 4.55 – 4.15 (m, 1H), 3.83 (s, 3H), 3.80 (s, 3H), 3.71 (s, 3H), 3.23 – 3.00 (m, 1H), 2.95 (dd, J = 13.2, 9.5 Hz, 1H), 1.32 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 172.90, 157.27, 155.28, 155.10, 128.83, 120.24, 119.32, 107.01, 79.42,

60.83, 55.81, 53.47, 52.08, 28.14, 26.72.

HRMS (ESI): Calculated for C₁₂H₁₇CINO₄ (M+H)+: 274.0841; found: 274.0836.

methyl 2-((tert-butoxycarbonyl)amino)-3-(5-fluoro-2,4-dimethoxyphenyl)propanoate(67-F). Follow the general procedure **B**, the title compound was obtained as a white solid from 5fluoro-2,4-dimethoxybenzaldehyde(**50-F-i**).

¹H NMR (400 MHz, CDCl₃) δ 6.81 (d, J = 11.5 Hz, 1H), 6.50 (d, J = 7.2 Hz, 1H), 5.31 – 4.87 (m, 1H), 4.56 – 4.18 (m, 1H), 3.89 (s, 3H), 3.81 (s, 3H), 3.71 (s, 3H), 3.10 – 2.78 (m, 2H), 1.39 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 172.62, 155.14, 153.81, 146.79 (d, *J* = 10.8 Hz), 146.48 (d, *J* = 238.2 Hz), 118.25 (d, *J* = 18.7 Hz), 116.58 (d, *J* = 5.8 Hz), 98.20, 79.69, 56.71, 56.03, 53.80, 52.11, 32.16, 28.25.

¹⁹F NMR (376 MHz, CDCl₃) δ -145.09 - -145.73 (m).

HRMS (EI): Calculated for C12H15FNO4 [M]+: 256.0985; found: 256.0981.

methyl 2-((tert-butoxycarbonyl)amino)-3-(2,4-dimethoxyphenyl)propanoate(67-Cl-i). Follow the general procedure **B**, the title compound was prepared as a white solid from 2,4-dimethoxybenzaldehyde.

¹H NMR (400 MHz, CDCl₃) δ 6.98 (d, J = 8.0 Hz, 1H), 6.54 – 6.27 (m, 2H), 5.26 – 4.88 (m, 1H), 4.62 – 4.17 (m, 1H), 3.80 (s, 3H), 3.78 (s, 3H), 3.69 (s, 3H), 3.13 – 2.74 (m, 2H), 1.39 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 172.92, 160.07, 158.49, 155.24, 131.43, 116.93, 104.20, 98.49, 79.49, 55.32, 55.30, 54.18, 51.98, 32.16, 28.28.

HRMS (ESI): Calculated for C₁₂H₁₈NO₄⁺ (M+H)⁺: 240.1230; found: 240.1225.

methyl 2-((tert-butoxycarbonyl)amino)-3-(5-chloro-2,4-dimethoxyphenyl)propanoate(67-Cl). Follow the reported chlorination method¹⁷, the title compound was prepared as a white solid (280 mg, 75%) from compound **67-CI-i** (339 mg, 1 mmol) and purified by flash LC using ethyl acetate/ hexane (5% to 10%)

¹H NMR (400 MHz, CDCl₃) & 7.04 (s, 1H), 6.46 (s, 1H), 5.15 – 4.92 (m, 1H), 4.53 – 4.16 (m, 1H), 3.89 (s, 3H), 3.83 (s, 3H), 3.70 (s, 3H), 3.03 (dd, *J* = 13.7, 5.4 Hz, 1H), 2.89 (dd, *J* = 13.6, 7.5 Hz, 1H), 1.38 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 172.60, 157.15, 155.08, 154.78, 131.89, 117.60, 113.24, 96.48, 79.67, 56.28, 55.75, 53.67, 52.08, 32.15, 28.23.

HRMS (ESI): Calculated for C₁₂H₁₇CINO₄ (M+H)⁺: 274.0841; found: 274.0836.

methyl 2-((tert-butoxycarbonyl)amino)-3-(4-fluoro-2,5-dimethoxyphenyl)propanoate(68). Follow the general procedure, the title compound was obtained as a white solid from 4-fluoro-2,5-dimethoxybenzaldehyde(**68-i**).

¹H NMR (400 MHz, CDCl₃) δ 6.74 (d, J = 9.4 Hz, 1H), 6.66 (d, J = 12.8 Hz, 1H), 3.15 – 2.74 (m, 1H), 4.54 – 4.16 (m, 1H), 3.83 (d, J = 0.7 Hz, 3H), 3.77 (s, 3H), 3.71 (s, 3H), 3.15 – 2.74 (m, 2H), 1.39 (s, 10H).

¹³C NMR (100 MHz, CDCI₃) & 172.64, 155.14, 151.82 (d, J = 244.7 Hz), 151.71 (d, J = 8.1 Hz), 140.92 (d, J = 11.0 Hz), 119.84 (d, J = 3.8 Hz), 117.17 (d, J = 3.1 Hz), 100.49 (d, J = 22.4 Hz), 79.69, 57.25, 56.03, 53.93, 52.12, 32.46, 28.27.

¹⁹F NMR (376 MHz, CDCl₃) δ -133.20 - -133.76 (m).

HRMS (ESI): Calculated for C₁₂H₁₇FNO₄ (M+H)⁺: 258.1136; found: 258.1130.

4-fluoro-2,5-dimethoxybenzaldehyde(68-i). The title compound was prepared from reported procedure²⁷.

¹H NMR (400 MHz, CDCl₃) δ 10.36 (s, 1H), 7.44 (d, *J* = 9.7 Hz, 1H), 6.78 (d, *J* = 12.4 Hz, 1H), 3.882 (s, 3H), 3.879 (s, 3H).

¹³**C NMR (100 MHz, CDCl₃)** δ 188.05 (d, *J* = 1.3 Hz), 157.36 (d, *J* = 9.1 Hz), 157.27 (d, *J* = 256.6 Hz), 142.17 (d, *J* = 11.4 Hz), 120.65 (d, *J* = 3.3 Hz), 112.00 (d, *J* = 4.7 Hz), 101.33 (d, *J* = 22.6 Hz) 56.59,

56.32. ¹**°F NMR (376 MHz, CDCI₃)** δ -120.04 (dd, *J* = 12.4, 9.7 Hz)

L-61

HPLC conditions: Column: Phenomenex, Lux® 5 µm Cellulose-1, 250 x 4.6 mm LC Column. Solvent A: Hexane; Solvent B: isopropanol. Isocratic elution at 10% solvent B. Flow rate: 1 ml/min.

methyl (R)-2-((tert-butoxycarbonyl)amino)-3-(4-fluoro-2-methoxyphenyl)propanoate(D-61). Follow the same preparation procedure of compound L-61, the title compound was obtained as а white solid (136 mg, 90% yield) with catalyst 1,2-Bis((2R,5R)-2,5diethylphospholano)benzene(cyclooctadiene)rhodium(I) tetrafluoroborate (10 mg, 3.3% mmol). Spectral data matched racemic compound 61. The enantiomeric excess was determined to be 97% under the same HPLC conditions with L-61.

methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-4,5-dimethoxyphenyl)propanoate(*L*-64-F). Follow the preparation procedure of compound *L*-61, the title compound was obtained as a white solid (168 mg, 93%) from the asymmetric reduction of methyl (Z)-2-((tertbutoxycarbonyl)amino)-3-(2-fluoro-4,5-dimethoxyphenyl)acrylate(180 mg, 0.51 mmol) with the same rhodium catalyst (11 mg, 3.3% mmol). The enantiomeric excess was determined to be 99% under the same HPLC conditions with *L*-61. Spectral data matched racemic compound 64.

methyl

(S)-2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-4,5-

bis(methoxymethoxy)phenyl)propanoate(L-65). Follow the same preparation procedure of compound **L-61**, the title compound was obtained as a colorless oil (478 mg, 95%) from the asymmetric reduction of methyl (Z)-2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-4,5-bis(methoxymethoxy)phenyl)acrylate (500 mg, 1.2 mmol) with the same rhodium catalyst(26 mg, 3.3% mmol). Spectral data matched racemic compound **65.** The enantiomeric excess was determined to be > 99%.

HPLC conditions: Column: Phenomenex, Lux® 5 µm Cellulose-2, 250 x 4.6 mm LC Column. Solvent A: Hexane; Solvent B: isopropanol. Isocratic elution at 10% solvent B. Flow rate: 1 ml/min.

Supplementary Figure 4. Determination of enantiomeric excess of L-65

General procedure for deprotection of tyrosine derivatives (general procedure C)

To a solution of tyrosine derivatives (**54-63**) in methanol (10 ml) was added NaOH solution (20%, 2 ml). The solution was stirred for 4 h and then concentrated to remove the methanol. Water and Et₂O was added to the resulted solution. The aqueous phase was collected and neutralize with HCl (aq. 1N). The solution was extracted with ethyl acetate (3 x15 ml). The organic phase was combined and washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure to give the hydrolysis product which was dissolved in dioxane (10 ml). After adding HCl (12 N, 2 mL), the solution was refluxed for 2h and then concentrated. The crude product was triturated with Et₂O and filtered to give the amino acid hydrochloride salt.

2-amino-3-(3-fluoro-4-methoxyphenyl)propanoic acid hydrochloride(54-F-COOH). Follow the general procedure **C**, the title compound was obtained as a white solid (218 mg, 88%) from **54** (327 mg, 1mmol).

¹H NMR (400 MHz, D₂O) δ 7.24 – 6.90 (m, 3H), 4.26 (dt, J = 34.2, 17.2 Hz, 1H), 3.85 (s, 3H), 3.24 (dd, J = 14.7, 5.6 Hz, 1H), 3.13 (dd, J = 14.7, 7.5 Hz, 1H).

¹³C NMR (100 MHz, D₂O) δ 171.22, 151.72 (d, J = 243.4 Hz), 146.26 (d, J = 10.6 Hz), 126.92 (d, J = 6.5 Hz), 125.61 (d, J = 3.5 Hz), 116.60 (d, J = 18.6 Hz), 114.13 (d, J = 2.0 Hz), 56.03, 53.91, 34.54.
¹⁹F NMR (376 MHz, D₂O) δ -103.59 - -161.95 (m).

HRMS (ESI): Calculated for C10H13FNO3 (M+H)+: 214.0874; found: 214.0866.

2-amino-3-(2-fluoro-4-methoxyphenyl)propanoic acid hydrochloride(55-F-COOH). Follow the general procedure **C**, the title compound was obtained as a light-brown solid (64 mg, 85%) from compound **55** (98 mg, 0.3 mmol).

¹H NMR (400 MHz, D₂O) δ 7.32 - 7.18 (m, 1H), 6.87 - 6.74 (m, 2H), 4.28 (dd, J = 7.3, 5.9 Hz, 1H),
3.86 - 3.76 (m, 3H), 3.34 (dd, J = 14.8, 5.5 Hz, 1H), 3.19 (dd, J = 14.8, 7.3 Hz, 1H).

¹³C NMR (100 MHz, D_2O) δ 171.43, 161.67 (d, J = 244.0 Hz), 160.08 (d, J = 10.0 Hz), 132.14 (d, J = 6.1 Hz), 112.91 (d, J = 16.3 Hz), 110.54 (d, J = 2.9 Hz), 101.82 (d, J = 25.9 Hz), 55.61, 53.41, 28.87. ¹⁹F NMR (376 MHz, D_2O) δ -115.50 - -115.67 (m).

HRMS (ESI): Calculated for C₁₀H₁₃FNO₃ (M+H)+: 214.0874; found: 214.0868.

56-F-COOH

2-amino-3-(2-fluoro-3-methoxyphenyl)propanoic acid hydrochloride(56-F-COOH). Follow the general procedure **C**, the title compound was obtained as a light-brown solid (60 mg, 80%) from compound **56** (98 mg, 0.3 mmol).

¹H NMR (400 MHz, D₂O) δ 7.20 – 7.10 (m, 2H), 6.92 (td, J = 6.9, 2.3 Hz, 1H), 4.30 (dd, J = 7.4, 6.0 Hz, 1H), 3.91 (s, 3H), 3.40 (dd, J = 15.1, 5.4 Hz, 1H), 3.32 – 3.16 (m, 1H).

¹³C NMR (100 MHz, D₂O) & 171.39, 150.68 (d, J = 242.6 Hz), 146.94 (d, J = 10.8 Hz), 124.79 (d, J = 4.6 Hz,), 122.87 (d, J = 3.1 Hz, 16H), 121.80 (d, J = 13.1 Hz, 7H), 113.61 (d, J = 1.6 Hz, 16H), 56.13 (s, 14H), 53.31 (s, 18H), 29.25 (d, J = 3.1 Hz, 17H).

¹⁹**F NMR (376 MHz, D₂O)** δ -140.99 (†, *J* = 6.9 Hz).

HRMS (ESI): Calculated for C₁₀H₁₃FNO₃ (M+H)+: 214.0874; found: 214.0867.

2-amino-3-(4-fluoro-3-methoxyphenyl)propanoic acid hydrochloride(57-F-COOH). Follow the

general procedure **C**, the title compound was obtained as a white solid (223 mg, 90%) from compound **57** (327 mg, 1mmol)

¹H NMR (400 MHz, D₂O) δ 7.14 (dd, J = 11.6, 8.3 Hz, 1H), 7.03 (dd, J = 8.2, 1.9 Hz, 1H), 6.94 – 6.80 (m, 1H), 4.31 (dd, J = 7.6, 5.7 Hz, 1H), 3.87 (s, 3H), 3.30 (dd, J = 14.6, 5.6 Hz, 1H), 3.18 (dd, J = 14.7, 7.6 Hz, 1H).

¹³C NMR (100 MHz, D₂O) δ 171.39, 151.47 (d, J = 242.8 Hz), 146.92 (d, J = 10.9 Hz), 130.56 (d, J = 3.8 Hz,), 122.09 (d, J = 7.3 Hz), 116.19 (d, J = 18.4 Hz), 114.58, 56.04, 54.07, 35.18.

¹⁹F NMR (376 MHz, D₂O) δ -137.79 – -137.93 (m).

HRMS (ESI): Calculated for C10H13FNO3 (M+H)+: 214.0874; found: 214.0868.

2-amino-3-(2-fluoro-5-methoxyphenyl)propanoic acid hydrochloride(58-F-COOH). Follow the general procedure **C**, the title compound was obtained as a white solid (70 mg, 90%) from compound **58-F** (100 mg, 0.31 mmol).

¹**H NMR (400 MHz, D₂O)** δ 7.13 (†, *J* = 9.3 Hz, 1H), 6.95 (d†, *J* = 9.0, 3.7 Hz, 1H), 6.90 (dd, *J* = 6.0, 3.1 Hz, 1H), 4.32 (†, *J* = 6.6 Hz, 1H), 3.80 (s, 3H), 3.37 (dd, *J* = 14.8, 5.8 Hz, 1H), 3.21 (dd, *J* = 14.7, 7.5 Hz, 1H).

¹³C NMR (100 MHz, D_2O) δ 171.28, 155.73 (d, J = 236.7 Hz), 155.08 (d, J = 1.9 Hz), 121.72 (d, J = 17.9 Hz), 116.50 (d, J = 4.1 Hz), 116.32 (d, J = 23.9 Hz), 114.98 (d, J = 8.4 Hz), 55.81, 53.27, 29.61. ¹⁹F NMR (376 MHz, D_2O) δ -127.93 - -128.46 (m).

HRMS (ESI): Calculated for C₁₀H₁₃FNO₃ (M+H)+: 214.0874; found: 214.0867.

2-amino-3-(2,4-difluoro-5-methoxyphenyl)propanoic acid hydrochloride(59-F-COOH). Follow the general procedure **C**, the title compound was obtained as a light-brown solid (69 mg, 89%) from compound **59** (100 mg, 0.29 mmol).

¹H NMR (400 MHz, D₂O) δ 7.13 – 6.99 (m, J = 9.6, 2.1 Hz, 2H), 4.30 (dd, J = 7.2, 6.0 Hz, 1H), 3.87 (s, 3H), 3.36 (dd, J = 14.9, 5.8 Hz, 1H), 3.22 (dd, J = 15.0, 7.4 Hz, 1H).

¹³**C** NMR (100 MHz, D_2O) δ 171.26, 154.50 (dd, J = 239.7, 10.9 Hz), 151.26 (dd, J = 246.7, 12.4 Hz), 143.56 (dd, J = 10.7, 3.0 Hz), 116.51 (dd, J = 17.2, 4.1 Hz), 115.87 (dd, J = 5.2, 2.7 Hz), 104.72 (dd, J = 28.0, 22.6 Hz), 56.68, 53.32, 29.11.

¹⁹F NMR (376 MHz, D₂O) δ -123.67 – -124.01 (m), -132.28 (ddd, J = 11.4, 9.6, 3.5 Hz). HRMS (ESI): Calculated for C₁₀H₁₂F₂NO₃ (M+H)⁺: 232.0780; found: 232.0774.

2-amino-3-(3-fluoro-2-methoxyphenyl)propanoic acid hydrochloride(**60-F-COOH**). Follow the general procedure **C**, the title compound was obtained as a white solid (62 mg, 83%) from compound **60** (98 mg, 0.3 mmol).

¹H NMR (400 MHz, D₂O) δ 7.25 – 7.02 (m, 3H), 4.37 – 4.26 (m, 1H), 3.42 (dd, J = 14.4, 6.0 Hz, 1H),
3.24 (dd, J = 14.4, 7.4 Hz, 1H).

¹³**C** NMR (100 MHz, D_2O) & 171.36, 155.12 (d, J = 245.9 Hz), 145.35 (d, J = 9.9 Hz), 128.44 (d, J = 2.2 Hz), 126.47 (d, J = 3.1 Hz), 124.52 (d, J = 8.2 Hz), 116.91 (d, J = 19.1 Hz), 61.29 (d, J = 6.2 Hz), 53.49, 30.48 (d, J = 2.5 Hz).

¹**⁹F NMR (376 MHz, D₂O)** δ -130.45 - -130.64 (m).

HRMS (ESI): Calculated for C₁₀H₁₃FNO₃ (M+H)+: 214.0874; found: 214.0867.

61-F-COOH

2-amino-3-(4-fluoro-2-methoxyphenyl)propanoic acid hydrochloride(**61-F-COOH**). Follow the general procedure **C**, the title compound was obtained as a white solid (65 mg, 87%) from compound **61** (98 mg, 0.3 mmol).

¹H NMR (400 MHz, D₂O) δ 7.22 (†, J = 7.5 Hz, 1H), 6.86 (dd, J = 11.2, 2.3 Hz, 1H), 6.73 (†d, J = 8.5, 2.4 Hz, 1H), 4.37 – 4.25 (m, 1H), 3.85 (s, 3H), 3.34 (dd, J = 14.5, 5.5 Hz, 1H), 3.15 (dd, J = 14.5, 7.2 Hz, 1H).

¹³C NMR (100 MHz, D₂O) δ 171.67, 163.27 (d, J = 243.7 Hz), 158.69 (d, J = 10.4 Hz), 132.09 (d, J = 10.3 Hz), 117.77 (d, J = 3.1 Hz), 107.03 (d, J = 21.4 Hz), 99.47 (d, J = 26.3 Hz), 55.41, 53.28, 30.25.
¹⁹F NMR (376 MHz, D₂O) δ -111.69 - -111.88 (m).

HRMS (ESI): Calculated for C10H13FNO3 (M+H)+: 214.0874; found: 214.0867.

2-amino-3-(5-fluoro-2-methoxyphenyl)propanoic acid trifluoroacetic acid(62-F-COOH). The title compound was obtained from our reported procedure²¹.

¹**H NMR (400 MHz, D₂O)** & 7.10 (td, J = 8.6, 3.0 Hz, 1H), 7.05 – 6.96 (m, 2H), 4.30 (dd, J = 6.9, 5.9 Hz, 1H), 3.84 (s, 3H), 3.36 (dd, J = 14.4, 5.5 Hz, 1H), 3.15 (dd, J = 14.4, 7.3 Hz, 1H).

¹³C NMR (100 MHz, D₂O) δ 171.65, 162.87 (q, J = 35.5 Hz), 156.51 (d, J = 236.5 Hz), 153.69 (d, J = 2.1 Hz), 123.64 (d, J = 7.7 Hz), 117.75 (d, J = 23.7 Hz), 116.24 (q, J = 291.7 Hz), 115.25 (d, J = 22.8 Hz), 112.20 (d, J = 8.5 Hz), 55.62, 53.31, 30.71.

¹⁹F NMR (376 MHz, D₂O) δ -75.65, -124.19 (†d, J = 8.7, 4.6 Hz).

2-amino-3-(4,5-difluoro-2-methoxyphenyl)propanoic acid hydrochloride(63-F-COOH). Follow the general procedure **C**, the title compound was obtained as a white solid (68 mg, 88%) from compound **62** (100 mg, 0.29 mmol).

¹**H NMR (400 MHz, D₂O)** δ 7.12 (dd, *J* = 11.6, 7.0 Hz, 1H), 7.00 (dd, *J* = 11.3, 7.2 Hz, 1H), 4.28 (dd, *J* = 7.2, 5.9 Hz, 1H), 3.89 (s, 3H), 3.32 (dd, *J* = 14.9, 5.7 Hz, 1H), 3.17 (dd, *J* = 14.9, 7.2 Hz, 1H).

¹³C NMR (100 MHz, D₂O) & 171.27, 157.16 (dd, J = 240.5, 2.4 Hz), 148.09 (dd, J = 239.3, 2.2 Hz), 147.44 (†, J = 12.1 Hz), 117.46 (dd, J = 20.8, 6.1 Hz), 112.35 (dd, J = 18.6, 6.7 Hz), 102.01 (d, J = 29.9 Hz), 56.35, 53.26, 28.67.

¹⁹**F NMR (376 MHz, D₂O)** δ -119.85 - -120.25 (m), -141.09 (ddd, J = 15.3, 11.6, 7.3 Hz). **HRMS (ESI):** Calculated for C₁₀H₁₂F₂NO₃ (M+H)⁺: 232.0780; found: 232.0774.

3. Radiolabeling experiments

3.1 Reagents and equipment information

All chemicals are analytical grade and used without further purification. Ultrapure water was obtained from a Millipore MilliQ Gradient A10 system. Pre-conditioned Sep-PAK® light QMA cartridge were purchased form ABX Corporation and were flushed with 10 ml of water before use. Photocatalyst **S1** was obtained from our previous reported procedure²¹. Tetrabutylammonium bicarbonate (TBAHCO₃) solution (20%, w/w) was prepared by bubbling CO₂ to the tetrabutylammonium hydroxide solution (54~56%, w/w) which was purchased from sigma-Aldrich. The pH of the TBAHCO₃ solution was in the range of 9.0 to 10.0. TBAHCO₃ MeCN solution (~60 mg/ml) was prepared as follows: 300 µl of TBAB solution (20%, w/w) was transferred into a 5 ml V-vial. The water was removed by lyophilization. The TBAHCO₃ concentrate was

azeotropically dried with anhydrous MeCN (1 ml) under a stream of argon gas at 100 $^{\circ}$ C and then dissolved in 1ml anhydrous MeCN and stored under N₂ for use.

The 450 nm blue diode laser (MDL-D-450, 450nm, the power rating was set to 3.5W after fiber coupling) used for the labeling reaction was purchased from Changchun New Industries Optoelectronics Tech. Co., Ltd. The blue LED lamp (A160WE TUNA BLUE, 40W) was purchased from Kessil. The irradiation wavelengths observed are centered around 456 nm, 390 nm and 427 nm, with the major irradiation peak centered around 456 nm. (Supplementary Figure 5). ¹⁸F activity was counted using a CRC-25 PET detector from Capintec. High- performance liquid

chromatography (HPLC) was accomplished on a SHIMADZU chromatography system (Model CBM-20A) and analyzed using LabSolutions software. The λ absorbance detector and the model 2200 scaler ratemeter radiation detector was added to the HPLC system.

[¹⁸F]FDOPA scale up synthesis was isolated on a PeakSimple chromatography system using peakSimple software(version 4.44) with a semi-preparation HPLC column.

Supplementary Figure 5. Irradiation profile for A160WE TUNA BLUE lamp.

3.2 General procedure for the preparation of [18F]TBAF

Anhydrous [¹⁸F]TBAF was obtained from our reported procedure¹⁵. [¹⁸F]Fluoride was produced via the ¹⁸O(p,n)¹⁸F reaction by proton irradiation (40 μ A, 45 min) of [¹⁸O]H₂O. The aqueous solution of [¹⁸F]fluoride was delivered into a hot cell and passed through a QMA cartridge (water preconditioning) to trap the [¹⁸F]fluoride. The [¹⁸F]fluoride was eluted into a 5 ml V-vial which sealed with a Teflon-lined septum screw cap with 600 μ L solution of 70 μ L tetrabutylammonium bicarbonate (TBAHCO₃) solution (20%, w/w), 53 μ l H₂O and 477 μ l MeCN. This solution was azeotropically dried with MeCN (1ml x 3) under stream of Argon at 100°C and then put under vacuum for 3 min. The resulting residue was diluted with ~1ml anhydrous MeCN to obtain the [¹⁸F]TBAF solution (typically1.6 -1.8 Ci) which was used for the labeling reaction.

3.3 General HPLC conditions

General HPLC conditions for crude reaction analysis (Radiochemical conversion calculation) Column: Phenomenex, Kinetex® 5 µm EVO C18 100 Å, 250 x 4.6 mm LC Column. Solvent A:

0.1%TFA water; Solvent B: 0.1%TFA acetonitrile.

Grad/isocrat: 0 to 2 min: isocratic elution at 5% solvent B, 2 to 22 min: 5% to 95% solvent B, 22 to 28.1 min: isocratic elution at 95% solvent B, 28.1 to 30 min: 95% to 5% solvent B, 30 to 35 min: isocratic elution at 5% solvent B. Flow rate: 1 ml/min.

General HPLC conditions for purification and co-injection

Column: Phenomenex, Kinetex® 5 µm F5 100 Å, 250 x 4.6 mm LC Column. Solvent A: 0.1%TFA water; Solvent B: 0.1%TFA acetonitrile; Isocratic elution at x % solvent B. Flow rate: 1 ml/min. x % = 35% for 36-¹⁸F, 38-¹⁸F; x %= 40% for 1-¹⁸F, 14-¹⁸F, 31-¹⁸F, 32-¹⁸F, 37-¹⁸F; x %= 45% for 5-¹⁸F, 12-¹⁸F, 41-¹⁸F-a; x %= 50% for 3-¹⁸F, 6-¹⁸F, 8-¹⁸F, 11-¹⁸F, 13-¹⁸F, 26-¹⁸F, 35-¹⁸F, 43-¹⁸F, 47-¹⁸F, L-64-¹⁸F; x %= 55% for 2-¹⁸F, 4-¹⁸F, 7-¹⁸F, 16-¹⁸F, 19-¹⁸F, 27-¹⁸F, 33-¹⁸F, 40-¹⁸F, 41-¹⁸F, 48-¹⁸F, 54-¹⁸F, 55-¹⁸F, 56-¹⁸F, 57-¹⁸F, 58-¹⁸F, 59-¹⁸F, 60-¹⁸F, 61-¹⁸F, 62-¹⁸F, 63-¹⁸F, L-65-¹⁸F, 66-¹⁸F, 67-¹⁸F, 68-¹⁸F; x %= 60% for 9-¹⁸F, 20-¹⁸F, 21-¹⁸F, 24-¹⁸F, 25-¹⁸F, 29-¹⁸F, 42-¹⁸F, 45-¹⁸F, 46-¹⁸F, 49-¹⁸F, 50-¹⁸F; x %= 65% for 52-¹⁸F; x %= 70% for 23-¹⁸F, 34-¹⁸F, 44-¹⁸F; x % = 75% for 28-¹⁸F.

Compound **10-1**⁸**F** was purified and characterized by isocratic elution at 30% solvent B using the crude analysis conditions; compound **30-**¹⁸**F** was purified and characterized using the same condition as the crude analysis HPLC conditions.

All the radiochemical reactions were subjected to radio-HPLC using this general HPLC condition unless otherwise noted.

3.4 General procedure for photoredox-mediated halide/18F interconversion

Follow the modified reported procedure¹⁵, the substrate (0.01 - 0.05 mmol) and photocatalyst (**S1**, 1.5 mg) were weighed into a 1.5 ml eppendorf tube and transferred (with solvent when the substrate is liquid or oil) into a 5 ml V-vial via pipette. DCE (300 μ l), anhydrous MeCN (45-65 μ l), [†]BuOH(400 μ l) and 25 μ l of TBAB in MeCN solution (~60 mg/ml) were sequentially added to the V-vial. Then a 10 - 30 μ l aliquot of [¹⁸F]TBAF in MeCN (typically 10-30 mCi) was added to the reaction vial via pipette. The reaction V-vial was then either fixed on an iron support and cooled using an ice bath or on a block without cooling. A needle connected to an N₂ filled balloon was inserted to the bottom of the V-vial and the reaction medium was continuously sparged throughout the entire reaction time. The reaction was then irradiated top-down with a laser (MDL-D-450, 450 nm, 3.5 W after fibre coupling) (Supplementary Figure 6) or a A160WE Tuna Blue Kessil LED lamp (Supplementary Figure 7) for 30 min. The resulting solution was diluted

and evenly mixed with MeCN (0.5 -1ml). An aliquot of the reaction mixture (typically 300-1000 μ Ci) was taken for radio-HPLC analysis. The activity injected into HPLC was measured (this activity was denoted by a) and the time was recorded. The fraction corresponding to radiolabeled product was collected and the activity was measured (this activity was denoted by β) and the time was recorded. The decay-corrected β could be calculated from the recorded isolation time of each substrate. The radiochemical conversion (RCC) was obtained by dividing the decay-corrected β by a. Co-injection of the purified ¹⁸F-labeled compound with commercial or synthesized ¹⁹F standard via HPLC was used to confirm the identity of the radiolabeled compound.

Supplementary Figure 6. Reaction set-up with laser under ice cooling(left) and room temperature(right)

Supplementary Figure 7. Reaction set-up with LED under ice cooling(left) and room temperature(right)

3.5. Radio-HPLC analysis and characterization for ¹⁸F-radiolabeled arenes

All ¹⁸F-labelling reactions were performed according to general procedure at section 3.4 unless otherwise noted. Each labeling reaction, starting activity ([¹⁸F]TBAF), injected and collected activities, isolation time, decay corrected activity and calculated radiochemical conversion (RCC) are summarized in a table for each substrate. All ¹⁸F-labeled products were analyzed and characterized according to the general HPLC conditions listed in Section 3.3. Crude radio-HPLC traces of each reaction (labled with reaction number), HPLC traces of purification and co-injection were listed. The collected ¹⁸F-labeled product from crude HPLC analysis may require further HPLC-purification before co-injection with its corresponding ¹⁹F standard. The red HPLC traces in the following spectra were obtained with a UV signal at 212 nm unless otherwise noted. The black HPLC traces represent the radio signal.

1		11.04 mCi	600 µCi	9 μCi	18 min	10.1 μCi	1. 7% a
2	1-0	7.84 mCi	279 µCi	33 µCi	17 min	36.7 μCi	13.2%
3		7.51 mCi	585 μCi	68 µCi	17 min	75.7 μCi	12.9%
4		7.52 mCi	755 μCi	84 µCi	17 min	93.5 μCi	12.4%
Average RCC: 12.8±0.3% (n=3, N ₂)							

^aReaction was conducted in the air.

Supplementary Table 1. HPLC-isolated RCCs of 1-18F

Supplementary Figure 8. Crude radio-HPLC traces from 1-CI to 1-18F

Supplementary Figure 9. Purification(left) and co-injection(right) of 1-18F

v	\$1 (1.5 mg) DCE: [†] BuOH:MeCN	18=
Â	(3:4:1, 800 µl)	
MeO	[¹⁸ F]TBAF, TBAHCO ₃	MeO
0.05 mmol	450 nm laser 30 min, 0°C, N ₂ atmospere	1- ¹⁸ F

Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)			
1		9.64 mCi	442 μCi	54 µCi	16 min	59.7 μCi	13.5%			
2	1-Br (X=Br)	8.58 mCi	341 μCi	30 µCi	16 min	33.2 µCi	9.7%			
3	-	7.5 mCi	324 µCi	32 µCi	16 min	35.4 μCi	10.9%			
	Average RCC of 1-18F from 1-Br: 11.4±1.6% (n=3)									
4	1-I (X=I)	12.42 mCi	668 μCi	9 μCi	16 min	10 µCi	1.5%			
5		11.53 mCi	540 µCi	386 µCi	20 min	432.5 μCi	80.1%			
6	1-F (X=F)	7.14 mCi	432 µCi	304 µCi	17 min	338.4 µCi	78.3%			
7	-	6.93 mCi	426 μCi	309 µCi	17 min	344.0 μCi	80.8%			
		Average	RCC of 1-18F	from 1-F: 79. 7	7±1.1% (n=3	3)				
8		12.44 mCi	496 µCi				n.d.			
9	1-1102(A-1102) -	16.11 mCi	501 µCi				n.d.			
10		8.24 mCi	313 µCi	29 µCi	16 min	32.1 μCi	10.3%			
11	1-OTf(X=OTf)	12.10 mCi	357 µCi	42 µCi	16 min	46.5 μCi	13.0%			
12	-	12.06 mCi	369 µCi	38 µCi	17 min	42.3 μCi	11.5%			

n.d., not detected

Supplementary Table 2. HPLC-isolated RCCs for 1-18F

Supplementary Figure 10. Crude radio-HPLC traces from 1-Br,1-I, 1-F,1-OTf to 1-18F

		ⁿ PrO 0.05 mmol	\$1 DCE: ¹ B (3: [¹⁸ F]TBA 450 r 30 min, 0°C	I (1.5 mg) UOH:MeCN 4:1, 800 μl) F, TBAHCO ₃ nm laser C, N ₂ atmospere	ⁿ PrO 2-¹⁸F	18F		
Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	lsolation time	Decay corrected dose	Radiochemical conversion (RCC)	
1		10.56 mCi	536 μCi	62 µCi	20 min	70.3 μCi	13.1%	
2	2	10.76 mCi	482 µCi	64 µCi	21 min	73.1 μCi	15.2%	
3	-	11.39 mCi	679 μCi	68 µCi	20 min	77.2 μCi	11.4%	
Average RCC: 13.2±1.6% (n=3)								

Supplementary Table 3. HPLC-isolated RCCs of 2-18F

Supplementary Figure 11. Crude radio-HPLC traces from 2 to 2-18F

Supplementary Figure 12. Purification (left) and co-injection(right) for 2-18F

		S1(1.5 mg) DCE: ¹ BuOH:MeCN (3:4:1, 800 μl) [¹⁹ F]TBAF, TBAHCO ₃ 450 nm laser 30 min, 0°C, N ₂ atmospere			ⁱ PrO 3- ¹⁸ F	1 ⁸ F	
Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)
1		8.42 mCi	867 μCi	212 µCi	20 min	240.5 μCi	27.7%
2	3	8.97 mCi	619 µCi	201 µCi	20 min	228.1µCi	36.8%
3	-	13.87 mCi	671 μCi	138 µCi	21 min	157.6 μCi	23.5%
			Averag	e RCC: 29.3±	5.6% (n=3)		

Supplementary Table 4. HPLC-isolated RCCs of 3-18F

Supplementary Figure 13. Crude radio-HPLC traces from 3 to 3-18F

Supplementary Figure 14. Purification (left) and co-injection(right) for 3-18F

Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)	
1		8.73 mCi	409 µCi	46 µCi	24 min	53.5 μCi	13.1%	
2	4-CI (X=CI)	9.85 mCi	302 µCi	34 µCi	19 min	38.3 μCi	12.6%	
3		8.41 mCi	354 µCi	36 µCi	19 min	40.6 µCi	11.5%	
		Average R	CC of 4-18F	from 4-CI: 12	. 4±0.7% (n=	3)		
4		12.99 mCi	811 µCi	577 μCi	21 min	658.8 μCi	81.2%	
5	4-F (X=F)	6.82 mCi	235 µCi	156 μCi	20 min	177.0 μCi	75.3%	
6		6.79 mCi	310 µCi	216 μCi	20 min	245.1 μCi	79.1%	
Average RCC of 4-¹⁸F from 4-F : 78.5±2.4% (n=3)								

Supplementary Table 5. HPLC-isolated RCCs of 4-18F

Supplementary Figure 15. Crude radio-HPLC traces from 4-CI and 4-F to 4-18F

Supplementary Figure 16. HPLC trace of purification of 4-18F from 4-F

Reaction	Substrate	Activity ([18 F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)	
1		11.68 mCi	445 μCi	238 µCi	19 min	268.3 μCi	60.3%	
2	5-Cl	11.55 mCi	540 μCi	242 μCi	19 min	272.8 μCi	50.5%	
3	-	10.56 mCi	443 μCi	263 μCi	20 min	298.4 μCi	67.4%	
		A	verage RCC	C: 59.4±6.6% (n=3)			
4	_	12.03 mCi	747 μCi	165 μCi	20 min	187.2 μCi	25.1%	
5	5 Cl a	7.99 mCi	374 μCi	166 μCi	20 min	188.3 µCi	50.4%	
6	- 5-Cl ^o	6.70 mCi	348 µCi	113 μCi	19 min	133.0 μCi	38.2%	
7		9.35 mCi	348 μCi	130 μCi	18 min	145.6 μCi	41.9%	
Average RCC: 38.9±9.1% (n=4, LED)								

^aBlue LED was used instead of laser.

Supplementary Table 6. HPLC-isolated RCCs of 5-18F

		S1(1.5 mg) DCE: ¹ BuOH:MeCN (3:4:1, 800 μl) [¹⁸ F]TBAF, TBAHCO ₃ 450 nm laser 30 min, 0°C, N ₂ atmospere		• ¹⁸ F 'BUO 5- ¹⁸ F			
Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)
1		13.05 mCi	446 μCi	179 μCi	20 min	203.1 μCi	45.5%
2	5-Br	9.95 mCi	410 µCi	200 µCi	19 min	225.5 μCi	55%
3	-	9.2 mCi	273 μCi	93 μCi	21 min	106.2 μCi	38.9%
			Averag	e RCC: 46.5±	7.0% (n=3)		

Supplementary Figure 19. Crude radio-HPLC traces from 5-Br to 5-18F

Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)	
1	5-I (X=I)	14.71 mCi	778 μCi	21 µCi	20 min	23.8 µCi	3.1%	
2		10.68 mCi	775 μCi	599 μCi	20 min	679.6 μCi	87.7%	
3	5-F (X=F)	5.90 mCi	336 µCi	268 μCi	19 min	302.2 μCi	89.9%	
4	-	11.98 mCi	489 µCi	366 μCi	20 min	415.3 μCi	84.9%	
		Average RC	C of 5-¹⁸F fro	om 5-F: 87.5±2	2.0% (n=3, lo	aser)		
5		11.64 mCi	322uCi	233 uCi	20 min	264.4 uCi	82.1%	
6	5-F (X=F)∝	9.53 mCi	403uCi	301 uCi	19 min	339.4 uCi	84.2%	
7	_	6.52 mCi	435 uCi	298 uCi	20 min	338.1 uCi	77.7%	
Average RCC of 5-¹⁸F from 5-F: 81.3±2.7% (n=3, LED)								

^aBlue LED was used instead of laser.

Supplementary Table 8. HPLC-isolated RCCs of 5-18F

Supplementary Figure 20. Crude radio-HPLC traces from 5-I and 5-F to 5-18F

		S1(1.5 mg) DCE: ¹ BuOH:MeCN (3:4:1, 800 μ) [¹⁸ F]TBAF, TBAHCO ₃ 450 nm laser 30 min, 0°C, N ₂ atmospere		Me MeO 6- ¹⁸ F			
Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)
1		10.89 mCi	344 μCi	46 μCi	19 min	51.9 μCi	15.1%
2	6	10.97 mCi	588 µCi	75 μCi	19 min	84.6 μCi	14.4%
3	-	21.2 mCi	611 μCi	87 μCi	19 min	98.1 μCi	16.1%
			Averag	e RCC: 15.2±	0.7% (n=3)		

Supplementary Table 9. HPLC-isolated RCCs of 6-18F

40

Supplementary Figure 21. Crude radio-HPLC traces from 6 to 6-18F

Supplementary Figure 22. Purification (left) and co-injection(right) for 6-18F

Reaction	Substrate	Activity ([18 F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)	
1		9.38 mCi	524 μCi	172 μCi	19 min	193.9 μCi	37%	
2	7	9.01 mCi	784 μCi	310 µCi	18 min	347.3 μCi	44.3%	
3	-	15.32 mCi	538 µCi	155 μCi	18 min	173.7 μCi	32.3%	
	Average RCC: 37.9±5.0% (n=3)							

Supplementary Figure 23. Crude radio-HPLC traces from 7 to 7-18F

Supplementary Figure 24. Purification (left) and co-injection(right) for 7-18F

		MeO 0.05 mmol	s DCE: ¹ E (3 [¹⁸ F]TB <i>A</i> 450 30 min, 0°0	1 (1.5 mg) 30OH:MeCN (4:1, 800 μl) (4:1, 800 μl) (4:1, 800 μl) (4:1, 800 μl) (5:1, 800 μl) (5:1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	MeO 8-18	18 18 F			
Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	lsolation time	Decay corrected dose	Radiochemical conversion (RCC)		
1		10.94 mCi	463 μCi	74 µCi	17 min	82.4 μCi	17.8%		
2	8	11.43 mCi	932 μCi	151 μCi	16 min	167.1 μCi	17.9%		
3	-	8.47 mCi	412 μCi	100 μCi	16 min	110.6 μCi	26.8%		
	Average RCC: 20.8±4.0% (n=3)								

Supplementary Figure 25. Crude radio-HPLC traces from 8 to 8-18F

Supplementary Figure 26. Purification (left) and co-injection(right) for 8-18F

		MeO 0.05 mmol	S DCE: ¹ E (3 [¹⁸ F]TB/ 450 30 min, 0°0	1 (1.5 mg) BuOH:MeCN :4:1, 800 μl) AF, TBAHCO ₃ nm laser C, N ₂ atmospere	Ph MeO 9_18	18F F		
Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)	
1		12.07 mCi	518 μCi	180 μCi	22 min	206.8 µCi	39.9%	
2	9	11.84 mCi	702 µCi	244 μCi	22 min	280.4 µCi	39.9%	
3	-	10.21 mCi	668 µCi	240 μCi	21 min	274.0 μCi	41.0%	
	Average RCC: 40.3±0.5% (n=3)							

Supplementary Figure 27. Crude radio-HPLC traces from 9 to 9-18F

		MeO 0.05 mmol	S DCE: ¹ I (3 [¹⁸ F]TB, 450 30 min, 0°	1 (1.5 mg) 3uOH:MeCN :4:1, 800 μl) AF, TBAHCO ₃ nm laser C, N ₂ atmospere	MeO	Me 1 ⁸ F	
Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	lsolation time	Decay corrected dose	Radiochemical conversion (RCC)
1		12.32 mCi	506 μCi	364 μCi	17 min	405.2 μCi	80.1%
2	10-CI	9.82 mCi	520 μCi	336 µCi	17 min	225.5 μCi	71.9%
3	_	14.71 mCi	450 µCi	301 µCi	16 min	333.0 μCi	74.0%

Supplementary Figure 29. Crude radio-HPLC traces from 10-CI to 10-18F

Supplementary Figure 30. Purification (left) and co-injection(right) for 10-18F

MeO [¹⁸ F]TBAF, TBAHCO ₃ MeO [¹⁸ F] 0.05 mmol 450 nm laser 30 min, 0°C, N ₂ atmospere 10-¹⁸F	OMe X	\$1(1.5 mg) DCE: [!] BuOH:MeCN (3:4:1, 800 μl)	OMe 18F
0.05 mmol 450 nm laser 10-¹⁸F 30 min, 0°C, N ₂ atmospere	MeO	[¹⁸ F]TBAF, TBAHCO ₃	MeO
	0.05 mmol	450 nm laser 30 min, 0°C, N ₂ atmospere	10- ¹⁸ F

Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	lsolation time	Decay corrected dose	Radiochemical conversion (RCC)		
1		8.93 mCi	386 µCi	140 μCi	17 min	155.9 μCi	40.4%		
2	10-Br (X=Br)	11.93 mCi	377 μCi	126 μCi	15 min	138.5 μCi	36.7%		
3		8.98 mCi	415 μCi	154 μCi	16 min	170.4 μCi	41.1%		
Average RCC of 10-18F from 10-Br:39.4±1.9% (n=3)									
4	10-I (X=I)	12.52 mCi	346 μCi	16 μCi	17 min	17.8 μCi	5.1%		

5		12.48 mCi	712 μCi	315 μCi	17 min	432.5 µCi	49.3%	
6	10-NO ₂ (X=NO ₂)	11.28 mCi	333 µCi	134 μCi	16 min	148.2 μCi	44.5%	
7	-	16.05 mCi	412 μCi	192 μCi	16 min	212.4 μCi	51.2%	
Average RCC of 10-¹⁸F from 10- NO 2: 48.3±2.8% (n=3)								

Supplementary Table 14. HPLC-isolated RCCs of 10-18F

Supplementary Figure 31. Crude radio-HPLC traces from 10-Br, 10-I, 10-NO2 to 10-18F

		MeO 0.05 mmol	\$1 DCE: ¹ Bu (3:4 [¹⁸ F]TBAI 450 n 30 min, 0°C	(1.5 mg) JOH:MeCN 1:1, 800 μl) F, TBAHCO ₃ Im laser :, N ₂ atmospere	ом мео 11- ¹⁸	e OMe F	
Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)
1		10.66 mCi	491 μCi	71 μCi	18 min	79.5 μCi	16.2%
2	11	9.53 mCi	526 μCi	84 µCi	16 min	92.9 μCi	17.7%
3	-	11.79 mCi	736 µCi	81 µCi	16 min	90.8 μCi	12.3%
			Averag	e RCC: 15.4±	2.3% (n=3)		

Supplementary Table 15. HPLC-isolated RCCs of 11-18F

Supplementary Figure 32. Crude radio-HPLC traces from 11 to 11-18F

Supplementary Figure 33. Purification (left) and co-injection for 11-18F

		OMe MeO 0.05 mmol	\$1 (DCE: ¹ Bu (3:4: [¹⁸ F]IBAF 450 ni 30 min, 0°C,	1.5 mg) OH:MeCN :1, 800 μl) , TBAHCO ₃ m laser N ₂ atmospere	оме мео 12- ¹⁸	CHO			
Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	lsolation time	Decay corrected dose	Radiochemical conversion (RCC)		
1		9.95 mCi	372 µCi	135 μCi	17 min	150.3 μCi	40.4%		
2	12	11.22 mCi	355 μCi	129 μCi	17 min	143.6 μCi	40.5%		
3		9.64 mCi	451 μCi	127 μCi	17 min	141.4 μCi	31.4%		
	Average RCC: 37.4±4.3% (n=3)								

Supplementary Table 16. HPLC-isolated RCCs of 12-18F

Supplementary Figure 34. Crude radio-HPLC traces from 12 to 12-18F

Supplementary Figure 35. Purification (left) and co-injection(right) for 12-18F

Reaction	Substrate	([¹⁸ F]TBAF)	dose	dose	time	corrected dose	conversion (RCC)	
1		12.18 mCi	503 μCi	328 µCi	16 min	362.9 μCi	72.1%	
2	13	8.98 mCi	800 µCi	565 μCi	17 min	629.0 μCi	78.6%	
3		13.71 mCi	902 μCi	688 µCi	17 min	766.0 μCi	84.9%	
			Average	e RCC: 78.5±	5.2% (n=3)			

Supplementary Table 17. HPLC-isolated RCCs of 13-18F

Supplementary Figure 36. Crude radio-HPLC traces from 13 to 13-18F

Supplementary Figure 37. Purification (left) and co-injection(right) for 13-18F

Reaction	Substrate	Activity ([18 F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)	
1		13.02 mCi	524 μCi	214 µCi	16 min	236.8 μCi	45.2%	
2	14	8.35 mCi	308 µCi	92 μCi i	16 min	101.8 μCi	33%	
3	-	6.68 mCi	476 μCi	192 μCi	17 min	213.8 μCi	44.9%	
	Average RCC: 41.0±4.7% (n=3)							

Supplementary Figure 38. Crude radio-HPLC traces from 14 to 14-18F

Supplementary Figure 39. Purification (left) and co-injection(right) for 14-18F

OMe CI	\$1(1.5 mg) DCE: [!] BυOH:MeCN (3:4:1, 800 μl)	OMe
MeO	[¹⁸ F]TBAF, TBAHCO ₃	MeO
CI	450 nm laser	CI
0.05 mmol	30 min, 0°C, N ₂ atmospere	15- ¹⁸ F

Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)	
1		9.79 mCi	328 µCi	187 μCi	19 min	210.8 µCi	64.3%	
2	15	8.91 mCi	566 μCi	283 μCi	19 min	319.1 μCi	56.4%	
3		12.10 mCi	520 μCi	271 μCi	19 min	305.5 µCi	58.8%	
	Average RCC: 59.8±3.3% (n=3)							

Supplementary Table 19. HPLC-isolated RCCs of 15-18F

Supplementary Figure 40. Crude radio-HPLC traces from 15 to 15-18F

Supplementary Figure 41. Purification (left) and co-injection(right) for 15-18F

		MeO Br 0.05 mmol	\$1 (1.5 mg) DCE: ¹ BuOH:MeCN (3:4:1, 800 μl) [¹⁸ F]TBAF, TBAHCO ₃ 450 nm laser 30 min, 0°C, N ₂ atmospere		• Meo He Br 16- ¹⁸ F				
Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	lsolation time	Decay corrected dose	Radiochemical conversion (RCC)		
1		10.09 mCi	477 μCi	48 µCi	19 min	54.1 μCi	11.3%		
2	16 ª	11.26 mCi	350 µCi	44 µCi	19 min	49.6 μCi	14.2%		
3		9.13 mCi	395 μCi	64 µCi	18 min	71.7 μCi	18.2%		
	Average RCC: 14.6±2.8% (n=3)								

aSubstrate precipitated out during the reaction.

Supplementary Table 20. HPLC-isolated RCCs of 16-18F

Supplementary Figure 42. Crude radio-HPLC traces from 16 to 16-18F

Supplementary Figure 43. Purification (left) and co-injection(right) for 16-18F

		OR CI	S1 (1.5 mg) DCE: ¹ BuOH:MeCN (3:4:1, 800 µl) [¹⁸ F]TBAF, TBAHCO ₃				
		0.05 mmol	450 nm laser 30 min, 0°C, N ₂ atmospere		17- ¹⁸ F (R=Me) 18- ¹⁸ F (R= ⁱ Pr)		
Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)
1	17 (R=Me)	12.69 mCi	533 µCi				trace
2	18 (R= ^{<i>i</i>} Pr)	9.39 mCi	519 μCi	33 µCi	19 min	37.2 μCi	7.2%

Supplementary Table 21. HPLC-isolated RCCs of 17-18F, 18-18F

Supplementary Figure 44. Crude radio-HPLC traces from 17,18 to 17-18F, 18-18F.

Reactior	n Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)		
1		9.21mCi	729 μCi	68 µCi	19 min	77.2 μCi	10.5%		
2	19-Cl	9.40 mCi	837 µCi	53 µCi	20 min	60.1 µCi	7.2%		
3		9.83 mCi	451 μCi	37 µCi	19 min	41.7 μCi	9.2%		
		Average R	CC of 19-¹⁸F	from 19-CI: 9	7.0±1.4% (n=	=3)			
4		15.13 mCi	624 μCi	183 μCi	20 min	207.6 μCi	33.3%		
5	19-F ^α (X=F, R= ^t B∪)	11.71mCi	726 μCi	237 µCi	19 min	267.2 μCi	36.8%		
6		9.45 mCi	285 μCi	71 μCi	19 min	80.1 μCi	28.1%		
Average RCC of 19-18F from 19-F : 32.7±3.6% (n=3)									

Supplementary Table 22. HPLC-isolated RCCs of 19-18F

Supplementary Figure 45. Crude radio-HPLC traces from 19-Cl to 19-18F

Supplementary Figure 46. Purification (left) and co-injection(right) for 19-18F

O ⁱ Pr Cl	\$1(1.5 mg) DCE: [!] BuOH:MeCN (3:4:1, 800 μl)	O ⁱ Pr
Me	[¹⁸ F]TBAF, TBAHCO ₃	Me
0.05 mmol	30 min, 0°C, N ₂ atmospere	20- ¹⁸ F

Reaction	Substrate	Activity ([18 F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)		
1		9.55 mCi	437 μCi	119 μCi	20 min	135 µCi	30.9%		
2	20	10.96 mCi	459 μCi	110 μCi	21 min	125.6 μCi	27.4%		
3		8.89 mCi	609 µCi	159 μCi	21 min	181.5 μCi	29.8%		
	Average RCC: 29.4±1.5% (n=3)								

Supplementary Table 23. HPLC-isolated RCCs of 20-18F

Supplementary Figure 47. Crude radio-HPLC traces from 20 to 20-18F

Supplementary Figure 48. Purification (left) and co-injection for 20-18F

Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	lsolation time	Decay corrected dose	Radiochemical conversion (RCC)		
1		12.59 mCi	541 μCi	72 µCi	20 min	81.7 μCi	15.1%		
2	21-CI (X=CI)	12.06 mCi	415 μCi	43 µCi	20 min	48.8 µCi	11.8%		
3		10.86 mCi	355 μCi	35 µCi	19 min	39.5 μCi	11.1%		
		Average RCC	C of 21-¹⁸F fr	om 21-CI : 12	2. 7±1.7% (n=	=3)			
4		5.23 mCi	300 µCi	150 μCi	20 min	170.2 μCi	56.7%		
5	21-F ° (X=F)	6.67 mCi	329 μCi	138 μCi	20 min	156.6 μCi	47.6%		
6	6	10.79 mCi	338 µCi	151 μCi	20 min	171.3 μCi	50.7%		
Average RCC of 21-18F from 21-F : 51.7±3.8% (n=3)									

°0.02 mmol substrate.

Supplementary Table 24. HPLC-isolated RCCs of 21-18F

Supplementary Figure 49. Crude radio-HPLC traces from 21-Cl and 21-F to 21-18F

Supplementary Figure 50. Purification of 21-18F

		RO 0.05 mmol	\$1 DCE: ¹ Bu (3:4 [¹⁸ F]TBA 450 30 min, 0°C	(1.5 mg) JOH:MeCN I:1, 800 µl) NF, TBAHCO ₃ nm laser C, N ₂ atmospere	22- ¹⁸ F (R=M 23- ¹⁸ F (R=P	ie) r)	
Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)
1	22(R=Me)	12.07 mCi	321 μCi	13 μCi	21 min	37.2 μCi	4.6%
2		13.69 mCi	374 µCi	51 μCi	22 min	58.6 μCi	15.7%
3	23(R='Pr)	11.28 mCi	307 µCi	34 μCi	22 min	39.1 μCi	12.7%
4	-	10.20 mCi	439 μCi	47 μCi	22 min	54.0 μCi	12.3%

Supplementary Figure 51. Crude radio-HPLC traces from 22 and 23 to 22-18F and 23-18F

Supplementary Figure 52. Purification (left) and co-injection(right) for 23-18F

Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)		
1		9.33 mCi	725 µCi	87 µCi	21 min	99.3 μCi	13.2%		
2	24-F	12.11 mCi	362 μCi	44 µCi	20 min	49.9 μCi	13.8 %		
3		12.26 mCi	492 μCi	101 μCi	20 min	114.6 μCi	23.3%		
Average RCC: 16.8±4.6% (n=3)									

24-¹⁸F

Supplementary Table 26. HPLC-isolated RCCs of 24-18F

Supplementary Figure 53. Crude radio-HPLC traces and purification of 24-18F

Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	lsolation time	Decay corrected dose	Radiochemical conversion (RCC)		
1 °		16.00 mCi	920 μCi	425 µCi	21 min	485.3 μCi	52.7%		
2 °	25 E (Y E)	6.59 mCi	396 μCi	259 μCi	21 min	295.7 μCi	74.7%		
3 ª	23-6 (X-6) -	5.94 mCi	314 μCi	162 μCi	21 min	185.0 μCi	58.9%		
4		11.21 mCi	749 μCi	491 μCi	23 min	567.7 μCi	75.8%		
		Average I	RCC of 25-18	F from 25-F: 62	2.1 ±9.2% (n=	3)			
5		8.75 mCi	641 μCi	74 μCi	21 min	84.5 μCi	13.2%		
6	25-CI (X=CI)	12.55 mCi	976 μCi	77 μCi	21min	87.9 μCi	9.0%		
7		16.47 mCi	733 µCi	69 µCi	22 min	79.3 μCi	10.8%		
Average RCC of 25- ¹⁸ F from 25-Cl: 11.0%±1.7% (n=3)									

°0.01 mmol substrate.

Supplementary Table 27. HPLC-isolated RCCs of 25-18F

Supplementary Figure 54. Crude radio-HPLC traces from 25-CI and 25-F to 25-18F

Supplementary Figure 55. Purification (left) and co-injection(right) for 25-18F

		S1(1.5 mg) DCE: ¹ BuOH:MeCN (3:4:1, 800 μl) [¹⁹ F]TBAF, TBAHCO ₃ 450 nm loser 0.01 mmol 30 min, 0°C, N ₂ atmospere		26- ¹⁸ F (R=AC) 27- ¹⁸ F (R=C(O)Ph)							
Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	lsolation time	Decay corrected dose	Radiochemical conversion (RCC)				
1		8.59 mCi	492 µCi	178 μCi	17 min	198.2 μCi	40.3%				
2	26 (R=Ac)	10.61 mCi	427 µCi	164 μCi	16 min	181.4 μCi	42.5%				
3		7.67 mCi	308 µCi	90 µCi	16 min	99.6 μCi	32.3%				
		Averag	e RCC of 2	6- ¹⁸ F: 38.4%±	4.4% (n=3)						
4		16.61 mCi	750 μCi	217 μCi	20 min	246.2 μCi	32.8%				
5	27 (R=COPh)	17.46 mCi	523 μCi	104 μCi	21 min	118.7 μCi	22.7%				
6		11.55 mCi	396 µCi	147 μCi	19 min	165.7 μCi	41.8%				
	Average RCC of 27-18F:32.4%±7.8% (n=3)										

Supplementary Table 28. HPLC-isolated RCCs of 26-18F and 27-18F

Supplementary Figure 56. Crude radio-HPLC traces for 26-18F and 27-18F

Supplementary Figure 57. HPLC traces of purification of 26-18F and 27-18F

Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)		
1		15.18mCi	558 μCi	205 µCi	25 min	240.1 μCi	43.0%		
2	28-F ° (X=F)	8.98 mCi	535 µCi	224 μCi	24 min	260.7 μCi	48.7%		
3		7.03 mCi	472 μCi	238 µCi	23 min	275.2 μCi	58.3%		
		Average RCC	C of 28-¹⁸F fr	om 28-F : 50.	0%±6.3% (n	=3)			
4		9.88 mCi	602 μCi	54 µCi	25 min	63.2 μCi	10.5%		
5	28-CI (X=CI)	10.68 mCi	499 μCi	39 µCi	25 min	45.7 μCi	9.2%		
6		15.66 mCi	742 μCi	77 µCi	25 min	90.2 μCi	12.2%		
Average RCC of 28-18F from 28-CI : 10.7±1.2% (n=3)									

°0.01 mmol substrate.

Supplementary Table 29. HPLC-isolated RCCs of 28-18F

Supplementary Figure 58. Crude radio-HPLC traces from 28-F and 28-CI to 28-18F

Supplementary Figure 59. Purification (left) and co-injection(right) for 28-18F

Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)		
1		14.86 mCi	555 μCi	188 μCi	25 min	220.1 μCi	39.7%		
2	29	9.16 mCi	298 μCi	75 μCi	22 min	86.2 μCi	28.9%		
3		10.37 mCi	382 μCi	108 μCi	23 min	124.9 μCi	32.7%		
Average RCC: 33.8±4.5% (n=3)									

Supplementary Table 30. HPLC-isolated RCCs of 29-18F

Supplementary Figure 60. Radio-HPLC traces and purification of 29-18F

		Me Me Me	\$1(1.5 mg) DCE [:] BuOH:MeCN (3:4:1, 800 μl) [¹⁸ F]TBAF, TBAHCO ₃ 450 nm laser 30 min, 0°C, N ₂ atmospere		Me Me ¹⁸ F 30- ¹⁸ F		
Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	lsolation time	Decay corrected dose	Radiochemical conversion (RCC)
1		15.66 mCi	349 µCi	231 µCi	12 min	249.2 μCi	71.4%
2	30-F (X=F)	11.33 mCi	405 µCi	260 μCi	12 min	280.5 μCi	69.3%
3		9.28 mCi	459 μCi	266 μCi	14 min	290.6 μCi	63.3%
	Average RCC of 30-¹⁸F from 30-F : 68.0%±3.4% (n=3)						
4	- 30-CI ª (X=CI)	12.81 mCi	449 µCi	59 µCi	12 min	63.6 μCi	14.2%
5		6.59 mCi	286 μCi	42 µCi	12 min	46.5 μCi	16.1%

6	11.87 mCi	338 µCi	57 µCi	11 min	61.1 μCi	18.1%
	Average RC	C of 30-¹⁸F fr	rom 30-CI : 10	6.1%±1.6% (r	n=3)	

°0.05 mmol substrate.

Supplementary Table 31. HPLC-isolated RCCs of 30-18F

Supplementary Figure 61. Radio-HPLC traces from 30-F and 30-Cl to 30-18F

Supplementary Figure 62. Purification of 30-18F

Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)	
1		16.44 mCi	863 µCi	361 μCi	15 min	396.9 μCi	46%	
2	31	5.91 mCi	339 µCi	106 μCi	15 min	116.5 μCi	34.4%	
3		12.62 mCi	489 µCi	149 μCi	16 min	164.8 μCi	33.7%	
Average RCC: 38.0%±5.6% (n=3)								

Supplementary Figure 63. Radio-HPLC traces and purification of 31-18F

Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	lsolation time	Decay corrected dose	Radiochemical conversion (RCC)	
1		9.54 mCi	528 μCi	189 μCi	17 min	210.4 μCi	39.9%	
2	32	7.95 mCi	448 μCi	133 μCi	16 min	147.1 μCi	32.8%	
3		6.39 mCi	366 μCi	149 μCi	16 min	164.8 μCi	45.0%	
Average RCC: 39.2%±5.0% (n=3)								

Supplementary Table 33. HPLC-isolated RCCs of 32-18F

Supplementary Figure 64. Crude radio-HPLC traces and purification of 32-18F

		S F 0.01 mmol	S1(1.5 mg) DCE: ¹ BuOH:MeCN (3:4:1, 800 µl) [¹⁸ F]TBAF, TBAHCO ₃ 450 nm laser 30 min, 0°C, N ₂ atmospere		33- ¹⁸ F		
Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	lsolation time	Decay corrected dose	Radiochemical conversion (RCC)
1		10.94 mCi	421 µCi	108 µCi	19 min	121.8 μCi	28.9%
2	33	14.56 mCi	638 µCi	171 μCi	19 min	192.8 μCi	30.2%
3		8.05 mCi	364 μCi	110 μCi	19 min	124.0 μCi	34.1%
		Av	erage RCC	: 31.1%±2.2%	(n=3)		

Supplementary Table 34. HPLC-isolated RCCs of 33-18F

2.5x10⁴ -2.0x10⁴ -1.5x10⁴ -1.0x10⁴ -5.0x10³ -0.0 --5.0x10³ -0

15

20 25 30

Retention time(min)

5 10

35 40

Supplementary Figure 65. Crude radio-HPLC traces and purification of 33-18F

Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)	
1		15.81 mCi	903 μCi	369 μCi	25 min	432.1 μCi	47.9%	
2	34	11.04 mCi	493 μCi	255 μCi	24 min	296.7 μCi	60.2%	
3		9.16 mCi	317 μCi	129 μCi	24 min	150.1 μCi	47.4%	
Average RCC: 51.8%±5.9% (n=3)								

Supplementary Figure 66. Crude radio-HPLC traces and purification of 34-18F

	OMe NeO 0.05 mmol		5 DCE: ¹ (3 [¹⁸ F]TB 450 30 min, 0 ⁶	\$1(1.5 mg) DCE [:] /BuOH:MeCN (3:4:1, 800 μl) [¹⁸ F]TBAF, TBAHCO ₃ 450 nm laser 30 min, 0°C, N ₂ atmospere		Me 1 ⁸ F 1 8 F				
Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	lsolation time	Decay corrected dose	Radiochemical conversion (RCC)			
1		10.08 mCi	463 μCi	72 µCi	17 min	80.2 µCi	17.3%			
2	35	9.22 mCi	465 μCi	68 µCi	17 min	75.7 μCi	16.3%			
3		11.48 mCi	636 μCi	147 μCi	17 min	163.7 μCi	25.7%			
	Average RCC: 19.8±4.2% (n=3)									

Supplementary Table 36. HPLC-isolated RCCs of 35-18F

Supplementary Figure 67. Crude radio-HPLC traces from 35 to 35-18F

Supplementary Figure 68. Purification (left) and co-injection for 35-18F

Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)			
1		17.33 mCi	821 μCi	86 µCi	15 min	94.5 μCi	11.5%			
2 ª	36 -	13.30 mCi	600 µCi	150 μCi	16 min	165.9 μCi	27.7%			
3 ª		8.74 mCi	352 μCi	72 µCi	15 min	79.2 μCi	22.5%			
4 ª		3.36 mCi	218 µCi	65 µCi	15 min	71.5 μCi	32.8%			
Average RCC from 0.05mmol substrate: 27.7±4.2% (n=3)										

°0.05 mmol substrate.

Supplementary Table 37. HPLC-isolated RCCs of 36-18F

Supplementary Figure 69. Crude radio-HPLC traces from 36 to 36-18F

Supplementary Figure 70. Purification of 36-18F

Reaction	Substrate	Activity ([18 F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)			
1		20.0 mCi	584 μCi	76 μCi	16 min	84.1 μCi	14.4%			
2	37	12.36 mCi	508 μCi	61 µCi	16 min	67.5 μCi	13.3 %			
3	-	8.18 mCi	437 μCi	87 μCi	16 min	96.2 μCi	22.0%			
Average RCC: 16.6±3.9% (n=3)										

Supplementary Figure 71. Crude radio-HPLC traces and purification of 37-18F

areaction was performed under air.

Supplementary Figure 72. Crude radio-HPLC traces from 38 to 38-18F

Supplementary Figure 73. Purification for 38-18F

I	37	12.73 MCI	400 μCI –	85 μCi	20 min	96.4 μCi	21.1% (15- ¹⁸ F)
1	20	12.93 mCi	454 uCi	121 μCi	19 min	136.4 μCi	29.9% (16- ¹⁸ F)
Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)
	MeO CI 0.05 mmol		[¹⁸ F]TBAF, TBAHCO ₃ 450 nm laser 30 min, 0°C, N ₂ atmospere		MeO CI 15- ¹⁸ F		⁸ F 6 -¹⁸F
		Br DC	\$1 (1.5 mg) DCE: [†] BuOH:MeCN r (3:4:1, 800 μl)		OMe 18F		OMe Br

Supplementary Table 40. HPLC-isolated RCCs of 16-18F and 15-18F

Supplementary Figure 74. Crude radio-HPLC trace from 40 to 16-18F and 15-18F

Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)		
1		9.10 mCi	650 μCi	408 µCi	20 min	462.9 μCi	71.2%		
2	40	12.68 mCi	581 μCi	403 µCi	19 min	454.4 μCi	78.2%		
3		9.06 mCi	408 µCi	263 μCi	19 min	296.5 μCi	72.7%		
	Average RCC: 74.0±3.0% (n=3)								

Supplementary Table 41. HPLC-isolated RCCs of 40-18F-a

Supplementary Figure 75. Crude radio-HPLC traces from 40 to 40-18F

Supplementary Figure 76. Purification (left) and co-injection(right) for 40-18F


```
Supplementary Table 42. HPLC-isolated RCCs of 41-18F
```


Supplementary Figure 77. Crude radio-HPLC traces from 41 to 41-18F

Supplementary Figure 78. Purification (left) and co-injection for 41-18F

The MeCN solution (~200 μl) of compound **41**(11.7 mg, 0.05 mmol) and [¹⁸F][TBAF] (21 mCi) were added to a 5 mL v-vial which was sealed with a Teflon-lined septum screw cap. The vial was heated in a heating block under 100°C for 10 min. The reaction was then diluted with MeCN and analyzed on HPLC. The data were summarized below.

HPLC condition:

Column: Phenomenex, Kinetex® 5 µm F5 100 Å, 250 x 4.6 mm LC Column. Solvent A: 0.1%TFA water; Solvent B: 0.1%TFA acetonitrile; Isocratic elution at **55%** solvent B. Flow rate: 1 mL/min.

Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)
1	41	21 mCi	417 μCi	149 μCi	10 min	158.7 μCi	38.1%

Supplementary Table 43. HPLC-isolated RCC of 41-18F-a

Supplementary Figure 79. Crude radio-HPLC traces from 41 to 41-18F-a

Supplementary Figure 80. Purification (left) and co-injection(right) for 41-18F-a

Boc 450 nm laser Boc 0.05 mmol 30 min, 0°C, N ₂ atmospere 42-18F	
Activity Injected Collected Isolation Reaction Substrate ([18F]TBAF) dose dose time dose dose	Radiochemical conversion (RCC)
1 42 15.98 mCi 777 μCi 83 μCi 22 min 95.4 μCi	12.3%

Supplementary Table 44. HPLC-isolated RCC of 42-18F

		0.05 mmol	\$1 (1. DCE: ¹ BuC (3:4:1 [¹⁸ F]TBAF, ⁻ 450 nm 30 min, 0°C, N	.5 mg) DH:MeCN , 800 μl) TBAHCO ₃ laser V ₂ atmospere	Me 0 18F 43- ¹⁸ F	OEt	
Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	lsolation time	Decay corrected dose	Radiochemical conversion (RCC)
1		12.48 mCi	396 μCi	150 μCi	20 min	170.2 μCi	43%
2	43	12.12 mCi	488 µCi	158 μCi	20 min	179.3 μCi	36.7%
3		8.81 mCi	478 μCi	164 μCi	20 min	186.1µCi	38.9%
			Average	e RCC: 39.5±2	. .6% (n=3)		

Supplementary Figure 82. Crude radio-HPLC traces from 43 to 43-18F

Supplementary Figure 83. Purification (left) and co-injection(right) for 43-18F

Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)		
1	-	15.46 mCi	419 μCi	68 µCi	26 min	80.1 μCi	19.1%		
2	44	10.42 mCi	781 μCi	99 µCi	23 min	114.5 μCi	14.7%		
3		13.22 mCi	604 μCi	102 μCi	23 min	117.9 μCi	19.5%		
	Average RCC: 17.8±2.2% (n=3)								

Supplementary Table 46. HPLC-isolated RCCs of 44-18F

Supplementary Figure 84. Crude radio-HPLC traces from 44 to 44-18F

Supplementary Figure 85. Purification (left) and co-injection(right) for 44-18F

	0.01 mmol		\$1(1.5 DCE: [†] BuOH (3:4:1, 8	\$1(1.5 mg) DCE: ¹ BυOH:MeCN (3:4:1, 800 μl)		COOMe			
			[¹⁸ F]TBAF, TBAHCO ₃ 450 nm laser 30 min, 0°C, N ₂ atmospere		45- ¹⁸ F				
Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)		
1	45	11.36 mCi	545 μCi	79 µCi	20 min	89.6 μCi	16.4%		

Supplementary Table 47. HPLC-isolated RCC of 45-18F

Supplementary Figure 86. Crude radio-HPLC trace(left) and Purification (right) of 45-18F

F 0.05 mmol		S1 DCE: ¹ Br (3:4 [¹⁸ F]TBA 450 r 30 min, 0°C	\$1 (1.5 mg) DCE: ¹ BuOH:MeCN (3:4:1, 800 μl) [¹⁸ F]TBAF, TBAHCO ₃ 450 nm laser 30 min, 0°C, N ₂ atmospere		(F) ¹⁸ F (F) ¹⁸ F (F) ¹⁸ F		
Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	lsolation time	Decay corrected dose	Radiochemical conversion (RCC)
1	47	11.48 mCi	665 µCi	59 μCi	20 min	66.9 μCi	10.1%

Supplementary Table 48. HPLC-isolated RCC of 46-18F

		MeO MeO 0.01 mmol	\$1(1. DCE: ¹ BuC (3:4:1 [¹⁸ F]TBAF, ⁻ 450 nm 30 min, 0°C. N	\$1 (1.5 mg) DCE: ¹ BUOH:MeCN (3:4:1, 800 μ) [¹⁸ F]TBAF, TBAHCO ₃ 450 nm laser 30 min, 0°C, N ₂ atmospere		NHBoc	
Reactior	n Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)
1	47-F (X=F)	14.46 mCi	984 μCi	632 μCi	18 min	708.1 μCi	72%
2 ª	47-CI (X=CI)	9.93 mCi	317 µCi	11 μCi	18 min	12.3 μCi	3.9%

a0.05 mmol substrate were used.

Supplementary Table 49. HPLC-isolated RCCs of 47-18F

Supplementary Figure 88. Crude radio-HPLC traces from 48-F and 48-CI to 47-18F

Supplementary Figure 89. Purification of 47-18F

Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	lsolation time	Decay corrected dose	Radiochemical conversion (RCC)
1		19.6 mCi	483 µCi	62 µCi	20 min	70.3 µCi	14.6%
2	48	47.7 mCi	1306 μCi	203 µCi	21 min	231.8 µCi	17.7%
3		48.4 mCi	662 μCi	145 μCi	20 min	164.5 μCi	24.9%
			Average	e RCC: 19.1±	4.3% (n=3)		

Supplementary Figure 90. Crude radio-HPLC traces from 48 to 48-18F

Supplementary Figure 91. Purification (left) and co-injection(right) for 48-18F

Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)
1		9.89 mCi	452 μCi	165 μCi	21 min	188.4 μCi	41.7%
2	49	10.63 mCi	979 μCi	318 µCi	21 min	363.1 μCi	37.1%
3		11.90 mCi	1161 μCi	542 μCi	20 min	615 μCi	53%
		Ave	rage RCY (de	ecay-correct	ed): 43.9±6.6	% (n=3)	

40

Supplementary Table 51. HPLC-isolated RCYs of 49-18F

Supplementary Figure 92. Crude radio-HPLC traces from 49 to 49-18F

Supplementary Figure 93. Purification (left) and co-injection(right) for 49-18F

Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	corrected dose	conversion (RCC)
1		15.59 mCi	409 μCi	33 µCi	21 min	37.7 μCi	9.2%
2	50	11.67 mCi	617 μCi	75 µCi	21 min	85.6 μCi	13.9%
3		10.46 mCi	465 μCi	35 µCi	21 min	40 µCi	8.6%
			Average	RCC: 10.6±2.	4% (n=3)		

Supplementary Table 52. HPLC-isolated RCCs of 50-18F

Supplementary Figure 94. Crude radio-HPLC traces from 50 to 50-18F

Supplementary Figure 95. Purification (left) and co-injection (right) for 50-18F

		O ¹ BU N N N CI CI 0.05 mmol	\$1 DCE: ¹ Bu (3:4 [¹⁸ F]TBAI 450 n 30 min, 0°C	(1.5 mg) JOH:MeCN I:1, 800 µl) F, TBAHCO ₃ Im laser J, N ₂ atmospere	O'BU N N N N N N N S2-18F		
Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)
1		17.95 mCi	455 μCi	235 μCi	13 min	255.1 μCi	56.1%
2	51	6.09 mCi	337 µCi	203 µCi	12 min	219 μCi	65%
3		5.7 mCi	425 µCi	198 μCi	13 min	214.9 μCi	50.6%
4	-	26.4 mCi	1082 µCi	558 μCi	14 min	609.6 µCi	56.3%
			Average	e RCC: 57.0±	5.2% (n=4)		

Supplementary Table 53. HPLC-isolated RCCs of 52-18F

Supplementary Figure 96. Crude radio-HPLC traces from 52 to 52-18F

Supplementary Figure 97. Purification (left) and co-injection(right) for 52-18F

Deprotection of 52-18F to 53-18F ([18F]fluoroursail)

Follow our reported procedure¹⁵, the [¹⁸F]fluorouracil(**53**-¹⁸F) was obtained in 95.8% RCC from deprotection of **52**-¹⁸F.

Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	lsolation time	Decay corrected dose	Radiochemical conversion (RCC)
1	52- ¹⁸ F	1.6 mCi	1225 μCi	1102 μCi	10 min	1173.8 μCi	95.8%

Supplementary Table 54. HPLC-isolated RCC of 53-18F

Supplementary Figure 98. Crude radio-HPLC traces from 52-18F to 53-18F

Supplementary Figure 99. Purification (left) and co-injection(right) for 53-18F

Supplementary Table 55. HPLC-isolated RCC of 54-18F

Supplementary Figure 100. Crude radio-HPLC trace(left) and purification (right) of 54-18F

	MeO	P NHBoc 0.01 mmol	S DCE: ¹ B (3: [¹⁸ F]TBA 450 30 min, 0°C	1 (1.5 mg) 500H:MeCN 4:1, 800 μl) 4F, TBAHCO ₃ nm laser C, N ₂ atmospere	MeO	NHBoc	
Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)
1	55	9.83 mCi	696 µCi	78 µCi	20 min	88.5 µCi	12.7%

Supplementary Table 56. HPLC-isolated RCC of 55-18F

Supplementary Figure 101. Crude radio-HPLC trace(left) and purification (right) of 57-18F

Supplementary Table 57. HPLC-isolated RCCof 56-18F

	MeO		S1 (DCE: [†] Bu (3:4	\$1(1.5 mg) DCE: [!] BuOH:MeCN (3:4:1, 800 μl)		СООМе	
	F	0.01 mmol	[¹⁸ F]TBAF 450 ni 30 min, 0°C,	, TBAHCO ₃ m laser , N ₂ atmospere	- 18 _F 57- ¹⁸ F	NHBoc	
Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)
1	57	12.08 mCi	560 μCi	376 μCi	18 min	421.3 μCi	75.2%

Supplementary Table 58. HPLC-isolated RCC of 57-18F

Supplementary Figure 103. Crude radio-HPLC trace(left) and purification (right) of 57-18F

	Ме		S1 DCE: ^t B	(1.5 mg) uOH:MeCN 4:1, 800 µl)	MeO		
		0.01 mmol	[¹⁸ F]TBAF, TBAHCO ₃ 450 nm laser 30 min, 0°C, N ₂ atmospere		58- ¹⁸ F		
Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)
1	58-F (X=F)	11.95 mCi	998 µCi	675 μCi	20 min	765.9 μCi	76.7%
2	58-CI (X=CI)∘	9.54 mCi	890 µCi	290 µCi	19 min	327 µCi	36.7%

°0.05 mmol substrate.

Supplementary Table 59. HPLC-isolated RCCs of 58-18F

Supplementary Figure 104. Crude radio-HPLC traces from 58-F and 58-CI to 58-18F

Supplementary Figure 105. HPLC traces of purification of 58-18F from reaction 1.

Supplementary Table 60. HPLC-isolated RCC of 59-18F

Supplementary Table 61. HPLC-isolated RCC of 60-18F

Supplementary Figure 107. Crude radio-HPLC trace(left) and purification (right) of 60-18F

			\$1(1.5 r DCE: [†] BUOH: (3:4:1, 8	mg) MeCN 00 μl)	OMe		
	F 0.0)1 mmol	[¹⁸ F]TBAF, TBA 450 nm la 30 min, 0°C, N ₂	AHCO ₃ ser atmospere	¹⁸ F 61- ¹⁸ F	NHBOC	
Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)
1	61	6.47 mCi	577 μCi	124 μCi	19 min	139.8 μCi	24.2%

Supplementary Table 62. HPLC-isolated RCC of 61-18F

Supplementary Figure 108. Crude radio-HPLC trace(left) and purification (right) of 61-18F

Supplementary Table 63. HPLC-isolated RCC of 62-18F

Supplementary Table 64. HPLC-isolated RCC of 63-18F

3.6 General procedure for deprotection of ¹⁸F-labeled tyrosine derivatives

The ¹⁸F-fluorinated tyrosine derivatives (**54-**¹⁸**F** to **63-**¹⁸**F**) from the ¹⁹F/¹⁸F isotopic exchange reactions were isolated on radio-HPLC and directly transferred into a 5 ml Vvial. 200 µl of 4N NaOH solution was added to the vial. The V-vial was then sealed with a Teflon-lined septum screw cap equipped with a vent needle. The solution was heated at 80°C with a positive argon flow for 5 min. Argon flow was then stopped and the vent needle was removed. 300 µl of concentrated HCl was then added via a syringe and the solution was kept at 80°C for 2 min. The solution was diluted with DI H₂O before being analyzed and purified on HPLC. The ¹⁸F-fluorinated tyrosines were collected and the acetonitrile from the mobile phase was removed under reduced pressure. The resulting water solution was neutralized to pH 7 by adding NaOH (1N) and phosphate-buffered saline (PBS, 10X). The tracers were eventually reformulated in a 1X PBS solution for use in the following PET imaging studies.

Note: For compound **D-64-**¹⁸**F** and **L-64-**¹⁸**F**, 200 μ l con. HCl (12 N) was employed only for the deprotection under 120°C for 10 min. to avoid potential racemization.

HPLC condition:

Column: Phenomenex, Kinetex® 5 µm EVO C18 100 Å, 250 x 4.6 mm LC Column. Solvent A: 0.1%TFA water; Solvent B: 0.1%TFA acetonitrile. Isocratic elution at 10% solvent B. Flow rate: 1 mL/min.

Supplementary Table 65. HPLC-isolated RCC of 54-18F-COOH

Supplementary Figure 111. HPLC trace of isolation of 54-18F-COOH

Supplementary Table 66. HPLC-isolated RCC of 55-18F-COOH

Supplementary Figure 112. HPLC trace of isolation of 55-18F-COOH

Supplementary Table 67. HPLC-isolated RCC of 56-18F-COOH

Supplementary Figure 113. HPLC trace of isolation of 56-18F-COOH

Tracer	Activity (57- ¹⁸ F)	Injected dose	Collected dose	Isolation time	Decay corrected	conversion (RCC)
57- ¹⁸ F-COOH	2.0 mCi	1675 μCi	1536 μCi	10 min	1636.1 μCi	97.7%

Supplementary Table 68. HPLC-isolated RCC of 57-18F-COOH

Supplementary Figure 114. HPLC trace of isolation of 57-18F-COOH

Supplementary Table 69. HPLC-isolated RCC of 58-18F-COOH

Supplementary Figure 115. HPLC trace of isolation of 58-18F-COOH

Supplementary Table 70. HPLC-isolated RCC of 59-18F-COOH

Supplementary Figure 116. HPLC trace of isolation of 59-18F-COOH

Supplementary Table 71. HPLC-isolated RCC of 60-18F-COOH

Supplementary Figure 117. HPLC trace of isolation of 60-18F-COOH

Supplementary Table 72. HPLC-isolated RCC of 61-18F-COOH

Supplementary Figure 118. HPLC trace of isolation of 61-18F-COOH
	OMe 18F	O MHBoc	HCI(12 N)	18 _F	Me O I NH ₂ OH	
	D-61-	¹⁸ F		D-6	1- ¹⁸ F-COOH	
Tracer	Activity (D-61- ¹⁸ F)	Injected dose	Collected dose	lsolation time	Decay corrected	Radiochemical conversion
D-61- ¹⁸ F-COOH	1.315 mCi	946 μCi	853 μCi	10 min	908.6 μCi	96%

Supplementary Table 73. HPLC-isolated RCC of D-61-18F-COOH

Supplementary Figure 119. HPLC trace of isolation of D-61-18F-COOH

	OMe 18F	Оме НВос	HCI(12 N)	18 _F	Me O NH ₂ OH	
	L-61- ¹	⁸ F		L-61	- ¹⁸ F-COOH	
Tracer	Activity (L-61- ¹⁸ F)	Injected dose	Collected dose	Isolation time	Decay corrected	Radiochemical conversion
L-61- ¹⁸ F-COOH	1.281 mCi	943 μCi	835 μCi	10 min	889.4 μCi	94.3%

Supplementary Table 74. HPLC-isolated RCC of L-61-18F-COOH

Supplementary Figure 120. HPLC trace of isolation of L-61-18F-COOH

Supplementary Table 75. HPLC-isolated RCC of 62-18F-COOH

Supplementary Figure 121. HPLC trace of isolation of 62-18F-COOH

Supplementary Table 76. HPLC-isolated RCC of 63-18F-COOH

Supplementary Figure 122. HPLC trace of isolation of 63-18F-COOH

3.7 Synthesis of ¹⁸F-labeled DOPAs via halide/¹⁸F interconversion

	RO	X NHBoc	51 (DCE:'Bu (3:4 [¹⁸ F]TBAF 450 n 30 min, 0°C	1.5 mg) OH:MeCN :1, 800 μl) , TBAHCO ₃ m laser N ₂ atmospere	RO RO L-64- ¹⁸ F (R= L-65- ¹⁸ F (R=	COOMe NHBoc Me) MOM)	
Reaction	Substrate	Activity [¹⁸ F]TBAF	Injected dose	Collected dose	lsolation time	Decay corrected dose	Radiochemical conversion (RCC)
1	L-64-Cl (R=Me, X=Cl)	13.75 mCi	368 µCi	14 μCi	17 min	15.6 μCi	4.2%
2		7.86 mCi	332 µCi	216 μCi	19 min	243.5 μCi	73.4%
3	L-64-F (R=Me,	22.9 mCi	998 µCi	388 µCi	17 min	432 μCi	43.3%ª
4	X=F)	12.59 mCi	712 μCi	133 μCi	19 min	150 μCi	21.1% ^b
5		7.64 mCi	485 µCi	318 µCi	18 min	356.3 μCi	73.5% ^{c, d}

6		12.39 mCi	399 μCi	256 μCi	15 min	281.4 μCi	70.5% c, d, e, g
7	-	13.46 mCi	311 μCi	212 µCi	14 min	231.6 μCi	74.4% c, f, g
8	_	10.18 mCi	247 μCi	93 μCi	14 min	101.6 μCi	41.1% ^{a, c, f, g}
9	_	28.1mCi	1678 μCi	700 µCi	20 min	794.2 μCi	47.3% ^h
10	L-65-F	18.33 mCi	505 µCi	324 μCi	18 min	363 μCi	71.9%
11	- (κ=ΜΟΜ, X=F)	13.68 mCi	554 μCi	335 μCi	18 min	40.3 µCi	67.7% ^{c, d}

^oBlue LED was used instead of laser. ^bNo DCE were added in the reaction. ^cNo ice cooling and 500 μl DCE were used. ^dReaction ran 20 min. ^e0.005 mmol substrate. ^fReaction ran 5 min. ^gIsolated under isocratic elution of 35% MeCN. ^bAir bubbling instead of N₂.

Supplementary Figure 123. Crude radio-HPLC traces of synthesis of L-64-18F and L-65-18F

Supplementary Figure 124. HPLC traces of purification of L-64-18F (left) and L-65-18F (right)

Deprotection of L-64-18F to [18F]FDOPA

The isolated **L-64-1**⁸**F** from the labeling reaction above was transferred into a 5 ml v-vial and caped with a Teflon-lined septum screw cap equipped with a vent needle. The solvent was removed under 80°C with argon stream. Argon flow was then stopped and the vent needle was removed. 100 μ l Hl (57 wt.% in H₂O) was then added into the V-vial via syringe and the mixture was heated under 160°C for 10 min. The V-vial was cooled. The cap was then removed and saturated NaHCO₃ (200 μ l) solution was added to the V-vial. The resulted aqueous solution was then purified on the radio-HPLC to afford the [1⁸**F**]**FDOPA** in 97.1% RCC. The [1⁸**F**]**FDOPA** was then analyzed on the radio-HPLC with a chiral column. The [1⁸**F**]**FDOPA** was confirmed by comparison of the radio-HPLC trace with the UV HPLC traces of F-L-DOPA and > 99% ee was further confirmed by comparison and co-injection of the [1⁸**F**]**FDOPA** with racemic FDOPA on a chiral column.

Injected dose	Collected dose	Isolation time	Decay corrected dose	Radiochemical conversion (RCC)
510 µCi	465 μCi	10 min	495.3 μCi	97.1%

Supplementary Table 78. HPLC-isolated RCC of deprotection of L-64-18F to [18F]FDOPA

Supplementary Figure 125. Crude radio-HPLC trace of **[18F]FDOPA** (left) and comparison of the **[18F]FDOPA** with **F-L-DOPA** (right) on chiral column.

Supplementary Figure 126. Comparison(left) and co-injection (right) of ¹⁸FJFDOPA with racemic FDOPA.

		OMe V X 0.01 mmol	COOMe HBoc 30 r	\$1 (1.5 mg) DCE: ¹ BuOH:MeCN (3:4:1, 800 μl) [¹⁸ F]TBAF, TBAHCO ₃ 450 nm laser min, 0°C, N ₂ atmosp	le l	OMe NHBoc OMe 66- ¹⁸ F	
Reaction	Substrate	Activity	Injected dose	Collected dose	lsolation time	Decay corrected	Radiochemical conversion (RCC)
1	66-F (X=F)	11.91 mCi	618 µCi	437 µCi	20 min	495.8 μCi	80.2%
2		18.99 mCi	478 μCi	163 μCi	20 min	184.9 μCi	38.7%
3	66-Cl (X=Cl)∝	10.11 mCi	784 μCi	357 μCi	19 min	402.5 µCi	51.3%
4		14.65 mCi	781 μCi	352 μCi	20 min	399.4 μCi	51.1%
		A	verage RC	C from 66-Cl	to 66- ¹⁸ F: 4	7.0±5.9% (n=3)	

Note: a. 0.05 mmol substrate.

Supplementary Figure 127. Crude radio-HPLC traces from 66-F and 66-CI to 66-18F

Supplementary Figure 128. Purification (left) and co-injection(right) for 66-18F

Reaction	Substrate	Activity	Injected dose	Collected dose	lsolation time	Decay corrected	Radiochemical conversion
	Me	0.01 mmol	Boc [¹⁸ 30 mir	F]TBAF, TBAHCO ₃ 450 nm laser n, 0°C, N ₂ atmospere	MeO	¹⁸ F 67- ¹⁸ F	
		OMe	D COOMe	\$1 (1.5 mg) ICE: ^f BuOH:MeCN (3:4:1, 800 μl)	→ ()	OMe COOM	le

			uose	4050	iiiie	concercu	conversion	
1	67-F (X=F)	12.32 mCi	489 µCi	297 μCi	20 min	337 µCi	68.9%	
2		13.33 mCi	507 µCi	81 µCi	18 min	90.8 µCi	17.9%	
3	67-Cl (X=Cl)∝	11.35 mCi	517 μCi	88 µCi	19 min	99.2 μCi	19.2%	
4		9.86 mCi	591 μCi	81 µCi	21 min	92.5 μCi	15.6%	
		Ave	erage RCC f	rom 67-CI to	67- ¹⁸ F:17.6	±1.5% (n=3)		

°0.05 mmol substrate.

Supplementary Table 80. HPLC-isolated RCCs of 67-18F

Supplementary Figure 129. Crude radio-HPLC traces from 67-F and 67-CI to 67-18F

Supplementary Figure 130. Purification (left) and co-injection (right) for 67-18F

	F	OMe COOMe NHBoc OMe	\$1(1.5 DCE: ¹ BuOł (3:4:1, [¹⁸ F]TBAF, TI 450 nm l 30 min, 0°C, N	5 mg) H:MeCN 800 μl) BAHCO ₃ laser 2 atmospere	OMe 18 _F OMe 68- ¹⁸ F	СООМе NHBoc	
Reaction	Substrate	Activity	Injected dose	Collected dose	lsolation time	Decay corrected	Radiochemical conversion (RCC)
1	68	11.13 mCi	737 µCi	192 μCi	19 min	216.5 μCi	29.4%

Supplementary Table 81. HPLC-isolated RCC of 68-18F

Supplementary Figure 131. Crude radio-HPLC trace(left) and purification (right) of 68-18F

3.8 Small scale synthesis of [18F]FDOPA from preformed [18F]TBAF

The FDOPA precursor *L*-64-F (0.01 or 0.005 mmol) and Photocatalyst **SI** (1.5 mg) were dissolved in the DCE/^tBuOH/MeCN in a 5 ml V-vial. After addition of the [¹⁸F]TBAF and TBAHCO₃ (25 µl), the solution was top-down irradiated for 20 min under 450 nm laser (450 nm, 3.5 W after fibre coupling) with a N₂ balloon sparge at room temperature. The resulting reaction solution was diluted with 1 mL MeCN and passed through an aluminum cartridge (preconditioned with 5 mL DI water) to remove the unconverted ¹⁸F-fluoride. Rinse the reaction vial with another 1 mL MeCN which was then passed through the same aluminum cartridge. The elution was collected in another 5 mL V-Vial and caped with a Teflon-lined septum screw cap equipped with a vent needle. The solvent was removed under 100°C with argon stream. Ar flow was then stopped and the vent needle was heated under 160°C for 10 min. A vent needle was then equipped before water (300 µl) and saturated NaHCO₃ solution (400 µl) was slowly added to the V-vial. The resulting aqueous solution was passed through a HPLC filter to remove the insoluble catalyst residue. The collected solution was then purified on HPLC to give the product [¹⁸F]FDOPA.

HPLC isolation condition for reaction 1 and 2:

Column: Phenomenex, Kinetex® 4 µm Synergi 80 Å, 250 x 10.00 mm LC Column. Solvent: 10 mM KH₂PO_{4.} Flow rate: 5 mL/min.

HPLC condition for QC of reaction 1:

Column: Phenomenex, Kinetex® 4 µm Synergi 80 Å, 250 x 10.00 mm LC Column. Solvent: 10 mM KH₂PO_{4.} Flow rate: 5 mL/min.

HPLC condition for QC of reaction 2:

Column: Phenomenex, Kinetex® 10 µm Synergi 80 Å, 250 x 10.00 mm LC Column. Solvent: 10 mM KH₂PO_{4.} Flow rate: 3 mL/min.

Reaction	Substrate	Activity ([¹⁸ F]TBAF)	Activity (Isolated [¹⁸ F]FDOPA)	n.d.c RCY	Total synthesis time
1	L-64-F (0.01 mmol)	30.3 mCi	12.74 mCi	42%	67 min
2	L-64-F (0.005 mmol)	25.5mCi	9.65 mCi	37.8%	66 min

Supplementary Table 82. HPLC-isolated n.d.c. RCYs of [18F]FDOPA

Supplementary Figure 132. Crude HPLC trace of isolation of [18F]FDOPA from reaction 1 and 2

Supplementary Figure 133. HPLC trace of isolated [18F]FDOPA from reaction 1 and 2

3.9 Scale-up synthesis of [18F]FDOPA from [18F]F-

The aqueous solution of $[1^{8}F]F$ -fluoride produced via the ${}^{18}O(p,n){}^{18}F$ reaction by proton irradiation (40 μ A) was delivered to a hot cell equipped with manipulators and collected in a 5 ml V-vial containing 5 µl TBAB (20%) water solution . This aqueous solution was azeotropically dried with anhydrous MeCN (1 ml × 5) under a stream of Argon at 100°C. After removing the water, the V-vial was removed from the heater. The solution of precursor L-64-F (0.01 mmol) and photocatalyst (S1, 1.5 mg) in DCE/tBuOH/MeCN (5/4/1, 1 ml) was then added into the Vvial. A needle connected to a N2 filled balloon was inserted into the bottom of the V-vial and the reaction medium was continuously sparged with N_2 for the entire reaction time. The reaction was then irradiated top-down with an optic fiber of an OEM diode laser (450 nm, 3.5 W after fibre coupling) for 20 min. The resulting reaction was diluted with 1 ml MeCN and passed through an aluminum cartridge (preconditioned with 5 ml DI water) to remove the unconverted ¹⁸F-fluoride. Rinse the reaction vial with another 1 ml MeCN which was then passed through the same aluminum cartridge. The elution was collected in another 5 ml V-Vial and caped with a Teflon-lined septum screw cap equipped with a vent needle. The solvent was removed under 100°C with argon stream. Ar flow was then stopped and the vent needle was removed. 200 μ l HI (57 wt.% in H₂O) were then added into the V-vial and the mixture was

heated under 160°C for 10 min. A vent needle was then equipped before water (300 μ l) and saturated NaHCO₃ solution (400 μ l) was slowly added to the V-vial. The resulting aqueous solution was passed through a HPLC filter to remove the insoluble catalyst residue. The collected solution was then purified on HPLC to give the product [¹⁸F]FDOPA. (Note: all these operation were conducted in the hot cell).

The isolated [18F]FDOPA (> 99% ee) was confirmed by HPLC traces comparison with the racemic FDOPA.

Synthesis data were summarized in the table (Supplementary Table 83) below.

HPLC isolation conditions:

Column: Phenomenex, Kinetex® 4 µm Synergi 80 Å, 250 x 10.00 mm LC Column. Mobile phase: 10 mM KH₂PO₄. Flow rate: 5 mL/min.

HPLC conditions for comparison isolated [18F]FDOPA with racemic FDOPA:

Column: Astec CHIROBIOTICR T Chiral HPLC Column, 5 μ m particle size, 250 mm x 4.6 mm, SUPELCO. Mobile phase: 0.2 mL formic acid in 700 ml MeOH and 300 mL water (Ph=3.5). Flow rate: 1 ml/min

Reaction	Activity ([¹⁸ F]F [.])	Substrate	Activity (Isolated [¹⁸ F]FDOPA)	n.d.c RCY	Total synthesis time
1 a	1.023 Ci	L-64-F (0.01 mmol)	197 mCi	19.3%ª	93 min
2	1.12 Ci	L-64-F (0.008 mmol)	259 mCi	23.1%	87 min
3 b	1.024 Ci	L-64-F (0.01 mmol)	310 mCi	30.2%	87 min
4	1.07 Ci	L-64-F (0.01 mmol)	348 mCi	32.5%	98 min

^α100 μl Hl was used (incomplete deprotection). ^bFail to record the isolation HPLC trace. **Supplementary Table 83.** HPLC-isolated n.d.c. RCYs of **[¹⁸F]FDOPA**

Supplementary Figure 134. HPLC traces of isolation of [18F]FDOPA from reaction 1, 2 and 4

Supplementary Figure 135. HPLC traces of comparison of isolated [18F]FDOPA from reaction 2,
3 and 4 with racemic FDOPA

3.10. Molar activity calculation

Molar activity calculation for $[^{18}F]$ 1-fluoro-4-methoxybenzene $(1-^{18}F)$ obtained from labeling of 1-Cl (Cl/¹⁸F exchange).

Molar activity was calculated using a standard curve of the corresponding fluorinated arene. A ¹⁹F standard curve [Y axis = UV area, X axis = mole number (µmol)] was created from the HPLC trace from a standard solution of 1-fluoro-4-methoxybenzene (**1-F**). The radiolabeled product from the labeling reaction was collected and purified via HPLC; the UV area overlapping with the radio peak was then recorded. The standard curve was used to calculate mole number. Dividing the product decay corrected activity by the mole number gives the molar activity in GBq/µmol. In this example, the isolated product [¹⁸F]1-fluoro-4-methoxybenzene has a molar activity of 71.25 ± 4.18 GBq/µmol, which is decay corrected to the end of bombardment (EOB).

а

1-fluoro-4-methoxybenzene (10 ⁻⁴ μmol)	UV area (104)
0	0

3.96	9.1876
7.93	20.8663
15.86	40.6923
31.71	83.1809
79.28	164.1623

b

С

Entry	Decay corrected (EOS) Activity (10 ^{.4} GBq)	UV area (104)	1-fluoro-4- methoxybenzene (10-4 μmol)	Molar activity (GBq/µmol)
1	133	4.8396	1.94	68.56
2	125	4.0045	1.62	77.16
3	100	3.6343	1.47	68.03

Average molar activity: $71.25 \pm 4.18 \text{ GBg/}\mu\text{mol}$

Supplementary Figure 136. a and **b**, Standard curve data for **1-F**; **c**, the average molar activity for **1-18F** calculated from parts **a** and **b**.

Molar activity calculation for [18F]FDOPA

Follow the same procedure to calculate the molar activity of [18F]1-fluoro-4methoxybenzene(1-18F) above, the standard curve was prepared from the 6-Fluoro-L-FDOPA hydrochloride (purchased from ABX). The dose decay corrected back to end of synthesis of purified [18F]FDOPA and corresponding UV area integration were recorded. [18F]FDOPA has a molar activity of $1.51GBq/\mu$ mol at end of synthesis.

r	•
	-
_	
•	

6-Fluoro-L-FDOPA hydrochloride (10-3 μmol)	UV area (104)	
0	0	
4.37	73.8691	
8.74	139.4975	
17.48	263.2771	
43.7	806.2787	

С

Entry	Decay corrected (EOS)	UV area	FDOPA	Molar activity
Lilly	Activity (10-3 GBq)	(104)	(10 ⁻³ µmol)	(GBq/µmol)
1	21.9	249.2604	14.5	1.51

Supplementary Figure 137. a and b, Standard curve data for FDOPA; c, molar activity for [¹⁸F]FDOPA calculated from parts a and b.

3.11. Less effective substrates for photoredox-mediated halide/¹⁸F interconversion

Supplementary Figure 138. Less effective substrates for photoredox-mediated halide/¹⁸F interconversion. All reactions were performed according to the general procedure at section 3.4. n.d., not detected.

4. Positron emission tomography (PET) Imaging Study

In Vivo PET Imaging in MCF-7 breast cancer xenografts in nude mice

Materials and methods: All animal studies were conducted in compliance with the protocol approved by the University of North Carolina Institutional Animal Care and Use Committee. Human breast cancer cells line MCF-7 was obtained from American Type Culture (Manassas, VA, USA) and cultured in Eagle's Minimum Essential Medium (EMEM) (Gibco, Grand Island, NY, USA) supplemented with 10% fetal bovine serum (FBS) (SAFC Bioscience, Lenexa, KS). MCF-7 xenograft was established in 4- to 6-weeks old female nude mice (Division of Comparative Medicine, the University of North Carolina at Chapel Hill) as described (PMID: 31221856). Mice were group housed (no more than five mice per cage) with air temperature 24 ± 3°C, humidity 60 ± 4%, and a 12-hours light/12-hours dark cycle. Food and water were provided ad libitum. The PET imaging studies were conducted when the tumor size was between 250-750 mm³. ¹⁸F PET tracers were prepared from section 3.6

Results of in vivo PET Imaging

The MCF-7 tumor-bearing mice received an intravenous injection of the ¹⁸F-PET agent (~8.2 MBq). At 1 h and 3 h post-injection, the animals were anesthetized using 2% isoflurane and subjected to 10 min static PET scan (SuperArgus 4R, SEDECAL, Madrid, Spain). The uptake values (percentage injected dose per gram) were calculated and reported as mean ± SD averaged over $n(n\geq 3)$ tumors. PET images were reconstructed into a single frame by OSEM 3D with random and scatter correction. The reconstructed PET images were analyzed using AMIDE (http://amide.sourceforge.net/) software (Supplementary Figure 139). Most of the PET tracers demonstrated initial prominent tumor uptake at 1h post-injection followed by washout at 3h while few tracers (57-18F-COOH, 60-18F-COOH, 61-18F-COOH) showed high and persistent retention in the MCF-7 tumor model. The L-configuration isomer (L-61-18F-COOH) shows higher tumor uptake and longer retention time than the D-isomer (D-61-18F-COOH). Besides the tumor accumulation of each tracer at a different time point, we calculated the tumor to muscle ratio to reflect the signal to noise for each tracer. All the ¹⁸F-labeled tyrosine analogs show similar uptake ratio between tumor and muscle except tracer 63-18F-COOH which demonstrates relatively higher uptake ratio, especially at 1h post-injection, comparing to other tracers (Supplementary Figure 140).

Supplementary Figure 139. PET imaging study. a, PET imaging of ¹⁸F-labeled tyrosines in the MCF7 tumor model system (tumors were circled in the pictures). b, Tumor uptake (percentage injected dose per gram) of each tracer at 1h post-injection (left) and 3h post-injection (right). Tumor uptake of the each tracer from **54**-¹⁸F-COOH to **63**-¹⁸F-COOH at 1h and 3h post-injection are $4.77\pm0.55\%$ (n=3), $2.05\pm0.25\%$ (n=3); $3.07\pm0.44\%$ (n=4), $1.14\pm0.39\%$ (n=4); $2.87\pm0.15\%$ (n=4), $2.09\pm0.49\%$ (n=4); $3.96\pm0.96\%$ (n=7), $4.06\pm0.98\%$ (n=4); $2.26\pm0.07\%$ (n=4), $1.20\pm0.10\%$ (n=3); $1.91\pm0.08\%$ (n=4), $0.80\pm0.06\%$ (n=4); $5.10\pm0.25\%$ (n=4), $3.88\pm0.90\%$ (n=4); $7.41\pm2.29\%$ (n=10), $6.80\pm3.46\%$ (n=10); $4.29\pm0.77\%$ (n=6), $2.02\pm0.47\%$ (n=6); $9.81\pm0.30\%$ (n=6), $9.95\pm0.48\%$ (n=6); $3.43\pm0.15\%$ (n=3), $1.98\pm0.10\%$ (n=3); $4.78\pm2.14\%$ (n=6), $1.98\pm1.11\%$ (n=6), respectively.

Supplementary Figure 140. Tracer uptake ratio between tumor and muscle of each tracer at 1h (left) and 3h (right) post-injection. The ratios were calculated and reported as mean \pm SD averaged over n (n \geq 3) tumors and muscles. The ratios from 54-18F-COOH to 63-18F-COOH at 1h and 3h post-injection are 3.53 \pm 0.30 (n=3), 4.12 \pm 0.88 (n=3); 2.76 \pm 0.45 (n=4), 3.87 \pm 0.52 (n = 4); 2.20 \pm 0.29 (n = 4), 3.22 \pm 0.24 (n=4) ; 3.49 \pm 0.89 (n=7), 3.84 \pm 0.08 (n=4); 2.66 \pm 0.12 (n=4), 2.99 \pm 0.23 (n=3); 3.09 \pm 0.17 (n=4), 4.01 \pm 1.15 (n=4); 3.11 \pm 0.50, 3.17 \pm 0.84 (n=4); 2.81 \pm 0.34(n=10), 3.04 \pm 0.49 (n=10); 3.12 \pm 0.48 (n=6), 3.13 \pm 0.23(n=6); 2.45 \pm 0.19 (n=6), 2.99 \pm 0.24 (n=6); 2.55 \pm 0.19 (n=3), 3.01 \pm 0.54 (n=4); 5.01 \pm 0.57 (n=6) 4.32 \pm 0.58 (n=6), respectively.

5. Reference

- 1 Guo, Y. *et al.* Practical Ligand-Free Copper-Catalysed Short-Chain Alkoxylation of Unactivated Aryl Bromides. *Eur. J. Org. Chem.* **2015**, 4744–4755 (2015).
- 2 Sevov, C. S. & Hartwig, J. F. Iridium-Catalyzed, Intermolecular Hydroetherification of Unactivated Aliphatic Alkenes with Phenols. *J. Am. Chem. Soc.* **135**, 9303–9306 (2013).
- Bartoli, G. *et al.* Unusual and unexpected reactivity of t-butyl dicarbonate (Boc₂O) with alcohols in the presence of magnesium perchlorate. A new and general route to t-butyl ethers. *Org. Lett.* **7**, 427–430, (2005).
- 4 Hirano, M., Yakabe, S., Monobe, H. & Morimoto, T. Selective aromatic chlorination of activated arenes with sodium chlorite, (salen)manganese(III) complex, and alumina in dichloromethane. *Can. J. Chem.* **75**, 1905–1912, (1997).
- 5 Davidson, J. P., Lubman, O., Rose, T., Waksman, G. & Martin, S. F. Calorimetric and structural studies of 1,2,3-trisubstituted cyclopropanes as conformationally constrained peptide inhibitors of Src SH2 domain binding. *J. Am. Chem. Soc.* **124**, 205–215 (2002).
- 6 Nicolaou, K. C. *et al.* Total Synthesis and Structural Revision of Viridicatumtoxin B. *Angew. Chem. Int. Ed.* **52**, 8736–8741 (2013).
- 7 Maibunkaew, T., Thongsornkleeb, C., Tummatorn, J., Bunrit, A. & Ruchirawat, S. Practical and Metal-Free Electrophilic Aromatic Halogenation by Interhalogen Compounds Generated In Situ from N-Halosuccinimide and Catalytic TMSCI. *Synlett* **25**, 1769–1775 (2014).
- 8 Chun, J. H. & Pike, V. W. Single-step syntheses of no-carrier-added functionalized [¹⁸F]fluoroarenes as labeling synthons from diaryliodonium salts. *Org. Biomol. Chem.* 11, 6300–6306 (2013).
- 9 Farmer, J. L., Froese, R. D. J., Lee-Ruff, E. & Organ, M. G. Solvent Choice and Kinetic Isotope Effects (KIEs) Dramatically Alter Regioselectivity in the Directed ortho Metalation (DoM) of 1,5-Dichloro-2,4-dimethoxybenzene. *Chem.-Eur. J.* 21, 1888– 1893 (2015).
- 10 Bugarin, A. & Connell, B. T. Chiral nickel(II) and palladium(II) NCN-pincer complexes based on substituted benzene: Synthesis, structure, and lewis acidity. *Organometallics* 27, 4357–4369 (2008).
- 11 Tang, R. J., Milcent, T. & Crousse, B. Regioselective Halogenation of Arenes and Heterocycles in Hexafluoroisopropanol. *J. Org. Chem.* **83**, 930–938 2018).
- 12 Lafrance, M., Gorelsky, S. I. & Fagnou, K. High-yielding palladium-catalyzed intramolecular alkane arylation: Reaction development and mechanistic studies. *J. Am. Chem. Soc.* **129**, 14570–14571 (2007).
- 13 Rana, S., Bag, S., Patra, T. & Maiti, D. Catalytic Electrophilic Halogenations and Haloalkoxylations by Non-Heme Iron Halides. *Adv. Synth. Catal.* **356**, 2453–2458, (2014).
- 14 Jiang, M., Yang, H. J., Li, Y., Jia, Z. Y. & Fu, H. Metal-free synthesis of substituted phenols from arylboronic acids in water at room temperature. *Chin. Chem. Lett.* **25**, 715–719 (2014).
- 15 Tay, N. E. S. *et al.* ¹⁹F- and ¹⁸F-arene deoxyfluorination via organic photoredoxcatalysed polarity-reversed nucleophilic aromatic substitution. *Nat. Catal.* **3**, 734–742, (2020).
- 16 Jiang, L. Q. Copper/*N*,*N*-Dimethylglycine Catalyzed Goldberg Reactions Between Aryl Bromides and Amides, Aryl Iodides and Secondary Acyclic Amides. *Molecules* **19**, 13448–13460 (2014).
- 17 Gan, Z. J., Hu, B., Song, Q. & Xu, Y. G. Convenient Chlorination of Some Special Aromatic Compounds Using N-Chlorosuccinimide. *Synthesis* **44**, 1074–1078 (2012).

- 18 Owens, E. A. *et al.* Near-Infrared Illumination of Native Tissues for Image-Guided Surgery. *J. Med. Chem.* **59**, 5311–5323 (2016).
- 19 Taylor, N. J. *et al.* Derisking the Cu-Mediated ¹⁸F-Fluorination of Heterocyclic Positron Emission Tomography Radioligands. *J. Am. Chem. Soc.* **139**, 8267–8276 (2017).
- 20 Ye, M. C. *et al.* A robust protocol for Pd(II)-catalyzed C-3 arylation of (1H) indazoles and pyrazoles: total synthesis of nigellidine hydrobromide. *Chem. Sci.* 4, 2374–2379 (2013).
- 21 Chen, W. *et al.* Direct arene C–H fluorination with ¹⁸F⁻ via organic photoredox catalysis. *Science* **364**, 1170–1174 (2019).
- 22 Wang, L. L. *et al.* Design and synthesis of novel artemisinin hybrids with potent activities against human colorectal cancer cells *in vitro* and *in vivo*. *Eur. J. Med. Chem.* **194**, 111665 (2020).
- 23 Basu, S. *et al.* Design, Synthesis of Novel, Potent, Selective, Orally Bioavailable Adenosine A2A Receptor Antagonists and Their Biological Evaluation. *J. Med. Chem.* **60**, 681–694 (2017).
- 24 Chen, Y. *et al.* NO-donating tacrine derivatives as potential butyrylcholinesterase inhibitors with vasorelaxation activity. *Bioorg. Med. Chem. Lett.* **23**, 3162–3165 (2013).
- 25 Wang, P. *et al.* Ligand-accelerated non-directed C–H functionalization of arenes. *Nature* **551**, 489–493 (2017).
- 26 Preshlock, S. *et al.* Enhanced copper-mediated ¹⁸F-fluorination of aryl boronic esters provides eight radiotracers for PET applications. *Chem. Commun.* **52**, 8361–8364 (2016).
- 27 Radomkit, S. *et al.* Pt(IV)-catalyzed generation and [4+2]-cycloaddition reactions of oquinone methides. *Tetrahedron* **67**, 3904–3914 (2011).
- 28 Tredwell, M. *et al.* A General Copper-Mediated Nucleophilic ¹⁸F-Fluorination of Arenes. *Angew. Chem. Int. Ed.* **53**, 7751–7755 (2014).
- 29 Fedorova, O. S. *et al.* An approach to the asymmetric synthesis of ¹⁸F-labeled analog of *L*-threo-3,4-dihydroxyphenylserine (6-*L*-threo-[¹⁸F]FDOPS) a new radiotracer for visualization of norepinephrine transporters by positron emission tomography. *Russ. Chem. Bull.* **63**, 1169–1177 (2014).

6. NMR spectra (¹H NMR, ¹³C NMR, ¹⁹F NMR)

¹H NMR(CDCl₃)

$\begin{array}{c} 7.45\\ 7.745\\ 7.732\\ 7.732\\ 7.731\\ 7.731\\ 7.731\\ 7.731\\ 7.731\\ 7.732\\ 7.722\\ 7.7$

¹H NMR(CDCl₃)

¹H NMR(CDCl₃)

37-i

¹H NMR(CDCl₃)

¹H NMR(CDCl₃)

$$-7.83$$

 -7.26
 -6.47
 -6.47
 3.98

¹H NMR(CDCl₃)

-10.25

¹H NMR(CDCl₃)

600	9 <u>6</u> – 6
<u>-</u>	
2222	88888
<u> </u>	1

30	20	10	0	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190
fl (ppm)													